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The detachment of the electron from the H- ion during a collision with the nitrogen molecule at 
1-6 keV occurs as a result of charge transfer to an unstable intermediate state of the molecular ion 
N; and the subsequent decay of the ion. The formation process is described in the impulse 
approximation, and the motion of nuclei in the ion is treated quasiclassically. Expressions are 
obtained for the spectrum of emitted electrons and for the energy-loss spectrum of heavy parti- 
cles. These expressions relate the spectra to the cross sections for the vibrational excitation of N, 
by electron impact. A convenient expression for the amplitude for the formation of the intermedi- 
ate state is obtained in the "boomerang" model, and it is shown that one of the parameters, 
considered to be adjustable in traditional theory, can be calculated. 

1. INTRODUCTION 

The detachment of electrons in collisions between nega- 
tive ions and molecules has been the subject of a large num- 
ber of investigations (see Ref. 1). In particular, there has been 
considerable interest in the strong pert~rbation'-~ of the 
spectrum of electrons emitted as a result of H- + N, colli- 
sions, which is related to the formation and decay of an inter- 
mediate state of the molecular ion N; . Processes of this type 
have now been extensively in~estigated,"~ using different 
partners (H-, D-, F-, I-, C1-; N,, CO, O,), different colli- 
sion energies (ranging from 1 eV to energies of the order of 10 
keV), and two different methods of detecting the final states 
(spectrum of emitted electrons and energy-loss spectrum of 
the heavy particle). However, these processes have not been 
adequately investigated from the theoretical point of view. 
For example, an attempt was made in Ref. 4 to provide a 
theoretical analysis of the process, but the description of the 
process of formation and decay of the intermediate ion was 
too approximate and was based on a representation of the 
vibrational levels of the intermediate molecular ion N; that 
was shown in Refs. 10 and 11 to be invalid. An unpublished 
investigation by Herzenberg and Gayak is mentioned in Ref. 
8, but no information is provided therein of the method used 
for the results obtained. 

In this paper, we shall examine the most extensively 
investigated case, namely, H- + N, at collision energies 
E-  5 keV. Experiment that the charge-transfer 
process is enhanced in this energy range. Physically, this is 
due to the "quasiresonant" character of the charge-transfer 
process at this collision energy for which the translational 
energy of the electron in the H- ion is sufficient to compen- 
sate the difference between the energy of the intermediate 
state E-2 eV and the binding energy of the electron in the 
ion (.co = - 0.75 eV). Experiment thus supports the impulse 
description of the process, which is an alternative to the usu- 
al adiabatic description. Since the shape of the adiabatic en- 
ergy curves for this system is not known, this mechanism 
will not be examined in this paper. The important feature of 
the process is the long( as compared with the transit time) 
lifetime of the intermediate state of N; , which enables us to 

look upon its formation as a step-type perturbation and ne- 
glect the decay of N; during this process. In this connec- 
tion, we must mention the work of Baz'I2 (see also Ref. 13), 
who investigated the effect of the intermediate quasistation- 
ary state on the spectrum of reaction products. We must also 
mention the deuteron stripping reaction,I4 in which the neu- 
tron in the deuteron penetrates the nucleus which subse- 
quently decays. In our case, the intermediate state has an 
additional vibrational degree of freedom which has been ex- 
tensively investigated. 15-17;10,11 

2. FORMAL STATEMENT OF THE PROBLEM 

In this section, we turn our attention to the necessity for 
including accurately the mass of the electron, which is small 
in comparison with the masses of the nuclei. This mass is 
important because, when we analyze the energy-loss spec- 
trum of the heavy particle, we must correctly take into ac- 
count energy transfer between the nuclei and the electron. 

