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The problem ofq-photon interaction between a (q + 1)-level atom and electromagnetic waves that 
are at resonance with neighboring atomic transitions is solved. It is shown that if the initial and 
final levels are metastable while the intermediate states decay rapidly and only radiatively, a 
transition to a generalized two-level system (GTS) of metastable levels is possible. A new deriva- 
tion is presented of the GTS density matrix and of expressions for the system response. The 
influence of the radiative transitions between levels is considered and it is shown that these 
transitions must in principle be taken into account near resonance with intermediate levels. The 
relations derived are used to calculate the linear interaction between a gas of multilevel atoms and 
a standing-wave field. In this interaction the line broadening due to the linear Doppler effect is 
completely eliminated and a multiphoton resonance sets in, having a width on the order of the 
width of the transition between the metastable levels. The effect exerted on this resonance by 
spatial modulation of the medium in the field of an intense standing wave is analyzed. It is shown 
that with increasing saturation parameter the line width first increases linearly and the shape 
ceases to depend on the relaxation processes on the metastable levels. However, the singularities 
in the gas-susceptibility derivatives, which lead to the onset of lines free of field-induced broaden- 
ing, are preserved. The feasibility of observing the narrow resonance and using it in atomic 
spectroscopy is discussed. 

1. INTRODUCTION It is used to confirm the validity of the rate approximation2' 

The basic results of high-resolution spectroscopy were 
obtained using one-photon resonances and two-photon ab- 
sorption resonances. Yet the availability of tunable lasers 
permits also an effective use of multiphoton processes, since 
the photon frequencies can then be tuned to resonance with 
an intermediate level. These processes permit the investiga- 
tion of forbidden transitions as well as of transitions in the 
short-wave and other bands, for which there is no resonant 
radiation. The ensuing possibilities are considered in the 
present paper. 

It is known, with the three-level system as the example,' 
that the width of a multiphoton line is of the order of the 
width y of the transition between the initial level 0 and the 
final one q. The Doppler broadening w, is eliminated only in 
part near a resonance with an intermediate level, and is of the 
order oP4 the r a t e r  of decay of these levels. In the situation 
of greatest interest for spectroscopy, when the levels 0 and q 
are metestable, 

the broadening is still large. In Refs. 5 and 6 are advanced 
theoretical arguments that this broadening of resonance, 
due to the nonlinear reaction with a standing-wave field, 
does not occur in a gas of three-level atoms." It will be shown 
here that such an effect occurs also for a multiphoton line. It 
follows that nonlinear interaction with a standing wave is a 
universal method of eliminating Dopler broadening, equally 
suitable for an ordinary two-level medium, in which the 
Lamb dip is observed, and in an arbitrary mulitlevel case. 

The condition (1) is known from the Lamb-dip theory. 

(Ref. 9) and to take approximately into account the spatial 
modulation of the medium." In the two-level case, however, 
Eq. (1) is satisfied only for strongly differing level-decay 
rates or for large collision broadening of the line. For the 
lines used in one-photon precision spectroscopy we have 
y-T, and here the accuracy of the rate approximation is 
30% (see the results of the numerical calculations in Ref. 12). 
In our case (1) is always satisfied. The rate approximation is 
thus not applicable at all, and the effect of spatial modula- 
tion plays the principal role even in a weak field,I3 and leads 
in the case of strong saturation to the line deformation con- 
sidered in the present paper. 

A formalism convenient for the description of multi- 
photon processes is that of the generalized two-level system 
(GTS). It was developed in Refs. 14 and 15 for the nonreson- 
ant case. The presence of the small parameter (1) makes the 
use of the method possible in the case of resonances with 
intermediate levels. In this case the effective Hamiltonian 
and the generalized dipole-moment matrix increase reson- 
antly, and the expressions obtained for them in Refs. 14 and 
15 no longer hold. We present below a calculation of these 
quantities by a new procedure. 

