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A theory is constructed for the interaction of magnons in yttrium iron garnet (YIG), a classical 
object of experimental research in magnetism, in the temperature range from 0 to 300 K. Neu- 
tron-scattering data are used to refine the values of the exchange integrals in YIG and to obtain 
the corresponding magnon spectrum, which consists of twenty branches. It is shown that in the 
energy range T <  260 K only magnons of the lower branch are excited; the spectrum of these 
"ferromagnons" is quadratic in the wave vector only up to 40 K and becomes linear in the region 
w, > 40 K. The amplitude of the four-magnon exchange interaction is determined, and the tem- 
perature correction to the frequency is evaluated. This temperature correction is positive, in 
contrast to the case of a simple cubic ferromagnet with nearest-neighbor interactions. The ex- 
change relaxation rate is calculated for normal and umklapp processes. It is shown that the 
magnetic dipole interaction is important only for the ferromagnons; the amplitude of this interac- 
tion and the corresponding relaxation rate are determined. Three-magnon scattering processes 
are allowed only for wave vectors larger than a certain kl ; at k = kl there is a discontinuity in the 
wave-vector dependence of the damping. A calculation is given for the nonvanishing contribution 
to the relaxation at k = 0 on account of scattering processes involving optical magnons; this 
contribution is due to the local uniaxial anistropy. The relative role of each of the investigated 
relaxation mechanisms is discussed, and the correspondence of the present results with the experi- 
mental data is examined. 

INTRODUCTION 

The unique properties of yttrium iron garnet (YIG- 
Y3Fe,01,) lend it a special status among the magnetic dielec- 
trics. Kittel1 has remarked that the role of this crystal in the 
physics of magnetism is analogous to that of the fruit fly in 
genetics. In the first place, it has the narrowest known ferro- 
magnetic-resonance line and the smallest spin-wave damp- 
ing. Second, with 80 atoms in the unit cell, YIG crystals can 
be grown so perfectly that the damping of sound in them is 
smaller than in quartz. Third, the high Curie temperature of 
YIG, Tc z 560 K, permits its use in technical devices and 
enables one to conduct experiments at room temperature. 
Unfortunately, many important properties of this magnet 
are still not understood. This is primarily because of the 
complex crystal structure of YIG: its unit cell contains four 
formula units of Y3Fe: + Fe: + 0:; , with the magnetic ions 
Fe3+ occupying two inequivalent positions with regard to 
the character of its immediate 02- environment-octahe- 
dral (a) and tetrahedral (d). There are 20 magnetic ions in all 
(8a + 12d ) and, accordingly, 20 magnon branches in the en- 
ergy range from 0 to 1000 K. The fundamental characteris- 
tics of a ferrite are the magnon frequency wj (k) and relaxa- 
tion time y; '(k) ( j  is the number of the branch and k is the 
wave vector). The magnon spectrum in YIG is well enough 
understood. The frequencies of the homogeneous (k = 0) os- 
cillations are known,' and, in addition, approximate expres- 
sions have been obtained3 for the frequencies wj (k) and ei- 
genvectors over the entire Brillouin zone. As regards the 
magnon relaxation, the damping of the ferromagnons-os- 
cillations of the lower branch wl(k)-has been studied4 in 
some detail in the range from k = 0 to k = lo6 cm-'. These 

data were interpreted using the theory for magnon relaxa- 
tion in ferromagnets having a quadratic dispersion relation. 
It has been pointed out that the wave-vector dependent part 
of the ferromagnon damping A (k) = yl(k)-yl(0) is due main- 
ly to the three-magnon dipole-dipole and four-magnon ex- 
change interactions with other ferromagnon~.~ It should be 
pointed out that the spectrum of the ferromagnons is qua- 
dratic, o,(k) = o, (ak )2, only up to energies of 40 K; after 
this, as we have shown,3 the spectrum w,(k) becomes almost 
linear: wl (k)z  - A + ol (ak  ). Consequently, for T >  40 K 
the theory of the ferromagnon relaxation in YIG should dif- 
fer substantially from the corresponding theory for ferro- 
magnets. Furthermore, at T >  260 K other types of magnons 
are excited, and the scattering by these magnons must also be 
taken into account. 

The present study deals with the interactions of mag- 
nons in YIG in thermodynamic equilibrium at temperatures 
up to 300 K. We consider the exchange and magnetic-dipole 
terms in the YIG Hamiltonian and also a term due to the 
local uniaxial crystallographic anisotropy, find the corre- 
sponding amplitudes of the three- and four-magnon pro- 
cesses, and calculate the relaxation rate and the correction to 
the magnon energy due to these interactions. 

In Sec. 1 we study the magnon exchange interaction. 
We evaluate the temperature correction to the ferromagnon 
frequency to first order in the interaction. This correction is 
positive, in contrast to the case of ferromagnets, and is pro- 
portional to (T/Tc)5'2 at temperatures up to 150 K, in agree- 
ment with experiment. The exchange-relaxation rate of the 
magnons is found as a function of the wave vector and tem- 
perature. In the region T 5 250 K this rate agrees with the 
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familiar expression for ferromagnets [see (9.2.62) in Ref. 51. 
At higher temperatures, at which the main contribution to 
the exchange damping is from the magnons of the linear part 
of the spectrum, the temperature dependence of the damping 
becomes stronger. 