In the static approximation to the state of the electron 
shell of the N, molecule, the system is described by the Ha- 
miltonian 
H=Fe+PH+Tm+Bo (q) +V,,(R,-r, n; q )  + V,H (r-R=) 

(1) 
A h h 

where T,, TH and Tm are the kinetic energies of the electron, 
hydrogen atom, and molecule, respectively, r, Rm and RH 
are the position vector of the electron, the center of mass of 
molecule, and the center of mass of the hydrogen atom, re- 
spectively, v,, and v,, are the electron-atom and electron- 
molecule interactions, n is the unit vector in the direction of 
the line joining the nuclei in the molecule (this direction will 
be assumed to be fixed during the collision), Ho is the Hamil- 
tonian describing the vibrational motion of the nuclei in the 
molecule, and q is the separation between the nuclei. 

The eigenfunction !P of the Hamiltonian (1) that corre- 
sponds to the collision between the ion with momentum Po 
and the resting molecule in vibrational state no characterized 
by vibrational function vno (q) and Eno is (in atomic units) 

Y =w,+s'+, (2) 
where 
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In these expressions, q, is the wave function of the electron in 
the ion, E~ is the corresponding binding energy, E is the total 
energy of the system, and M, is the mass of the hydrogen 
atom. 

The correction S@ contains contributions correspond- 
ing to different physical mechanisms involved in the process 
and, in particular, takes into account possible multiple scat- 
tering of the electron by the potentials V,, and V,, . How- 
ever, since the velocity of the ion is comparable with, or 
exceeds, the velocity of the electron relative to the ion, and 
since the lifetime of the intermediate state is long (the width 
is r- 0.5 eV), we may suppose that multiple scattering of the 
electron has little effect on the charge-transfer process, so 
that we have the following equation for the corresponding 
term 6P in the function s@: 

It is clear from the formulation of the problem that, as r-t co , 
the quantity SP should not contain incident-electron waves. 
The solution of (4) has the form 

and f, satisfies the equation 

=-V,(p, n; q) exp (-ikpAfm/ (Mm+l) ) @ (k-vo) (q) 
d3r 

@ (z) = 5 - QJ (r) exp (-in) , (2n) " 
where vo = Pd(MH + 1) is the velocity of the incident H- 
ion. The energy E = E - (Po - k)'/2MH - k 2/2(Mm + 1) 
can be interpreted as the energy produced as a result of the 
capture of the electron by the compound system. Since the 
Fourier transform of q, has an appreciable magnitude for 
arguments of the order of the atomic unit, we may suppose 
that lkl - 1 and simplify the expression for E by neglecting 
the recoil molecule: 

We note that this expression has a clear interpretation in- 
volving the translational motion of the electron together 
with the H- ion. 

Since, in this paper, our main interest is in the analysis 
of the formation and decay of the intermediate resonance, we 
may suppose that the energy E is close to the corresponding 
resonance interval. The function f, in the neighborhood of 
the molecule will then be dominated by the term proportion- 
al to the wave function of the intermediate state. The struc- 
ture of the intermediate state will be examined in greater 
detail later. For the moment, it is sufficient to introduce the 

wave function f * of this state, which satisfies the equation 

[Fo+vcm(~, n; 911 %*(P, n; T ) = E ( ~ ) % * ( P , ~ ;  9) (8) 
(the two signs appear because of the twofold degeneracy of 
the state, which has the l r g  symmetry in the projection of 
the angular momentum on to the nuclear axis in the case of 
the N, molecule) and contains only the departing wave for 
p--+m. The last condition shows that the self-energy of the 
state, ~ ( q ) ,  is complex, and the eigenfunctions grow exponen- 
tially for largep. Nevertheless, we shall use for these func- 
tions the norm introduced in Ref. 13, assuming that the con- 
tours of all the radial integrals with respect top are deformed 
so as to ensure convergence. This can be justified by a gener- 
alization of the argument put forward in Ref. 13. However, 
we cannot pause here to examine this question in greater 
detail. 