2. EFFECTIVE HAMILTONIAN 

We consider a (q + 1)-level atom in the field of q reso- 
nant waves 

j=-q 

where j#0. At j>O, FF, and wj are the amplitude and the 
frequency of the wave that is at resonance with the transition 
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between the levels j - 1 and j, 65' -, = %'?, - , = - w,. 
We are interested in a situation in which the initial and final 
levels 0 and q are metastable, while the intermediate levels 
decay rapidly. Since the collision broadening of the levels is 
of the same order, such a situation is realized in the pressure 
range in which the intermediate levels are only radiatively 
broadened. We have then for the evolution of the density 
matrix (T during a time shorter than y-' the equation 

where ( r ,  6 )  = r(T + ( T ,  ru = Siri, 2 r i  is the rate of de- 
cay of the ith level, r, = rq = 0, V = - d%' is the Hamil- 
tonian of the interaction of the atom with the field (2), and d 
is the dipole-moment operator. We consider below a cascade 
level scheme a,,,-, > 0 with wv the frequency of the i-+j 
transition. We obtain for it 

- 
Vj, j - l=Gj  exp ( - iQ j t )  , Vj-,. j=G-j  exp ( i Q j t ) ,  (4) 

where G, = G T, = - d,, , - , kYj,d, is the dipole matrix 
element of the transition m+n, a, = wj - oj, ,- , is the de- 
tuning of the frequency of the j-th field. In the case of a bent 
level scheme it is necessary to make in (4) the substitutions 
gj+%' -j,w,+a -, for transitions in which w,, ,- , < 0. We 
seek the solution of (3) in the form 

B=exp ( - r t )  a exp (-I't) . 

We then obtain 

i b = ~ ( t )  o-aV+ ( t )  , ( 5 )  

where V(t ) = exp(rt ) V exp ( - r t  ). 
Let the condition for q-photon resonance be satisfied in 

the system, viz., the total detuning of the frequency of 
Y = 0, + . . . + 0, is small compared with r. Then, consid- 
ering the evolution of o after a time 

we get 

o ( t + T )  =S ( T )  o ( t )  S f  ( T )  , 

We introduce the metastable-levels density matrix pi,. 
= a,,,, where the subscripts i and k are equal to 0 or 1. We 

are interested in the connection between p(t ) and p(t + T).  
Assume that at the instant t we have 

at i,k, equal to 0 or q 

in the remaining cases . (8) 

When (6) is satisfied, the main term in p(t + T )  is the one 
linear in T. The terms independent of T contain the param- 
eter (TT)-', and the terms of higher powers in Tcontain the 
parameter YT. The term linear in T appears in the q-th term 
of the expansion ofp(t + T )  in terms of the field 

0 

In (9), S, - ( G / r ) "  at n #q and S, = (G/r) ,TT.  We see 
thus that only the terms with n = 0 or q need be retained in 
(9). We then obtain 

@=Up-pU+, (10) 

where 

is the effective GTS Hamiltonian. Terms linear in Toccur in 
all the terms of order q + 2n of the field expansion of 
p(t + T),  with n an integer. If 

Gj/I'gl, (12) 

they are small compared with those taken into account in (9). 
All the quantities will hereafter be calculated in the lowest 
order in G / r .  For the matrix elements of U we obtain from 
(7) 

where 8, = 0, + ... + 0 , .  

3. GENERALIZED DIPOLE MOMENT MATRIX 

Let the atom be now situated in a field 

From the expression P (t ) = sp(d;(t )) for the polarization of 
the atom we get for the response at the frequency w, 

and taking the boundary condition (8) 

where 

Dj=-8-j-'A-j 

is the generalized dipole-moment matrix, and 
l+T dT 

T 
s t ) .  (16) A,= J -s+ ( T - t )  e x p ( - ~ J ? T ) - - - -  

ah, 

Here and below, the derivatives are calculated at Aj = 1. 
That D is Hermitian (D - = D ,+ ) follows from the identity 

exp ( - 2 r z j  V ( T )  =V+ ( 7 )  exp ( - 2 h ) .  (17) 

From the equations for aS /aAj we obtain 

Substituting this expression in (16) and integrating by parts, 
we obtain, taking (17) into account, 
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That part of A, which is independent of T arises in the g-th 
order in the field. Expanding in analogy with (9) the first 
term of (18) and recognizing that dS,,/d/Z, = 0, we get ulti- 
mately 

dU 
A, = - + 2i S+ (r-t) I. exp (-2rr)  

dS (r-t) 
a dh, 

. (19) 

The matrix elements D at r = 0 were calculated in Ref. 15, 
and sums over the intermediate levels appear in them if 
r # 0. If each photon is resonant, their calculation is elemen- 
tary.16 We then obtain 

(A,),, (j) exp (-ivt) Gi . . . G,. 

