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It is shown that the true self-avoiding walk problem in two dimensions admits introduction of two 
pseudoscalar charges in addition to the three scalar charges which were introduced by Obukhov 
and Peliti [J. Phys. A 16, L147 (1983)l. These charges describe the nonequivalence ofthe left-hand 
and the right-hand turns during a two-dimensional walk. The renormalization-group equations 
are obtained for all five charges and the absence of stable fixed points for these equations is 
demonstrated. This absence of stable fixed points indicates that the symmetry breaking between 
the left-hand and the right-hand turns leads effectively to a walk with attraction and to localiza- 
tion. 

It was shown recently by Amit, Parisi, and Peliti' that 
the self-avoiding walk problem is not simply a synonym for 
the problem of a random chain with excluded volume (see, 
for example, Ref. 2) but that it is rather an independent prob- 
lem with higher critical dimension d, = 2. The first two per- 
turbative corrections, divergent at d<2, were found in Ref. 1 
and then used together with the assumptions of renormaliza- 
bility and uniqueness of the chargeg (interaction constant) to 
find for d = 2 the asymptotic dependence (R ') - N l n 2 I 5 ~ ,  
where (R 2, is the mean square of the displacement and N is 
the number of steps. A diagrammatic technique which sim- 
plifies calculations of higher-order terms was developed by 
Obukhov and Peliti3 for this problem and it was shown that 
the problem is characterized in general by three independent 
charges. The case considered in Ref. 1 should be described 
by the two-charge part of the general renormalization group 
and, hence, has a different assymptotic behavior, 
(R 2,  - N lnN. 

The following formulation of the self-avoiding walk 
problem appears to be the simplest.' Let us assume that a 
traveler walks randomly over sites of a d-dimensional lattice 
trying to avoid those sites which he has already visited. Revi- 
siting of sites cannot be completely forbidden because this 
would allow configurations of the paths in which the traveler 
would lock himself in. It is therefore assumed that the prob- 
ability of a step from a site i to a neighboring sitej depends on 
the number nj of previous visits to th site j in the following 
way: 

= exp ( -gn j )  /$1 exp ( -gn,)  

Suppose that one end of a long polymer is already attached to 
the surface. It is then clear that the segments closest to this 
end would be adsorbed next (Fig. 1). If this process is suffi- 
ciently slow relative to the relaxation of the spatial configu- 
ration, each newly adsorbed monomer will be attached ran- 
domly to the surface. Since it is assumed that different 
monomers repel each other this process can be considered a 
self-avoiding random walk on a plane, described by the tran- 
sition probability (1). 

We shall briefly describe the origin of the diagrammatic 
rules which were formulated without any derivation in Ref. 
3. This will help us to understand the meaning of the charges 
g,, . . . ,g5 which we shall discuss below. We first suppose 
that the number of self-intersections is small when the num- 
ber of steps is not too large and we consider only the effect of 
a single intersection on the unperturbed correlation func- 
tion. Let G, (x,xf) be the probability of arriving at x' after n 
steps originating at x. In the zeroth approximation 

1 
G$' (x -x ' )  = 

(4nN) d'z 

We will consider the simplest configuration with a single 
intersection1' (Fig. 2). 

The probability that during a walk a traveler passing 
through a point xl will pass at a later time through a point x, 
near it is 

Here N, and N2 are the numbers of steps completed between 
the points x and x l  and between x, and x,, respectively, while 
a is the lattice constant; the expression (3) will later be 

that is, for g)O this probability decays exponentially with 
increasing number of previous visits. Expression (1) is writ- 
ten taking into account the normalization condition for the 
probabilities P,,j, which assures that the traveler cannot 
come to rest at any given point. 