In Sec. 2 we study the magnetic dipole interaction of 
magnons. It is shown that this interaction is substantial only 
for the ferromagnons, since the variable magnetization com- 
ponent, which is due to optical modes, is practically absent. 
The amplitude of the three-magnon magnetic dipole interac- 
tion is well approximated over the entire Brillouin zone by 
the familiar long-wavelength asymptotic expression for the 
amplitude of this process in a ferromagnet. However, the 
magnetic dipole relaxation of the long-wavelength ferro- 
magnons in YIG differs substantially from the correspond- 
ing relaxation in ferromagnets, since it is due to processes of 
coalescence with ferromagnons near the boundary of the 
Brillouin zone. The conservation laws admit these processes 
fork larger than a certain value k, [see (2.9) below]; at k = k, 
the processes of coalescence with the ferromagnons are 
turned on over the entire linear region of the spectrum, lead- 
ing to a jump in the wave-vector dependence of the relaxa- 
tion rate at k = k, . In the region k < 3k, the relaxation rate is 
nearly constant, and it is only fork > 3k, that the damping is 
linear in k, as it is in a ferromagnet. In spite of the fact that 
the amplitude of the magnetic dipole interaction is indepen- 
dent of the direction of the wave vectors with respect to the 
crystallographic axes, the damping of the long-wavelength 
ferromagnons is anisotropic because of the nonspherical 
shape of the Brillouin zone. 

As we know, the contributions to the ferromagnon re- 
laxation from the dipole-dipole and exchange interactions 
go to zero as k-0, but experiment reveals the presence of a 
nonzero damping y,(O) even in very pure  sample^.^ This 
damping depends linearly on temperature in the range 150- 
350 K, and so it is natural to assume that it is due to three- 
wave processes. Kasuya and Le Craw, who first detected the 
damping y,(O) in 1960, assumed that the relaxation of the 
long-wavelength ferromagnons is due to their scattering by a 
phonon and a ferromagnon with k z 4 .  lo6 cm-I, the inter- 
action being caused by modulation of the local uniaxial an- 
isotropy constant in the field of the p h ~ n o n . ~  From that time 
on the relaxation of ferromagnons with k-0 and other poor- 
ly understood properties of the damping of ferromagnons 
with k#O (e.g., its anisotropy) were commonly attributed to 
"Kasuya-Le Craw processes." However, an accurate analy- 
sis of this mechanism shows that the estimate of the damping 
y,(O) in Ref. 6 is at least an order of magnitude too large. 

In Sec. 3 we show that the main relaxation mechanism 
for long-wavelength ferromagnons is their coalescence with 
"optical" magnons having a gap in their spectrum. The gaps 
of the nineteen optical magnons in YIG exceed 200 K, 
whereas the frequency of the ferromagnons at k-0 is of the 
order of 1 K. Therefore, the three-magnon processes involv- 
ing long-wavelength ferromagnons are allowed near points 
of intersection or tangency of the optical branches of the 
spectrum. We show that these processes are due to the uniax- 
ial crystallographic anisotropy of the Fe3+ ions in octahe- 
dral positions (a) calculate the corresponding contribution of 

the relaxation of ferromagnons with k-0. 
In the Conclusion we compare the contributions to the 

ferromagnon relaxation in the various wave-vector and tem- 
perature regions and discuss the relationship of our results 
with experiment. 

1. EXCHANGE INTERACTION OF MAGNONS 

I. 1. Spin Hamiltonian and the magnon spectra. It is well 
known that the exchange interaction, which governs the 
magnetic order of the material, is the strongest. In YIG the 
predominant interaction is the a-d exchange; for nearest 
neighbors Jad z 4 0  K. This interaction leads to an antiparal- 
lel orientation of the spins of the a and d ions; the a-a and d- 
d exchange interactions are weaker than the a-d exchange. 
The exchange interaction with the remaining coordination 
spheres will be neglected. As a result, the Heisenberg Hamil- 
tonian He, is written in the form 

Here n numbers the primitive cell, i and j number the sublat- 
tices (i = 1, . . . , 8  number the a ions, i = 9, . . . ,20  number 
the d ions), S, (R,, ) are the spin and coordinate of an ion of 
the ith sublattice in the nth cell, and dl, is the distance to the 
nearest neighbor in the jth sublattice. For the exchange inte- 
grals we take the values 
J a d = - 4 0 . 0 & 0 , 2  K, J d d = - f 3 . 4 * 0 . 2  K, J , = - 3 , 8 * 0 . 4  K, 

(1.2) 
which differ somewhat from the values adopted in our pre- 
vious paper [Eq. (1.13) of Ref. 31. We shall discuss the ques- 
tion of refining the values of the exchange integrals for YIG 
later on in this paper. 