Thus, for the range of values of the energy Ein which we 
are interested, the solution of (8) has the form 

f k ( ~ t  Q ) = ~ + ( ~ ) % + ( P I  9) +b-(9)  b-(p, q)+6fr, (9) 

where 5- * can be interpreted as the wave function for the 
relative motion of the nuclei in the intermediate state, and 
the correction Sf, can be regarded as small in the neighbor- 
hood of the molecule. It was assumed in Ref. 17 that this 
correction had a different symmetry than the intermediate- 
state function *, i.e., that scattering through the interme- 
diate resonance provided the predominant contribution to 
the process only among functions of the same symmetry. To 
determine the function 6, * (q), we must solve the equation 
from (8) on the assumption that f *(q) is a slowly-varying 
function of the nuclear separation: 

[ R o ( ~ )  + E (q)-E] b *  (9) =-@(k-vo) v* (k, n; q)vw(q) I 

(10) 
where 

The probability that the system will undergo a transi- 
tion to the final state, characterized by momentum Pj of the 
hydrogen atom, momentum kf of the escaping electron, and 
final vibrational state n of the molecule, is given by the ma- 
trix element 

Once we know this matrix element, we can find the differen- 
tial cross section for the complete experiment: 

Thus, evaluation of the cross section requires integration of 
(lo), which is similar in form to the basic equation of Herzen- 
berg's theory,17 followed by integration of the resulting solu- 
tion with the final-state wave function v ,  (q), and integration 
with respect to the electron momentum k in accordance with 
(5). Moreover, the electron-capture amplitude on the right- 
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hand side of (10) differs from the corresponding quantity in 
Herzenberg's traditional theory, and it is not clear how it can 
be determined for all nuclear separations. It is probably the 
combination of these problems that has prevented an accep- 
table theory from emerging. In this paper, we use the pre- 
viously quasiclassical approach to Herzen- 
berg's theory to show that the basic characteristics of the 
process can be calculated by performing a single integration, 
namely, with respect to the electron momentum k, in accor- 
dance with ( 5 ) ,  and the final result is expressed in terms of the 
cross section for the vibrational excitation of the hydrogen 
molecule by electron impact. 

3. DESCRIPTION OF THE INTERMEDIATE STATE IN THE 
HERZENBERG THEORY 

It is assumed in the Herzenberg theory that the reso- 
nant state is formed as a result of temporary capture of an 
electron by a vacant orbital of the molecule. In the case of 
N,, the formation of the resonance is examined for the first 
time (in the approximation of fixed nuclei) in Ref. 18 (see also 
the review given in Ref. 19) where it is shown that the 
N, - (217,) resonance is formed on the basis of the vacant 
l r g  orbital of N,. Expansion of the wave function of this 
symmetry in terms of the partial waves begins with I = 2 and 
contains only even orbital moments. It is this fact which 
leads to the basic assumption of the theory: it is assumed that 
the electron becomes bound in the neighborhood of the mol- 
ecule as a result of a complex nonsingle-particle interaction 
with the electron shell of the molecule, and the state is pre- 
vented from decaying by the centripetal barrier for the low- 
est orbital angular momentum allowed by the symmetry of 
the resonance. Hence, the simplest model of the intermedi- 
ate state is a spherically symmetric well having a depth (and 
therefore an energy level) that depends on the nuclear sepa- 
ration, and surrounded by the centripetal barrier. In view of 
the foregoing, we may consider the following simple repre- 
sentation of the wave function c * : 

%* (P, n; q) =Y2. *i (P/P)X(P, q) 7 (13) 

where 

The values of A, 6, and N are determined by joining the solu- 
tions at p = R, and by the normalization condition, where 
the quantization axis lies, of course, along the unit vector n. 
The momentum k of the state depends on the nuclear separa- 
tion q and is determined by the eigenenergy ~ ( q )  (8): 
~ ( q )  = k '(q)/2. The energy ~ ( q )  of the intermediate state is 
directly related to the energy curves of the ion and molecule, 
W,(q) and Uo(q): 