. [ (X1+iri) . . . (Xj-l+ir,-l) (Xj-ir,) . . . (Xq-i-iI'q-l) I-', 

~ A ~ ~ ~ , ~ = ~ I - ~ ~ , ~ , ~ ~  IG,. . . G , I ~ [  (x;-,+rqTi). . . (z;l+rl:l) 

(Eljl-i+i sign(i) r l j l - l )  I ,  
where 

4. ALLOWANCE FOR RADIATIVE TRANSITIONS BETWEEN 
LEVELS 

If the products of the radiative decay include levels 0, ..., 
q, we obtain in lieu of (3) for the diagonal elements 

where rG is the rate of the radiative transition I-j. 
Equations (2 1) are not Hamiltonian and the above solu- 

tion method cannot be used. In multiphoton interaction, 
however, the real populations of the intermediate levels are 
small. In the zeroth approximation in we can disregard 
completely the equations for them, or leave them the same as 
in (3). Then, substituting the solution of (3) in the right-hand - 
side of (21) we can calculate and the terms, proportional 
to them, of the arrival at the metastable levels. The results 
are the following final equations for the GTS density ma- 
trix'? 

where 

is the total probability of the decay from the level j to the 
metastable level i, and 

is the probability of the decay proceeding via the channel 
j+jl..j,-i. 

5. NONLINEAR SUSCEPTIBILITY IN THE STANDING-WAVE 
FIELD 

Consider a gas of (q + 1)-level atoms in the field (2). Let 
the transition q - 1--tg be resonant to a standing wave and 
the remaining transitions resonant to the traveling waves 
EYq = 2Eq cos (kqz), gj = E, exp (ikjz), where k, is the wave 
vector of the jth wave and the z axis is the wave propagation 
direction. The susceptibility of the medium is defined as the 
coefficient of the proportionality of the polarization projec- 
tion Pq (z) on the standing-wave field 

2n/kq 
dz 

cos (k,z) P, (z) lE,. 

We obtain for the susceptibility 

where v is the. projection of the atom velocity on the z axis. 
We take the relaxation into account by introducing into the 
left-hand sides of the equations for d ,  the terms y,p,, 
where y, = yi is the rate of decay of the i-th metastable level, 
and yo, = y,, = y. In a gas we have d /dt = d /d t  + vd/dz. 
We transform to new variables 

Let the level 0 be populated in the absence of a field. We seek 
the solution of (lo) in the form 

~qo(z,  t)  =~XP(-ivl+irlz) GpooF(z), pii(z, t )  =poopi(z), 

wherepg = NWM(0),N is the gas density, 

W M  (v) = (n"kqvo) -' exp [- (v/k,v,) 2 ]  

is a Maxwellian distribution function in velocity, vo is the 
thermal velocity, G = - iG ,... G, (r ,... r, - , )- ' (here and 
below G, = - d,, j- , E,), and the parameter 

is the algebraic sum of the wave vectors of the traveling 
waves in units of k,. We then obtain 

d 

( . y - i -  F=2 cos Z(P~, - -P*~, )  1 
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81GqPqlz 
pq=4 I G 1 cos z Re (B'?), 

r q - ,  
(26) 

where 

and S, = E,/I;-, S = Oq/I ' ,  - , . We shall be interested here- 
after in the susceptibility saturation due to the nonlinear in- 
teraction with only the standing-wave field. Assuming the 
remaining fields to be weak and solving (26) by iterating over 
G, we obtain for m = p, / (  Y G  I2,r = ; / Y  the equations 

A a 

y.r=2 cos z,  yqm=4 cos z Re r, (27) 

where the differential operators are given by 

and the saturation parameters are 
x = 21G,12/(rq- y), xq = 21Gq I2 / ( rq -  yq) .  It can be seen 
that besides the usual parameter x ,  that corresponds to satu- 
ration of the population of level q there appears a new pa- 
rameter corresponding to saturation of the polarization of 
the transition 0-q. 