The magnon spectra YIG in have been studied by Har- 
ris' and by the present authom3 Converting from the spin 
exchange Hamiltonian to boson operators with the aid of a 
Holstein-Primakoff transformation and then going over to 
the k representation by the formula 

1 
aj (k) = Fx eap (-ikRjn) aj,, 

n 

(N is the number of cells in the crystal), we obtain the qua- 
dratic part of the Hamiltonian in the form 

8 20 

H:" = x Aij (k) aikiaJk+ D ,  (k) aikia,k 
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1~ Aij ( k )  =A*,  
8 

Lz Dij ( k )  =Dk, 
i , i  

12 
i , j  

Detailed expressions for the matrices A,  B, and D are given 
by Harris.' After a linear u-u transformation Hf) assumes 
the diagonal form 

21) 

We have proposed an efficient means of approximately 
diagonalizing Hamiltonian (1.4) by converting to a quasinor- 
ma1 basis in which the diagonal elements of the Hamiltonian 
matrix are close to the eigenfrequencies of the magnons, 
while the off-diagonal terms are small.3 In this approxima- 
tion the eigenvector and frequency of the ferromagnetic 
mode are 

In the long-wavelength limit this leads to the well-known 
formula2 

a i k = a e Z ( a k )  ', 0 ~ 1 = ~ / 1 6  ( 8 J e o + 3 J c i d - 5 J a d ) ,  (I.7] 

where a is the lattice constant. 
1.2. Determination of the exchange integrals in YIG. In 

the first stage of this study3 we chose the value 
Ja, = - (35 + 3) K on the basis of an analysis of the indirect 
experimental data of Ref. 8. We then took the value 
o, = 41 K obtained from measurements9 of the frequency 
w,, of the ferromagnetic mode in the region of small k. The 
missing information was obtained from comparison of the 
experimental M ( T )  curve in the region 4-300 K with the 
M ( T )  curve calculated in the noninteracting-spin-wave ap- 
proximation. We thus obtained the following "admissible" 
values for the exchange integrals: Jad = - (35 + 3) K, 
Jdd = - (16 f 3) K, Jaa = (0-3) K. More definite values of J 
can of course be obtained by comparing our analytical ex- 
pressions with direct measurements of the magnon frequen- 
cies over the entire Brillouin zone. Plant1' has reported low- 
temperature neutron-diffraction measurements of the 
frequencies o,(k) and w,, (k) of the ferromagnetic and anti- 
ferromagnetic modes, respectively, and the frequency w, (k) 
of another optical magnon mode in YIG with an undeter- 
mined pattern of oscillation. From the antiferromagnetic 
gap ma, (0) = 10Jad, Plant found Jad = - 39.8 K. Compari- 
son of the theory (1.6) with experiment for the ferromagnetic 
mode w,(k) in the directions k /  1 [I101 and [loo], with k vary- 
ing from 0 to the Brillouin zone boundary, we obtained the 
value of the combination of exchange integrals in (1.7) as 
w, = (40.0 + 1.0) K and found Jaa = - (4 f 1) K. Using 
this set of J values to calculate the gaps of all the optical 

modes, we became convinced that the role of w, (k) could be 
played by only one of the triad of zone-center-degenerate 
modes wd8,, j = 1, 1, 3. By comparing wd8, (0) 
= 20(Jdd - Jad ) with the experimental value w, (0) = 530 

K, we find Jd, = - (13.4 f 0.2) K, and we then get the re- 
fined value Ja, = - (3.8 + 0.2) K. 

1.3. The magnon exchange interaction Hamiltonian 
can be obtained by expanding (1.1) up to terms of fourth 
order and transforming to the normal operators b, b +: 

We shall henceforth be concerned with the interactions of 
ferromagnons with one another and with low-lying optical 
magnons. In the quasinormal approximation it follows from 
(1.6) that 

Here So is the ion spin, wl-wl(k), u,=u(k,), 
~ ~ ~ = ~ ~ ( k ~ ~ ) = o ~ ( k ~  - k3), B13=B (kl - k3), etc. In thelimit 
of small k the expression for T ;:;:: goes over to the familiar 
expression for the interaction of magnons in a ferromagnet 
in the continuum approximation. In the long-wavelength 
limit T ,,,,, a k 2, while T12,3, a k and can be neglected. At 
the zone boundary TI,,, is approximately 1/2 of TI,,,,, and 
for purposes of estimation one can assume Tt:;:: = T,,, , , .  
The form of the expression for is reminiscent of the 
familiar formula for ferromagnets" with spin 3 = 4S0 and 
dispersion law w, . It should, however, be kept in mind that 
C,,,,, falls off from 1 (at ki+O) to 0.5 ( when all the ki lie on 
the zone boundary) and that the form of w, for ferromag- 
nons in YIG is considerably different from that of w, in 
ferromagnets. 

1.4. Temperature dependence of the ferromagnon fre- 
quency. In the spin-wave approximation the temperature 
correction to the ferromagnon frequency is given by the for- 
mula 

in which n r  are the equilibrium occupation numbers for the 
magnons of branch j. For T <  300 K in YIG only the ferro- 
magnons ( j  = 1) are excited, and for determining Aw, ( T )  it 
is sufficient to take only T,,! into account. The expression 
for Am, ( T )  even in this case will be awkward, and we shall 
therefore discuss only the long-wavelength limit (k < k,, wk0 
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= 40 K) and allow for the fact that a, for ferromagnons in 
YIG is practically independent of the direction of k. Then 

Here ( T i .  ) is expresion (1.9) for T::, averaged over the 
angles of the wave vector k', and k, is the average wave 
vector on the boundary of the Brillouin zone. 