W,(q)=Uo(q)+e(q). (15) 

The quasiclassical analysis of the Herzenberg the- 
orylO." has shown that the main contribution to the forma- 
tion and decay of the intermediate state is provided by neigh- 
borhoods of the nuclei that satisfy the Franck-Condon 
condition: 

or, in other words, 

~~=Wr(qi)-Uo (qi) '8 (qi) r 

where E is, as before, the energy of the compound system, Ei 
is the energy of the initial or final vibrational states of the 
molecule, and E~ is the energy of the captured or emitted 
electron. The Franck-Condon principle is thus found to de- 
termine the Franck-Condon function q ( ~ ) ,  which is complex 
for real arguments. It will be useful to consider the function c 
(13) not as a function of the nuclear separation q but as a 
function of a real argument, namely, the energy of the elec- 
tron, assuming that the momentum k in (14) is the indepen- 
dent variable. The function defined in this way will not grow 
exponentially. 

We now turn to the analysis of (10). As already noted, 
this equation is outwardly very similar to the equation in 
Herzenberg's theory with one minor difference: in Herzen- 
berg's theory, the electron momentum k, the energy 2 of the 
compound system, and the energy of the initial vibrational 
state are related by 3 = k '/2 + En0. This relation indicates 
that the Herzenberg theory involves only the amplitude 
V(k,q) for the formation of the intemediate state for which 
the momentum k coincides with the intermediate state mo- 
mentum k (q) introduced in the last section. In this connec- 
tion, we may say that (10) contains on its right-hand side the 
amplitude for the formation of the compound system "off 
the mass shell." This quantity was not previously considered 
in Herzenberg's theory, and its determination is our immedi- 
ate problem. 

Using the definition of the function given by (8), and 
assuming that V,, = 0 for p>R,, we obtain 

V* (k,  o; q (e) ) = (e-k2/2) J 61e-ikp d3p 
0 4 %  

It is important to note that this result can also be obtained for 
a nonlocal interaction between the additional electron and 
the electrons in the molecular shell. Thus, to determine V * , 
it is sufficient to know the particular representation of the 
wave function of the external electron in the neighborhood 
of the molecule. In particular, using representation (14), we 
can readily evaluate the integrals in (17) in an explicit form 
(we shall omit the corresponding somewhat unwieldly repre- 
sentation and separate out only the angular dependence of 
v *): 

V* (k, n; q (E) )  =V(k ,  e )  Y2, ,, (Wk). (18) 

The evaluation of the normalizing integral for the function 
(14) is not difficult either: 

Thus, when (14) is assumed, the amplitude for the formation 
of the intermediate state is determined by the interaction 
cutoff radius R,. A similar parameter appears in the Herzen- 
berg theory," but the electron-capture amplitude is deter- 
mined in that theory by the width of the intermediate state, 
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Fig. 1. The ratio z of the absolute amplitude IV(~E)"~,EI, for the forma- 
tion of the intermediate ion N, "on the mass shell", calculated in this 
paper, to the amplitude VDH(c) calculated from the formulas in Ref. 17. 
Different curves correspond to different values of the cutoff radius of the 
potential V,, for the electron-molecule interaction: 1 - R, = 1.41, 
2 - R, = 1.44; 3 - R, = 1.48. 

which contains an additional parameterr (R,). It is therefore 
very interesting to compare our representation (for 
k = ( 2 ~ ) ' ' ~ )  with calculations based on the formulas given in 
Ref. 17. Figure 1 shows the ratio of the corresponding quan- 
tities. The radius Ro was assumed in Ref. 17 to be 1.41, 
whereas here we use 1.44. We note that the difference 
between these two figures has very little effect on the results 
given in Ref. 17. We may conclude that the electron-capture 
amplitude depends on the cutoff radius R, but, within the 
limits of uncertainty of the Herzenberg theory (of the order 
of 5 % ) ,  the function V (17) is in good agreement with the data 
in Ref. 17. The difference in the energy dependence of the 
amplitudes is due to the fact that we take into account the 
variation of the wave function 4 inside the well with the ener- 
gy of the intermediate state, whereas this variation was ne- 
glected in Ref. 17. We note that allowance for the increase in 
the amplitude with energy (which is more rapid than is pre- 
dicted by the Herzenberg theory) will correct the cross sec- 
tions for the resonant vibrational excitation of the molecules 
at high electron energies in the right direction. 