From (20) we obtain for the susceptibility at u, )y /k ,  

where a, = 4 6 ' 2 ( ~ Y / ~ ,  1 2 ~  ( dq ,q - l  I2/uO, 
m 

F (v) = 5 $ (a (u)  + ' the same with the substitution 
0 q-+- r l ) 7  (29) 

@ (11) =<yx8, 'm cos2 z-r cos z > ,  (30) 

and the averaging is along z. The absorption coefficient a 
and the refractive index n are equal to 

Being interested only in the nonlinear part ofx, we can make 
the substitution r-tr - r , ,  where 

.. d 
r,=2il-' cos z,, y ,=v-+ p i ( v - q v ) ,  

dz 
(32) 

since r, corresponds to the linear susceptibility of the gas. 
We confine ourselves here to the case of a weak field, 

x(1 .  Solving (27) by iterating over x ,  we obtain ultimately 

6. STRONG FIELD 

Let now x - x , -  1 .  We assume for simplicity that 
0, = 0 .  It is more convenient to calculate a and n separate- 
ly. Direct calculation shows that if 

a a 

Q ( u )  =2<cos ~ ( y - ' - y , - ~ ) c o s  z ) ,  (34) 

where 

is substituted in (29), we obtain an expression identically 
equal to zero. Substituting in (30) the solution (27) and add- 
ing to @ (u) [Eq. (34)] ,  with allowance for the substitution 
r-tr - r, ,  we obtain after elementary integration with re- 
spect toz and u the nonlinear increment A n  = (a,,/k,)Q (v) to 
the refractive index, with 

wherep = y x / ( y ( l  + x )  - iv). 
We now calculatea. At 0, = 0 ,  Re @ (u) decreases quite 

rapidly as a function of u, so that our equations suffice for the 
calculation of both the linear and nonlinear pacts of a .  From 
(27) we get 

L I 

dz dzi 
+4yx JZLJ u ~ o s 2 ~  cos z,il ( z ,  z , )Re  r ( z1) ,  (36) 

-L -L 

where L is the normalization length along z, and 

' dz' 
A (z,  z , )  =exp J - - ( l + 4 x q  cos2 z f )  ] . 

u 

Changing the sequence of the integration in the second term 
of (36) and separating the term proportional to dA (z,z,)/az, 
we verify that it cancels completely the first term of (36).  In 
the upshot we get 

A 

Re @ ( v )  =-y,(y,-' cos z Re r ) .  (37) 

Substituting this expression in (29) we get ultimately 

where 
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The first term in (38) yields the background of the reso- 
nance, and the function J (v )  the resonance proper. Charac- 
teristically, the saturation parameters in (35) and (39) enter 
in combinations 

that remain finite as x - + ~ .  Expansions is terms of these 
quantities should converge more rapidly than expansions in 
powers of x. They can be obtained by carrying out the inte- 
gration along a straight line C shifted by an infinitely small 
amount into the lower half of the complex r plane. Expand- 
ing the integrands in (35) and (36) in powers ofp andp(x) we 
obtain the integral 

Closing its contour Cin the upper (at a > 0) or lower (at a < 0) 
half-plane, we get 9, (a) = am9 (a). This equation suffices to 
obtain any term of the expansion in the parameter (40), and 
following the expansion in (39) the integration with respect 
to x also becomes elementary. The lengthy final formulas 
were given by us in Ref. 16. 

We have calculated the functions Q and J from Eqs. (35) 
and (39). The results of the calculation of the resonance in the 
refractive index are given in Ref. 18 (see also Ref. 16). We 
present below the results for the absorption resonance. We 
characterize it by the amplitude A = J,, - J,, and by a 
half-width which we define as equal to the maximum root of 
the equation 

Figures 1 and 2 show the dependences ofA and yR on x. 
The jumps of the yR (x) plots are due to the fact that the 
deformation of the contour o f J  (v) changes the number of the 
roots of Eq. (41). The dashed lines in the figures show ap- 
proximate dependences of the resonance parameters that ap- 
pear when (39) is expanded inp(x) up to the 10th term. 

7. ASYMPTOTIC CASE 

The function J (v )  at X-+W is shown in Fig. 3. We are 
interested here in small corrections to this contour. It can be 
seen from (35) and (39) that at v = y = 0 the integrands con- 
tain branch points at r = 0. Consequently Q and Jare  nonan- 
alytic functions of v near the line center. Let us ascertain the 
character of this nonanalyticity. We consider absorption res- 
onance. At v/y - 14% we have 

I I 1 I 1 I 1  1 1 1  I I l l  I I 
0 0,Z 0.4 0,6 0,8 1 2.5 5 10 25 50 100 500 

X 

FIG. 1. Exact (solid curve) and approximate (dashed) field de- 
pendences ofthe resonance amplitudeA [ 8  ( 1  - x)  + x 8  (x - I)] 
in absorption at y = y, for different values of the parameter 7. 

where y = 1 - x. We divide the region of integration with 
respect to r in two, r < a and r > a, where S&a( 1, and denote 
their contributions to p(x) by p, and p,. At small r we have 
s2 = (1 + y)'(1 - fr2), and the factor in the curly brackets in 
(39) is equal to S + 3f1, where 

FIG. 2. The same as Fig. 1 but for the absorption resonance half-width 
(the ordinates are y, [6(1  - x)  + x - ' 8 ( x  - I)]) .  
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FIG. 3. Exact (solid curve) and approximate (dashed) shape of resonant 
increment to the absorption coefficient as x+m for different values of the 
parameter 7. 