At low temperatures ( T <  40 K) the k ' integration in 
(1.1 1) is taken over the long-wavelength region (k ' < k,,wko 
= 40 K), in which the dispersion relation simplifies to the 

quadratic form in (1.7). Here the expression for ( T ::, ) also 
simplifies substantially: 

( T L L * )  m0.32 1 ladI ( a 4 k 2 k r 2 / N S ) .  (1.12) 

It is seen that even in the long-wavelength limit the matrix 
element ( T  g. ) differs not only in magnitude but also in sign 
from the corresponding expression for a simple cubic ferro- 
magnetic with a nearest-neighbor interaction 

In the continuum limit for ferromagnets, in which case 
o, E k 2, one has (T,,! ) = 0. This quantity therefore de- 
pends on the specific type of crystal structure and functional 
form of J,,, . The possibility of a positive ( T g .  ) in two- 
sublattice ferromagnets was pointed out in Ref. 12. It should 
also be noted that in evaluating (TC.)  in YIG one cannot 
neglect in (1.9) the terms T, which contribute substantially to 
the terms of order k 'k l2  in the expansion. 

Substituting the expression for ( T i , )  into the integral 
(1.1 I), we obtain the temperature correction to the frequen- 
cy:Aw,(T) =Awe, (T)(ak)2.ThefunctionAoex (T)isplotted 
in Fig. 1. The dashed curve shows this function as evaluated 
in the low-temperature limit with the aid of (1.11) and (1.7): 

Strictly speaking, this expression is valid only at tem- 
peratures in the range T S  10 K, at which only long-wave- 
length magnons with the quadratic spectrum are excited. It 

FIG. 1. Temperature dependence of the exchange frequency do, 
= w, ( T )  - w, (0) in YIG. The dashed curve is the low-temperature ex- 

pansion for Aw, in a ferromagnet with a spin corresponding to the spin of 
the unit cell of YIG. 

is seen from Fig. 1, however, that expression (1.14) can be 
used with 10% accuracy up to T = 150 K and with 30% 
accuracy up to T = 250 K; this situation is explained by the 
following circumstances: First, in the higher-energy region 
ak ' 2 1, where the magnon dispersion law wk, becomes lin- 
ear, there is a slowing of the growth of the matrix element 
( T i ,  ). Second, in this region one has @,I < wex (ak and so 
the occupation number n,, is greater than that on the qua- 
dratic spectrum for the same k'. As a result, the product 
( T g .  )n,, describing the temperature correction to the fre- 
quency turns out to be close to its long-wavelength limit at 
values ak ' S 3. The temperature dependence of we, ( T )  ob- 
tained here agrees with experiment both in the sign and mag- 
nitude of the effect for temperatures up to 150-200 K. 

1.5. Exchange relaxation of ferromagnons. The relaxa- 
tion rate of magnons of the ith branch in four-magnon scat- 
tering is given by the well-known expression 

where b are reciprocal lattice vectors, k,, k,, and k, lie in the 
first Brillouin zone, A (k) = 0 for k = 0 and A (0) = 1, and i, j, 
I, and m number the magnon branches. 

The relaxation of the low-frequency ferromagnons 
w, S 1 K, corresponding to ak S 0.14 1, can currently be 
studied in experiment, and for this reason it is of greatest 
interest to evaluate the damping of these magnons. At mod- 
erate temperatures T S  200 K one can neglect the scattering 
by optical magnons, which have an activation energy 2 260 
K, i.e., one can set i = j = I = m = 1 in (1.15). In the long- 
wavelength limit one can neglect the contribution T, 1,23 

(which is quadratic in ak ) in expression (1.9) for the matrix 
element T:::i3. It can also be seen that when the conserva- 
tion laws are taken into account, C ,  1,,3 varies by less than 
15% over the entire Brillouin zone. As a result, we obtain for 
TL:fk the following approximate expression: 

where v, = aw, /a k is the group velocity. This expression is 
valid for arbitrary k,, k,, and k,. 

At temperatures which are not too high the contribu- 
tion of umklapp processes and the finiteness of the Brillouin 
zone are not important, and the dispersion law w, is spheri- 
cally symmetric. This permits us to perform the integration 
over angles in (1.15) and to reduce the five-dimensional inte- 
gral to a double integral. Changing to the dimensionless vari- 
able E, = w, /I01 J,, I, we obtain 
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+ 8 ~ 2 ~ s  I (2~2+2&3+l )  ( 2 e , + l )  (2e , f  I )  
( 2 ~ ~ + 1 )  ( 2 e s + I )  (ecz'r-l) ( e e ~ / r - I )  ( ~ - e - ( ~ l + ~ ~ ) l ~ )  dez des, 

Here we have used an approximation for E, that follows 
from (1.6) with our choice of exchange integrals: 