Surface adsorption of a long polymer from a solution 
might be a physical example of a self-avoiding random walk. FIG. 1. 
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FIG. 2. 

summed over all possible N, and N,. The walk is not free at 
the point x, but proceeds according to the probability (1). 
The mean displacement at that step is 

and, taking into account the probability (3) of the entire con- 
figuration, we have 

(a)=aP(x, xi ,  x,) .  (4) 

Let us expand P (x,x,,x,) in the small difference x, - x, and 
sum over all possible directions of the difference x, - x,. In 
the continuous limit we obtain 

Therefore, a path with a single self-intersection differs 
from a purely free one in that a displacement by (a) occurs at 
the point x,. This displacement changes the probability of 
landing after N, steps at a final point x' by 

By summing the correction (6) over all possible positions of 
the point x, in which a self-intersection occurred, and over 
all possible N,, N, and N3 such that BNi = N, i = 1,2,3, we 
obtain the the first-order correction to the random-walk 
expression (2). If we go over to the momentum representa- 
tion and take the Laplace transform with respect to the vari- 
able N, 

it turns out that the correction to G 'O1(r,p) is described by the 
diagram of Fig. 2b, where the lines are associated with the 
correlation functions G 'O'(.r,p) and the vertices are associated 
with the expression g(q.p). 

All further corrections can be expressed as a diagram- 
matic series with verticesg(q,pl - q) (Fig. 3). In such vertices 
it is necessary to distinguish between the lines of the preced- 
ing (I) and succeeding (11) passages through the intersection 
point. 

An expression with a different combination of mo- 
menta, g2(p1,p' - q), occurs in the first-order perturbation 
theory for the effective vertex. Therefore, in order to sum 
higher-order terms in the perturbation theory it is necessary 
to write renormalization-group equations for two chargesg, 
and g,. In addition, a charge g, with the momentum struc- 
ture (p,pl - q) is also possible. Such a charge occurs if it is 
assumed that upon approaching an interesection point the 
traveler prefers to proceed along (or contrary to) his previous 
path at that point. In the case of polymer adsorption this 
means that the parallel (or antiparallel) packing of polymer 
segments occurring at a single point is preferred. Such a situ- 
ation is described by the transition probability 

p .  . =  
+ ~ X P  {g (m (xj), xi-xj) J /C erp {g (m (xj) , xi-.,) } , (8) 

I 

where m(xj) is the flux of previous visits to the point xi. 
Should we begin with (8), we obtain by a derivation analo- 
gous to (3)-(6) a diagrammatic technique with the vertices 
gl(q,pl - q) and ~ , ( P ? P '  - 4. 

The renormalization-group equations for all three 
chargesg,, g,, andg, and arbitrary d were written out in Ref. 
3. In recent lectures Peliti4 introduced a field theory within 
which these equations can be formally derived. Because the 
interaction vertices of this theory are proportional to the 
second power of the momenta, the upper critical dimension 
for the problem is d = 2 instead of d = 4 in the usual p4 
theory. Therefore, excluding cases of exotic walks on fractal 
lattices, the only nontrivial and physically realizable cases 
are d = 1 and d = 2. The case d = 1 is not trivial as might 
appear at first sight. It was considered in Ref. 5 by one of us. 
The dimension d = 2 appears most interesting for the self- 
avoiding walk problem. 

Furthermore, the expressions quadratic in the moments 
can be written in any other dimension by using only the oper- 
ation of the scalar product. In that case the set of chargesg,, 
g,, andg, is complete since the interaction vertex is uniquely 
described by three momenta, q, p, and p', which can be multi- 
plied scarlarly only with the next outgoing momentum 
p' - q (11) in Fig. 3). The reason for the latter is causality: a 
self-intersection affects only the subsequent travel. 

In the two-dimensional case a pseudoscalar quadratic 
in the momenta can be written using the vector product. One 
of the momenta in this product must be p' - q. Consequent- 
ly there are only two independent combinations, such as 
g4[q(p1 - q)l and g5[p(p1 - q)l, where the charges g4 and g5 
are pseudoscalars while [ab]=ab and hP =~, ,b ,  is the vec- 
tor dual to b, E,, being the unit antisymmetric tensor. These 
pseudoscalar charges appear in the discrete formulation of 
the problem if it is assumed that the transition probabilities 
are 

FIG. 3. respectively. In order to clarify the origin and properties of 
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the probabilities (9) it is useful to note that they can be ob- 
tained from a more general transition probability which de- 
pends on the density of previous visits not only to the points i 
and j, but also to the neighboring points: 

where 

In writing the second equality in (1 1) we restricted ourselves 
to the leading terms of the expansion in powers of Vn, of the 
argument of the exponential. If the walk problem corre- 
sponding to (1 1) is invariant with respect to the reflection 
a,-+ a, or to the product of this reflection and the trans- 
formation ictj,A.+ -h, then g = 0 and (1 1) reduces to (1). 
If, however, the problem is not invariant relative to these 
transformations, then g#O and (1 1) reduces to the product 
of (1) and (9). We see in this way that the transition probabil- 
ity of the type (9) occurs in problems of walks with broken 
left-right symmetry. A realization of such a situation could 
be, for example, a walk of a charged particle in a magnetic 
field. 