We then obtain for p, 

+'/26f-3'a [ ( f - f l )  In ( 2 f / 6 )  + f , ]  . 

(43) 
When integrating over the region r > a we can expand 

the integrand in powers of 8. Then p2 acquires terms that 
cancel the first three terms of (43). We shall not present here 
the awkward formulas for the remaining terms ofp, (see Ref. 
16), the more so since they yield no additional dependence of 
J o n  v; we indicate only that they can be completely neglect- 
ed at lnx) 1. We then obtain from (43) for the increment SJ  (v) 
to the limiting value of J (0)  from (39) 

+ I j  d y ( ~ - f , ) t * ( l + y ) - i  
nxx 

1 
a r ~ t g ( 6 , / 6 ~ ) -  -6' 1n(1+62z/6,2) 1, 

2 
where 8 ,  + is2 = x8. Differentiating (44), we see that in the 
first derivative of the absorption resonance there appears a 
line free of field broadening 

The evolution ofdJ/dv with increasing x in the region v-  y 
is shown in Fig. 4. 

FIG. 4. Evolution, with increasing field intensity, of the derivative of the 
resonant increment to the absorption coefficient at y = y, and 7 = 0. The 
dashed line is a plot of (45); the ordinates are - xZydJ(v)/dv. 

The line Q (v) is treated analogously. The integrand 
should be expanded here in powers of (1 - ( p  sin r/r)2)1'2 to 
the cubic term, which is the one responsible for the nonana- 
lytic increments. A resonance free of field broadening ap- 
pears16 only in the third derivative and has a Lorentz shape 

8. DISCUSSION 

The foregoing derivation of the equations for the GTS 
differs from that in Refs. 14 and 15. We used an S matrix in 
place of an expression for a in the form of multiple commu- 
tators. In q-th order perturbation theory we obtained for o 
only q + 1 terms as against 2q in Refs. 14 and 15. That the 
effective Hamiltonian of the nonresonant situation is Hermi- 
tain can be established without resorting to the explicit form 
of U, and follows from the unitarity of the S matrix. Indeed, 
retaining in the vanishing q-th term of the expansion ofSS + 

in terms of V only the terms linear in T, we obtain 
Sq = - S,f, which verifies that the Hamiltonian (11) is 
Hermitian. At r #O the matrix is not unitary and U is not 
Hermitian. It follows therefore that the probability of find- 
ing the atom on metastable levels varies with time, 
Spp #const. Yet it is obvious that for a conservative GTS, in 
which the end products of the decay are only the level 0 and 
q, the probability should be conserved. Even this fact alone 
points to a fundamental role of the processes of real popula- 
tion of the intermediate levels. That the equations (22) which 
result from allowance for these processes lead to 
Spp = const can be verified by taking it into account that 
A _ ,  +Aq = U and that w,, + wjq = 1 for a conservative 
GTS. 

Our approach to the calculation of the response of the 
system is also different. The use of the set of constants 4 
made it possible to establish a direct operator connection 
between D, U, andS. At r = 0 (in the nonresonant situation) 

Dj=-8,-'dU/dk-j.  (47) 

It can be seen that there is no need here to divide14*15 D into 
resonant and nonresonant parts, and that the proportional- 
ity of the off-diagonal elements of D to the positive- or nega- 
tive-frequency parts of U follows from the vanishing of the 
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derivative, with respect to A, of the terms with incorrect fre- 
quency dependence. We note that the expressions (13) for 
U , ,  are obtained from the formulas for Uat r = 0 if only the 
resonant terms are retained and if an imaginary increment 
- ir, to the energy of the final level I is added to each of the 
denominators. This, however, is not enough to obtain cor- 
rect expressions for D. In fact, in the opposite case Eq. (47) 
would remain valid at r # 0, but it follows from (19) that this 
is not the case. 