~ ~ = [ ( l + A q ~ ) ' ~ - i ] / 2 ,  q = ( a k ) / 8 ,  

This approximation is valid to within 5 20% over the entire 
Brillouin zone. At temperatures below 40 K, where magnons 
are excited in the quadratic part of the spectrum, the damp- 
ing y, coincides with the damping (evaluated in Refs. 1 1 and 
13) of magnons in a ferromagnet with a dispersion law 
w, (ak )' and a unit-cell spin 3. In this case 

However, by analyzing expression (1.18) one is readily con- 
vinced that the angle-averaged square of the matrix ele- 
ment-the expression in braces-differs little from its long- 
wavelength asymptotic behavior at energies all the way up to 
~ 2 0 0  K, i.e., E,  ~ 0 . 5 .  Therefore, expression (1.19) can be 
used for the damping of ferromagnons in YIG at tempera- 
tures up to T 5  200 K (see Fig. 2). For the temperature range 
200 5 T 5  350 K one can obtain from (1.18) another approxi- 
mate expression which corresponds to integration only over 
the linear part of the dispersion law: 

F-32(T/ lOi  J , l ) & .  (1.20) 

1.6. The contribution of umklapp processes to the ex- 
change relaxation of long-wavelength ferromagnons. The en- 
ergy of the magnons which take part in these processes is 
approximately wB/2z  150 K (w, is the ferromagnon fre- 
quency on the boundary of the Brillouin zone). Therefore, 
starting at around this temperature, umklapp processes can 
be important. Integration and a summation over the twelve 
reciprocal lattice vectors of the [I 101 type with allowance for 
the conservation laws yield 

where w, is the ferromagnon frequency at the Brillouin zone 
boundary in the [l10] direction. At T = 300 K the umklapp 
contribution (1.21) amounts to y: = 8.5 10-5wk (ak )2,  

which is considerably smaller than the damping (1.20) in 

FIG. 2. Temperature dependence of the exchange relaxation rate of ferro- 
magnons in YIG for k = lo5 cm-'. 

normal processes: y; = 6.2 . 10-4wk (ak ),. At temperatures 
above 300 K one has yu cc T2, while y" cc T 4 ,  and so the rela- 
tion ylf ( y i  remains valid. The smallness of y: is due to the 
smallness of the phase volume in which umklapp processes 
are allowed. 

2. MAGNETIC DIPOLE INTERACTION AND RELAXATION OF 
FERROMAGNONS 

2.1. The Hamiltonian for the magnetic dipole-dipole in- 
teraction for an infinite volume can be written5 

where n = k/k, si is the deviation of the ith spin from equi- 
librium, g is a factor z 2, v is the volume of the primitive cell, 
and the Fourier transformation is defined in (1.3). This 
expression implies, in particular, the familiar long-wave- 
length (in all k, k,, and k,) approximation for the Hamilton- 
ian of the three-magnon interaction involving only ferro- 
magnons (FMs): 

O m  
v k k , , k , = v k + v k , ,  Vk = - ---- 

4 ( 2 S 0 )  '" 
sin ( 2 0 4  exp (icpk) , 

(2.2) 

We have shown that this expression for HE!,, works with 
good accuracy (10-1 5%) even for the case in which only one 
of the wave vectors, say k, is small (ka 5 I), while the others, 
k2 and k,, are completely arbitrary. l4 

2.2. The magnetic-dipolar damping of ferromagnons, as 
we know, is due to processes of decay and coalescence: 

For magnons with small k only the coalescence processes 
(2.4) are allowed by the conservation laws. The contribution 
to the damping from these processes is given by the well- 
known forhula 

with the matrix element V ,  ,,, from (2.2) substituted in. In 
evaluating the integral in (2.5) one can assume that the ferro- 
magnon dispersion relation consists of a quadratic and a lin- 
ear part: 

~ ~ k = O o - k ~ ~ ~ ( a k )  ' ,  kGko, 

o r = - A S w ,  ( a k )  , k>ko,  

where w, is the gap in the ferromagnon spectrum (usually 
o, 5 1 K). The values of k, and A are determined from the 
continuity conditions for w, and for the group velocity 
V, = do, /d k: 

One finds that for w, = h, the values ofw, evaluated with 
formulas (2.6) differ from the ferromagnon dispersion rela- 
tion (1.6) by no more than 10%. We shall therefore use 
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k,a=l, A=o,=40 IC, u1=8O IC. (2.8) 

For T <  40 K the main contribution to y, , comes from 
the integration over the quadratic part of the spectrum and, 
consequently, the expression for y,, in YIG is the same as 
the familiar expression for ferromagnets (see, e.g., formula 
(9.2.51) of Ref. 5) .  For T >  40 K the integration over the 
quadratic part of the spectrum can be done using the Ray- 
leigh-Jeans approximation n, = T/w,.  The corresponding 
contribution to the magnon damping is then 

On the linear part of the spectrum one must take the Planck 
distribution for n,. The corresponding contribution to the 
damping is 

The total three-magnon damping in coalescence processes is 
equal to the sum of (2.9) and (2.10). In these formulas 
k,a = W J U ,  ,ak zoo, and F ( T )  is a dimensionless function 
of temperature given by the integral 

The values of this function for w, = 350 K andA = 40 K are 
given in Ref. 14. 