The self-avoiding walk problem can also be understood 
as a problem of scattering of the walking particle by inhomo- 
geneities created by its preceding walk. It is also possible to 
assume that these inhomogeneities already existed on the 
lattice. In the case of polymer surface adsorption, these are 
simply the inhomogeneities of the adsorbing surface. The 
inhomogeneities can also be created by the polymers pre- 
viously adsorbed on the surface. In the latter case the prob- 
lem is described by the transition probabilities of the type (I), 
where nj is some random function defined on the lattice. We 
will denote this quantity by Ti, in order to distinguish it from 
the number of previous visits to the sitej. The quantity gVE is 
the mean displacement at a given point. If on the average 
(Vii) #O, which in case of the polymer adsorption could 
mean a tilt of the adsorbing surface or a steady solvent flow 
along the surface, the problem reduces for long distances to 
the problem of a drifting free walk. If 

tvn>=o, ( v l z ( x ) ,  v n ( x l )  >=2gG ( x - x ' ) ,  

it is not difficult to see that an effective interaction describ- 
able with the vertex g(p + q,pl - q) arises (see Fig. 3). A free 
walk over an inhomogenous surface reduces in this fashion 
to the problem of a self-avoiding walk with g, = g, = g. 

Analogous generalizations are possible for walks on a 
lattice with transition probabilities of the type (8), where ii is 
now a random vector field specified on the lattice. It is 
known that an arbitrary vector field can be represented as 

where u and v are the scalar and "vector" potentials, respec- 

FIG. 4. 

tively. If only the pair correlations of the irrotational (longi- 
tudinal) 

( V , u ( x ) ,  V , u ( x f ) >  

and the solenoidal (transverse) 

( V , , U ( X ) ,  F v u ( x r ) >  

parts of the field are nonzero, then the problem reduces to 
the one considered above. In particular, when the mean curl 
of the field 5 is nonzero this leads only to a renormalization 
of the diffusion constant. If, however, the crossed correla- 
tions 

< v , u  ( x )  c,v (x') >, 

are nonzero the problem of a walk with g4,g, +O occurs. 
In order to derive the renormalization-group equations 

for the general walk problem we introduce the complete ver- 
tex 

r (P, P I ,  q )  =gl  ( q ,  pt-q) +g2 ( P I ,  pr -q)  +g3 ( P ,  pr-q)  

+g4[ q  (p ' -q )  I +g5 [ P  (p ' -q)  I 
and calculate its one-loop logarithmic corrections (Fig. 4). 
As a result we obtain the following system of equations: 

wherec=ln t=  -lnmax(N-',lpl,/p'l,lql). 
The complete system of equations (12) allows for several 

self-consistent decreases of the number of variables. That is, 
if the initial values of some charges are zero they will remain 
so. We call such simplifications reductions of the system of 
equations. We observe first that for g4 = g, = 0 the equa- 
tions (12) reduce to the general equations for the three scalar 
charges g,, g,, and g, obtained in Ref. 3. They have two 
reductions: g, = 0 and g, = g, = 0. Besides these reduc- 
tions, the system (12) allows for the reductions with nonzero 
pseudoscalar charges g4 and g,: 
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Ifthe pseudoscalar charges are set equal to zero, we return to 
the corresponding reductions of the scalar system. 

We will now analyze the system (12). It can be shown 
that the complete system (12) has no nontrivial fixed points. 
This means that the asymptotic behavior of a random walk, 
which is determined by the renormalized diffusion coeffi- 
cient DR (t ), 

(RZ> - D, ( t )  t ,  D, ( t )  = Do exp 

cannot have a purely power-law character except in the case 
of a free walk where ( R  2, -Dot. To determine the logarith- 
mic corrections to the asymptotic behavior it is convenient 
to exploit the homogeneity of the system (12) by transform- 
ing to equations for "charges" y, = gi /{. They are 

where 7 = In{. To each fixed point of the system (13) corre- 
sponds a solution of (12) which has the form gi (6 ) - y:/{, 
($1. It is obvious that the system (13) admits of the same 
reductions as the system (12). 