We shall now show that the use of the quasiclassical 
approximation will automatically enable us to integrate with 
respect to the nuclear separation in (1 1). In fact, if we intro- 
duce the Green function G (q,ql) for the differential equation 
(lo), we can show that our integral has the form 

Jm,k;n,k ,=(vn(q) I V f ( k t ,  n; q)G(q ,  9') Vr (k n; q )  Ivn,(q)>. 

(19) 
The quasiclassical analysis given in Refs. 10 and 11 and 
based on the rapid oscillation of the functions uno (q), v, (q), 
and G (q,ql) as functions of the nuclear separation enables us 
to take outside the integral sign the values of the amplitudes 
for the formation of the intermediate state at points satisfy- 
ing the Franck-Condon principle. Comparison of the result- 
ing integral with the analogous calculations of the amplitude 
for the resonant vibrational excitation of the molecule by 
electron impact at k, = k ki/k, k 3 = 2 ( z  - En"), i.e., 

leads to the key conclusion of our work, namely: 

4. EVALUATION OF CROSS SECTIONS 

The complex Po, n,+P,, kf, n experiment is not possi- 
ble at present, and measurements are performed of the spec- 
tra of emitted electrons or of the energy loss by the heavy 
particle. The cross section (12) must therefore be integrated 
with respect to quantities characterizing the part of the com- 
plete experiment that cannot be seen in the experiment, and 
then average over the orientations of the molecule. 

Let us examine in greater detail the expression 

6 (E f -E)  d3Pf dSkf=6 ( E ~ - v ~ ~ ~ ~ + E ~ - E ~  
+vo2/2-eo)dkll dzk, dQrf  ( 2 ~ ~ ' "  det, (22) 

where E, = k f/2 is the energy of the escaping electron and 
k,, and k, are the components of the vector k respectively 
along and across the vector v,. 

The energy lost by the heavy particle is 

6E=Pfz/2MH-PoZ/2 (MH+~) =vO2/2- ( ~ o k )  

(SE < E, in collisions accompanied by vibrational excitation 
of the molecule), so that, bearing in mind the fact that we 
wish to evaluate the spectrum of these losses, we can rewrite 
(22) in the form 

6 (E f -E)  d3Pfd3kf=6 ( 6 E - ~ ~ ~ / 2 + ~ ~ k ~ ~ )  dkl,d2k, 

XdQr ( 2 ~ ~ )  '"6 ( 6 E f  E ~ + E ~ - E ~ . - E ~ )  defd ( 6 E ) .  
(23) 

1 

show that there are no observable anomalies 
in the distribution of the emitted electrons (this is not sur- 
prising because any averaging will smooth out the angular 
dependence of the cross section). We shall not consider the 
angular distribution of the electrons, having integrated with 
respect to a and Okf. Integrating twice with respect to k,, we 
can readily show that the spectrum of the emitted electrons 
is given by 

OD 

where 

The quantity a,,, is the total cross section for the n,+n 
vibrational transition. Similarly, the energy-loss spectrum of 
the heavy particle can be shown to have the following form: 

N 

The sum is evaluated only over the channels that are open for 
the given energy loss, i.e., for n<N we have E, =En, 
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Fig. 2. The function Q (E,v,) plotted against E. Solid curves corre- 
spond to calculations with p, (27). The dashed curve shows cal- 
culations with the function given by (28). Different pairs of 
curves correspond to different collision energies: 1-1 keV, 2-2 
keV, 3 4  keV, 4-6 keV. 