It can be seen from (2.9) that y,, is a linear function of 
temperature. It follows from (2.10) that the deviation of y,, 
from a linear temperature dependence is determined by the 
factor F ( T ) ,  which is chosen such that F-1 when the tem- 
perature exceeds the maximum ferromagnon energy 
w, =; 350 K. The factor F ( T )  is a slowly varying function of 
T: in particular, as T varies by a factor of three over the 
actual range from 100 to 300 K ,  Fvaries by only 30%. This 
means that the temperature dependence of y,, for T >  100 K 
can also be assumed to be approximately linear. 

Such an assumption is more accurate than it would 
seem at first glance. In fact, for T >  100 K it is generally 
necessary to take the temperature dependence of the mag- 
netic dipole interaction matrix element into account. This 

question has not been studied in detail, but it is most natural 
to assert that the function V ( T )  is obtained by replacingS 
byS ( T ) ,  since themagnetic dipoleinteraction matrix element 
of long-wavelength spin waves should depend on the average 
magnetic moment g p , S ( ~ ) .  This is taken into account in 
formula (2.10) for y,, by replacing F ( T )  by F ( T )  
= F (~)~(~)/S(~).~sisshownin~ef. 14, thisfunctioniseven 

more slowly varying than F ( T )  in the temperature range 100- 
300 K. 

Let us now consider y,, and y,, as functions of the 
magnitude and direction of the wave vector. We notice first 
of all that fork < k ,  = w,/w,a the coalescence process is for- 
bidden by the conservation laws (2.4) because the ferromag- 
non group velocity is bounded by the value v,,, = am,. Ac- 
cordingly, y,, = y,, = 0 if k < k,.  For w, = 2.rr e 17 GHz 
(hw,z 1 K we have k ,  z lo5 cm-'. For k > k ,  the damping 
coefficients y,, and y,, are given by formulas (2.9) and 
(2.10). At k = kl , y,, has the finite value 

The value of Ay,  (k , )  is maximum at 8 ,  = n-/4, and at 
T = 300 K and w, = 350 Kit  is equal to 7.2 . lo6 sec- l .  The 
occurrence of this jump can be easily understood by analyz- 
ing the conservation laws (2.4) with spectrum (2.6): The co- 
alescence processes (2.4), which are forbidden for k < k ,  , be- 
come allowed at k = k ,  simultaneously with all the magnons 
belonging to the linear part of the spectrum and having wave 
vectors k ,  1 / k .  Since the distance k, from the center to the 
boundary of the Brillouin zone depends on the direction of 
the wave vector, the size of the jump A y, (k ,  ) will depend on 
the direction of k ,  with respect to the crystallographic axes. 
If we neglect the weak dependence of F ( T )  on w, (k ,  ), then 
A y, (k ,  ) will be proportional to the zone-boundary magnon 
frequency o, in the direction of k (for a fixed angle 8 ,  with 
respect to the direction of the magnetization M). The crys- 
tallographic anisotropy of the jump is rather large: 
Ay, ((lOO))/Ay, ( ( 1 1 0 ) ) ~  1.5. 

It must be said that this simple geometric picture for the 
occurrence and anisotropy of the jump A y, results from the 
idealization (2.6) of the ferromagnet dispersion relation. In 
actuality the group velocity v, depends, though slightly, on 
k at k > k,: Av, /v, -0.1. This leads to a smearing of the 
jump A y, (k ,  ) over the interval A k / k ,  - 0.1 and to some de- 
crease in the crystallographic anisotropy. 

As we see from (2.9) and (2. lo),  for k s k ,  the damping 
y,, decreases as k -', while y,, increases linearly with k .  
Asymptotically for k s k , ,  formula (2.9) describes the famil- 
iar function y, (k,B, ) [see, e.g., (9.2.5 1 )  of Ref. 51. The damp- 
ing y, is a universal function of the dimensionless wave vec- 
tor x = k / k ,  , with the magnon frequency entering only in 
the expression for k,  : ak, = w,/o,. In the region k - k ,  the 
function y, ( x )  is shown in Fig. 3 for 8 ,  = n-/2 and 8 ,  = n-/ 
4. 

We note that for k < k ,  there is a nonzero contribution 
to the ferromagnon relaxation from four-magnon scattering 
processes due to the magnetic dipole interaction: 

1 136 Sov. Phys. JETP 59 (5), May 1984 Kolokolov et a/. 1 136 



FIG. 3. Wave-vector dependence of the magnetic-dipolar relaxation rate 
of ferromagnons in YIG for the two directions 0, = ?r/2(1) and 0, = 7r/4 
(2); x = k / k ,  (k ,  = w,,/o,a). 

Here we have taken into account both the direct contribu- 
tion to the four-magnon scattering amplitude from the mag- 
netic dipole interaction and also the nonvanishing (at k-0) 
exchange scattering which arises on account of the contribu- 
tion of the magnetic dipole interaction to the magnon disper- 
sion relation. At room temperature we have y,, ~9 . 10' 
sec-'. 