Equations (1 3) have only scalar nontrivial fixed points: 
1) y: = y,* = 1; 2) y: = - 2/5; 3) yr = - y: = 1/5; 4) 
y: = y,*/2 = 2; 5) y: = y,*/3 = y:/4 = 1/11. In these 
points all other y* are equal to zero. In the absence of pseu- 
doscalar charges the fixed points 1) and 2) are stable and give 
the asymptotic behavior ( R  2, -t lnt and ( R  2, - t ln2I5t, re- 
spectively. If, on the other hand, the initial valuesg40,g,o#0, 
then all the fixed points are unstable. Hence, all the charges 
go off to infinity with time, corresponding to the strong- 
coupling regime. This behavior of the solutions of the equa- 
tions (12) and (13) is confirmed by our computer simulations 
of these equations. 

In the realm of applicability of our equations it is of 
interest to consider the influence of small pseudoscalar 
charges (g4,,g5, 4 g10,20,30) on the behavior of the scalar 
charges which determine the asymptotic behavior of ( R  2, 

near the stable fixed points 1) and 2). It is sufficient to consid- 
er not the complete system of equations (12) but only its re- 
ductions I and 11. We will consider them separately. 

I. In this case when g, = 0 there is a stable fixed point 
y,* = - 2/5 which corresponds~to a logarithmic decrease 
g,({ ) - 2/5{, {> 1. Introduction of the pseudoscalar charge 
g, changes the picture. A simple analysis of the system of 
equations for two charges g, and g, shows that for initial 
values satisfying the conditions g,,< Ig,,l < 1 the chargeg, at 
first decreases logarithmically until { * -(g50)-5 and then 
follows a different behavior. It follows from the exact solu- 
tion of this system that the real quantity is 

(in view of the initial conditions), while the chargesg, andg, 
begin to grow to infinity after passing respectively through 
zero and through a minimum equal to A (note that our equa- 
tions are not applicable for values ofg, of the order of l). This 
behavior of the charges means that up to times of order 
t * -exp(b /A ), where b is a nonuniversal constant of order 
unity, the asymptotic behavior of (R 2, is determined by the 
fixed pointy:. This is followed by a change ofthe asymptotic 
regime in which the further behavior is determined by the 
strong-coupling region. Exponentially large t * mean that the 
change of the asymptotic regime occurs at very large times 
difficult to be reached in ususal numerical simulations of 
random walks. We remark that the correlation length has an 
analogous (exponential) behavior (with a square root singu- 
larity however) in the high-temperature vicinity of phase 
transition points of the Berezinskii-Kosterlitz-Thouless 
type.6 

11. In this case, when g4 = 0 there is a stable fixed point 
yy = y,* = 1 which also corresponds to a logarithmic de- 
crease gl,, (6 ) - I/{, 6) 1. 

An analysis analogous to the one given in (I) shows that 
for g40<g,o~g20(  1 there are also two asymptotic regimes, 
the first one being logarithmic and extending to t * - exp(b / 
A ), where A - (&)'I3. 

For completeness we remark that analogous, two-re- 
gime behavior of the scalar charges occurs also in the ab- 
sence of both pseudoscalar charges when the initial charges 
g, , i = 1,2,3, are near the singly-unstable fixed point. Inthis 
case a walk with the asymptotic behavior ( R  2,  - ~ l n ~ ' " t  
proceeds up to a time of the order t * - exp(bA - " )  where A is 
the initial deviation ofg, from the critical surface contain- 
ing the fixed point 5 and v = 1//2+, A+ = 1/11 being the 
unstable exponent of the fixed point 5. 

Therefore, we see that introduction of pseudoscalar 
charges can change the asymptotic behavior of a true ran- 
dom walk. While in the case of purely scalar charges there is 
in the phase space of the charges a region of initial values g, 
such that in a sufficiently large time a particle can move 
arbitrarily far away from the origin, introduction of pseu- 
doscalar charges leads to a localization which corresponds 
to the behavior of the scalar charges found in points I and 11. 

In conclusion, we emphasize that our derivation is cor- 
rect only in the region of validity of the equations (12). 

"By self-intersection we will mean here the case when a point of the walk 
occurs near its previous path so that the walk is not free at that point, but 
takes place with the probability distribution (1). 
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