Equations for the incomplete density matrix were al- 
ready used earlier in the theory of nonlinear resonances. 
Thus, to calculate the coherent corrections to the Lamb dip, 
Baklanov and Chebotaev" obtained for the population dif- 
ference and equation that can be intrepreted as an equation 
for the density matrix of a structureless particle with a non- 
Hermitain Hamiltonian that is quadratic in the field of the 
standing wave. In Ref. 17 were obtained GTS equations for 
the case of a two-photon resonance. In the absence of the 
Doppler effect (in the radio band or for particles captured in 
a trap), the GTS method can be used to calculate the total 
susceptibility. In our case it can be used only to calculate the 
resonant increment to X. The nonresonant background is 
usually calculated by considering the complete system of 
equations, and in this case the rate approximation18 is appli- 
cable. 

An important question in the theory of nonlinear reson- 
ances is that of the field dependence of the parameters that 
describe the resonances. This dependence is calculated by 
using perturbation theory, the rate approximation and the 
corrections to it, and in our case one can use expansions in 
terms of the parameter (40). The availability of an exact solu- 
tion permits an estimate of the ranges of validity of these 
approximations. It is found, for example, that the field de- 
pendences obtained by perturbation theory (see Ref. 16) are 
valid, accurate to lo%, for the amplitude and width of the 
absorption resonance up to x values 0.05 and 0.8, respective- 
ly. This example shows that the perturbation-theory calcula- 
tion frequently used in applications must be approached 
with some caution, and should be used only when the range 
of their validity has been determined. It can be seen from 
Figs. 1 and 2 that expansions in terms of the parameter (40), 
with only the first 10 terms retained, yield the same accuracy 
up to x = 2.5 for absorption. It is seen from Fig. 3 that as 
~ + C C  the approximate solution agrees wtih the exact one at 
sufficiently large Y.  Thus, an accuracy to better than 10% is 
reached at v > 1.15 yx.  We note that it is convenient to use 
the expansions also outside this region, since a possibility 
arises of lowering the upper limit of integration in (35) and 
(39) by 1-2 orders of magnitude. 

At small x the absorption line is Lorentzian. It can be 
seen from Fig. 3 that the line becomes deformed when x is 
increased. It is known that in the case of homogeneous satu- 
ration there is no deformation, therefore we attribute the 
latter to spatial modulation of the medium. 

As x- t  co the amplitude of the resonance tends to a con- 
stant value for the refractive index and decreases in propor- 
tion to x- '  for absorption. The line width increase in pro- 
portion to x : y ,  - yx = 21Gq I2/rq-, and ceases to depend 

on y. It can thus be concluded that at large x the line shape is 
a universal function of the standing-wave intensity and is 
independent of the mechanism of the relaxation of the me- 
tastable levels. 

At the same time, singularities free of field broadening 
are preserved in the line. They lead to the appearance of lines 
having a width on the order of y in the higher derivatives ofx  
with respect to Y.  We attribute this effect to the anomalous 
growth of the spatial modulation of the gas polarization. To 
describe it we must sum exactly the contributions from all 
the higher spatial harmonics of the density matrix. It is inter- 
esting to note that the same effect takes place also for the 
Lamb dip at y ( r .  The narrow line appears here in the third 
derivative of the absorption resonance. From the equations 
of Ref. 11 we obtain for it 

where a; is the unsaturated absorption coefficient. The lack 
of equations in quadratures leaves open the question of the 
presence of this effect in one-photon nonlinear spectroscopy 
at y  -r. We note that this effect can substantially distort the 
field dependence of the shift of the nonlinear resonance, 
since the shift is usually sensitive to the higher derivatives of 
the resonance. No narrow line is produced on differentiation 
with respect to x, i.e., at x) 1 the situation differs qualitative- 
ly from the weak-field case, where differentiation with re- 
spect to frequency and intensity leads to identical effects (cf. 
the results of Refs. 19 and 20). 

Suitable objects for the experimental observation of the 
multiphoton line are atomic gases. I cited in Ref. 16 exam- 
ples of multilevel schemes of alkali and alkaline-earth atoms 
in which the transition frequencies land in the tuning range 
of cw lasers. In these lasers a narrow resonance can already 
be observed and used at present. 
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with the work, and E. V. Baklanov, I. M. Beterov, A. N. 
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'The alternate approach's8 based on the Stark effect is hardly suitable for 
precision spectroscopy, since it calls for high-power radiation of relative 
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