3. FERROMAGNON RELAXATION AT k--rO 

The ferromagnon damping y, , is due to the local un- 
iaxial anisotropy of the a ions, which gives rise to a coales- 
cence of the ferromagnons with magnons of the optical 
branches of the spectrum: 

OO+ ~jk=co,.k, j ,  1'22. (3.1) 

The symmetry of the nearest- neighbor environment of an a 
ion is lower than cubic, and the anisotropy energy of such an 
ion contains a term quadratic in S: 

H:' = DS,2 + '/, A'' (S,'+S,'+SZk) . (3.2) 

Here { is the three-fold trigonal axis, the coefficient D for 
YIG is7 of the order of 0.3 K, while A ' ' ~ 0 . 0 3  K. The term 
DS f is usually not taken into account, since its contribution 
to the interaction after summation over equivalent a posi- 
tions goes to zero for ferromagnons with k-0, which are 
homogeneous oscillations of the magnetic moment. For fer- 
romagnons with k#O the contribution proportional to D is 
suppressed by a factor (ak )' and, as a rule, is small compared 
to the contribution in A ". For the interaction involving opti- 
cal magnons, however, there is no small long-wavelength 
factor (ak )2, and the interaction DS 5 gives the main contri- 
bution to the amplitude of the processes of interest (3.1). The 
Hamiltonian of the a-ion local uniaxial anisotropy responsi- 
ble for these processes has symmetry group 0 f and is given 
by 

H,,, = '/, D[ (Sl,+Stu+Sjz) + (Szr+SZy-Szr)2 

Herex,y, andz are the crystallographic axes (the edges of the 

cubic unit cell), and Si with i = 1, . . . , 8, number the a ions 
of the nth primitive cell. 

Since only the a ions have uniaxial anisotropy, after 
changing in (3.3) to the variables b +, b which diagonalize the 
quadratic Hamiltonian, we obtain the matrix elements for 
the interaction of ferromagnons with the optical modes of 
types a and a, d only. The lowest-lying of these is the a, d 
triad of modes w,,,, j = 1,2,3, which is degenerate at k = 0: 
w,,, (0) = 0 -290 K. The excitation energy of the remaining 
modes oftypes a and a, d is substantially higher, and we shall 
not consider them. Because of the degeneracy, the eigenvec- 
tors b,,, are rather complicated nonanalytic functions of the 
wave vector: at k-0 they depend on the direction: 
bd ,, (k) = b, ,, (n), where n = k/k. The corresponding formu- 
las are found in our ~ r e p r i n t . ~  Omitting the awkward mani- 
pulations, we shall immediately give the expressions for the 
matrix elements of the Hamiltonian describing the interac- 
tion of k = 0 ferromagnons with optical magnons of the low- 
er a, d triad: 

V ( j 1  ) = D 2  S o  W j  ( n )  n=kik, 
k 0, k 

f 4  (n) =3 (h2n,2+n,2n,2+n,2nz2), f 6  (n) =27n,2n;nz2. 

Here v is a coefficient of the u,  v transformation for this a, d 
triad from the irreducible to the quasinormal basis. With the 
values (1.2) for the exchange integrals we have v -0.47 when 
M/l[0011. 

To evaluate the damping 

it is necessary to know the dispersion relation wd,, (k) at least 
for small k with ak 5 1. An analysis with the aid of perturba- 
tion theory in k (see Sec. 6 of Ref. 3) yields the following 
expressions (valid for ak 5 1) for the frequencies of the a, d 
triad: 

A032(q) =adQ,3(q) -@dQ,2(q) 

=-azqy[f4yn) -fa (n)] 'h+Rq4[f12 (n) -fs (n) I"', 

where 
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The coefficient of the q2 term in turns out to be anoma- 
lously small, and this term can be neglected in comparison 
with the q4 term: 

Aos2(q) =Rq4 [ f A 2  ( n )  -f, (n) 1 ". (3.9) 
The damping (3.6) is given by the sum of three terms: 

yl(0) = ~ ~ ~ ( 0 )  + ~ ~ ~ ( 0 )  + yZ1(0), corresponding to the coales- 
cence processes 

For the frequencies of the a, d triad we obtain from (3.8) and 
(3.7) 

Here D is the gap of the a, d triad, and the constant Cis given 
by 

If we take for D the value of the gap of the a, d triad at 
zero temperature (D =: 290 K), then the damping yl(0) evalu- 
ated by formulas (3.1 1) turns out to be 0.36 . lo6 sec-'. This 
is several times smaller than the experimentally observed (at 
room temperature) value of yl(0). However, at T  = 300 K it 
is necessary to take into account the temperature depen- 
dence of the gap of the a, d triad. Certain experimental facts 
(see Ref. 10) indicate that the gaps of the optical modes in 
YIG behave under changes in temperature like the average 
magnetization of the sample. With allowance for this cir- 
cumstance the gap of the a, d triad at T = 300 K becomes 
D - 200 K, and accordingly, the damping (3.1 1) is 

ri (0) -0.9.10%ec-: (3.13) 

in fair agreement with the experimental data (see Conclusion 
below). The damping y,(O) as a function of T  with allowance 
for the temperature dependence of the gap D is shown in Fig. 
4. 