+ E, - En - 6E > 0. We recall that SE.< E, always. tachment of the electron considered here, there are also oth- 
Thus, to determine the loss spectrum and the spectrum er mechanisms that lead to the same final state. These mech- 

of emitted electrons, we must find the function Q (E,V,), and anisms can be isolated only in a qualitative manner, and the 
this requires a knowledge of both the amplitude T(k,e) and data reported in Ref. 8 can be used as a basis for concluding 
the Fourier transform of the wave function of the electron in that the calculations with the function q,, yield very reasona- 
the ion, &(k). We shall now use two possible parametriza- ble results, whereas those with pl lead to cross sections that 
tions of this function in configuration space:'' are too high at low collision energies. 

Following Ref. 20, we shall suppose that a = 0.236 and 
p= 0.821 atomic units. It is important to note that the Four- 
ier transforms of the functions q,, and p2 are close to one 
another only for 0.25 < k < 0.45; 6, decreases rapidly with 
increasing k ', and 6, > &, for k < 0.25. 

We now turn to the calculated values of the function Q 
(Fig. 2). It is clear from these results that, at low collision 
energies, the result obtained by using q,, is much greater than 
that obtained for p,, whereas the reverse situation obtains 
for collision energies in excess of 2 keV. The point is that, at 
low collision velocities, the main contribution to (25) is pro- 
vided by - large - arguments of the function q, and, in in this 
region, p, < p,. As the collision energy increases, the longi- 
tudinal momentum kl, = (E - E,)/u, + ud2 is found to de- 
crease and, consequently, electrons with low momentum (in 
the frame in which hydrogen is at rest) begin actively to par- 
ticipate in the process. In this region, 6, is much greater than 
&,, and this is reflected in Fig. 2. The curves corresponding 
to collision energies of 4 and 6 keV exhibit an appreciable 
distortion, which is particularly clear at energy E for which 
kll .= u,, and the region of integration in (25) contains the 
polnt at which the argument of the function 6 vanishes. This 
distortion is, of course, more appreciable when the calcula- 
tions are performed with 6,. 

Unfortunately, our results are difficult to compare with 
experimental data because, in addition to the resonant de- 

5. CONCLUSION 

The analysis given above is not, of course, very accu- 
rate. It is therefore interesting to consider the reasons for, 
and the character of, the resulting errors. 

First of all, one can criticize the impulse mechanism 
used in this paper as being responsible for the formation of 
the intermediate states. We have already pointed out that the 
adiabatic approach is an alternative method of description. 
On the other hand, the impulse approximation is not very 
different from the methods developed in Refs. 21 and 22 for 
the description of the collision between a negative ion and a 
neutral particle, which have turned out to be quite successful 
at our collision energies. ' 

Next, we have used the quasiclassical approach to the 
Herzenberg theory, and the error that this introduces in the 
most unfavorable case of resonant elastic scattering is up to 
10%. 

Moreover, the assumed behavior of the function f * in 
the neighborhood of the molecule, which is used in (14), can 
be improved. 

Finally, the wave function q, of the electron in the ion 
can also be improved. Here, we must remember that, at low 
collision energies, the cross section includes an important 
contribution due to the short-wave part of this function, 
which is involved in the description of the motion of the 
additional electron in the immediate neighborhood of the 
nucleus. This means that the possible effect of electron cor- 
relations on this process must be taken into account for slow 
collisions. At the same time, there is less justification in the 
case of slow collisions for using the momentum approach to 
the formation of the intermediate states. 
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We note that the approach employed above may also be 
valid for the description of the detachment of an electron 
from a highly excited atom. In this case, there are no essen- 
tial difficulties with the determination of the wave function 
of the electron in the incident particle, and the cross sections 
for such processes may be very considerable. 

I am indebted to G.  F. Drukarev for his interest in this 
research and to Yu. N. Demkov for useful suggestions. 
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