We note that processes involving coalescence with opti- 
cal magnons at the corners of the Brillouin zone give a non- 
zero contribution to the damping of ferromagnons with 
k 4 .  However, simples estimates show that the volume of k 
space in which these processes are allowed is small, and the 

FIG. 4. Temperature dependence of the relaxation rate y(0) at k - 4  due to 
the interaction with optical magnons. 

T, K 
YOU- 

ZOO - 

FIG. 5. Diagram of the relative contributions of various relaxation pro- 
cesses in YIG: 1) the region in which exchange relaxation is dominant [see 
Sec. 11, 2) the region of magnetic dipolar relaxation [see Sec. 21, 3) the 
region of relaxation involving optical magnons [Sec. 31, 4) the region in 
which the leading contribution is from relaxation involving defects 
(o0 = 1 K). 

contribution from these processes is substantially smaller 
than the contributions which we have calculated. 

CONCLUSION 

Each of the elementary ferromagnon relaxation pro- 
cesses considered here--exchange scattering, the magnetic 
dipole interaction, and relaxation involving optical mag- 
nons-is dominant in a certain parameter region. Figure 5 
shows the regions of temperature T  and wave vector k in 
which the various elementary processes give the leading con- 
tribution. For long-wavelength magnons with k < k, the 
magnetic dipole interaction is forbidden and the amplitude 
of the exchange interaction is very small, so that in the region 
k < k, (k, = wdaw,) the leading contribution to the relaxa- 
tion is that due to scattering by optical magnons; this scatter- 
ing was considered in Sec. 3 [see (3.12)]. At low temperatures 
T S  150 K the damping y(0) falls off exponentially. In this 
temperature region the leading intrinsic relaxation process is 
four-magnon magnetic-dipole scattering (2.13), but, as a 
rule, under real conditions the ferromagnon damping at 
T S  120 K and k < k, is due to  defect^.^ The contributions 
from the exchange and three-magnon magnetic-dipolar 
damping, as can be seen from (1.17) and (2.9), are comparable 
for T a  k - 2  in the low-temperature region. At higher tem- 
peratures this dependence becomes smoother and asymp- 
totically approaches T a  k -2'3 [see (1.20)]. 

There have been many experimental measurements of 
the ferromagnon relaxation in YIG; the most detailed study, 
as far as we know, was done by Anisimov and G u r e v i ~ h . ~ , ~  
These experiments, which pertain to the region k- lo5 
cm-', demonstrated good agreement of the k-dependent 
part of the damping with the theory for a ferromagnet. These 
experiments also detected the k-independent part of the 
damping in the region k >  lo5 cm-'; this part was found to 
be 2.7 . lo6 sec-' at T  = 300 K and varied linearly with the 
temperature. Our theory implies that the k-independent part 
of the damping for such wave vectors (k > k,) is the sum of 
two terms. One of these terms is the damping due to sattering 
by optical magnons, viz. y(0)-0.9 . lo6 sec-' [see (3.11)], 
and the other is the magnetic-dipolar damping on the pla- 
teau (see Fig. 3), equal to 1.5 - lo6 sec- '. The total relaxation 
rate is 2.4. lo6 sec-' at T  = 300 K and agrees well with 
experiment both in magnitude and in temperature depen- 
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dence in the 150-350 K region. When k /k, is changed from 
1.5 to 1, the magnetic dipolar relaxation is turned off, and 
the damping decreases sharply to y(0). 

It must be said that in the experiments on parametric 
excitation of magnons by the method of parallel pumping,4 
our predicted "dip" in the damping for k( k, was not detect- 
ed because magnons with k < k, and 6 ,  = 71/2 were not ex- 
cited even though the resonance conditons w, /2 = w(k,7~/2) 
were satisfied. Instead, magnons with k > k ,  and 6 ,  < 71/2 
were excited. We believe that this is explained by the pres- 
ence of elastic scattering of magnons (two-magnon pro- 
cesses) by defects and the boundaries of the sample. Never- 
theless, this dip has been observed in experiments on the 
relaxation of magnons excited under conditions of kinetic 
instability.15 In this case magnons were excited close to the 
bottom of the spectrum, with k < k, and 6 ,  = 0. The elastic 
scattering could not remove the magnons from this region 
and was therefore unimportant. The experimentally deter- 
mined relaxation rate was 5 . 1 6  sec- ' at a magnon frequen- 
cy w, = 271.2 . lo6 sec-'. This value is smaller by a factor 
of three than the magnetic dipolar damping on the plateau, 
but it is larger than the rate y(0) = 1.7 . lo5 sec- ' for scatter- 
ing by optical magnons. The discrepancy between the theo- 
retical value of y(0) and the experimentally measured damp- 
ing may be due,15 on the one hand, to experimental error in 
determining y(0) as a result of the strong fluctuations in the 
emission from the magnons and, on the other hand, to insuf- 
ficiently accurate knowledge of the local uniaxial anisotropy 
constant and to relaxation processes involving impurities. 

We wish to thank A. N. Anisimov, A. G. Gurevich, and 
G. A. Melkov for helpful discussions of the experimental 
results on magnon relaxation in YIG. 
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