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A novel type of oscillatory effects in nonequilibrium photoelectrons is indicated. The cause of the 
oscillations is that the interelectron scattering decreases jumpwise the number of LO phonons 
emitted in the course of the relaxation of the photoelectrons when the density of the latter is 
increased. This should lead to a nonmonotonic dependence of the electron-gas temperature, 
obtained from the energy balance, on the pump intensity. Also investigated, as an auxiliary 
problem of independent interest, are the energy distribution and the balance equation of the 
electron temperature when the electrons are excited with light near the optical-phonon emission 
threshold. The results are used for a critical analysis of the energy balance equations used in a 
number of earlier studies. 

INTRODUCTION 

It is known that various photoelectron properties have 
oscillatory dependences on the exciting-light quantum ener- 
gy h (see the review' and also Ref. 2). The cause of these 
oscillations is the following. 

The value of h determines the initial energy E, of the 
photoelectron. Such a photoelectron emits a certain number 
s of optical phonons fin, (s is the integer part of ~ d f i n , )  and 
retains the energy 2, = E, - sfin,. The retained energy E,  is a 
periodic function of E,, and it is this which determines in the 
upshot all the oscillatory effects. 

We wish to point out in this paper novel oscillatory phe- 
nomena that are due to a unique conjunction of scattering by 
optical phonons and electron-electron scattering. 

We consider a situation3 wherein almost all the photoel- 
ectrons accumulate in an energy region below the threshold 
for the emission of an optical phonon (passive region 
E < h,), where ee scattering establishes a Maxwellian distri- 
bution with electron temperature T, and density n.  The elec- 
trons above the threshold (active region E > W,) relax by 
emitting fin, phonons and by scattering from the passive 
electrons. The distribution in the active region is not Max- 
wellian, so that a photoelectron becomes "thermalized" by 
ee scattering only after landing in the passive region. In the 
course of relaxation and thermalization the photoelectron 
imparts to the Maxwellian gas an energy E, = E,  - Sfin,, 
where S is the effective number of fin, phonons it emits. It 
will be shown that when account is taken of the ee scattering 
of active electrons by passive ones the value of? is lower than 
the values indicated above, and w is a steplike function of the 
density n. As a result the values of T, and n determined from 
the energy and particle-number balance equations turn out 
to be nonmonotonic functions of the pump intensity. 

In the calculation of the dependence ofP, on n we had to 
solve an auxiliary problem, that of the form of the distribu- 
tion function when the optical pumping is near the produc- 
tion threshold of the optical-phonon E = fin,, i.e., when 

(E, - @2,(<+U2,. The results pertaining to this auxiliary 
problem (Secs. 4 and 5) are also of independent interest. 

Knowledge of E-, enables us to write the energy-balance 
equation for the thermalized part of the distribution in the 
passive region. Comparison with the balance equations used 
in other papers has shown that in a number of cases the 
earlier balance equations were in error. 

1. KINETIC EQUATION 

The kinetic equation for the electron-energy distribu- 
tion function f (E) under stationary excitation is 

S,+C,,+G+R=O. (1) 

Here G (E) is the term that describes generation of the elec- 
trons, and R (E) their recombination. The terms, is responsi- 
ble for the scattering by the lattice, due to acoustic and optic 
phonons: SL = S, + So.  For A scattering we have 

here g ( ~ )  is the state density, and the flux along the energy 
axis, due to the A scattering, is 

where ;i, (E) is the energy relaxation time and TL is the lattice 
temperature. 

In the description of the 0 scattering we shall neglect 
processes having a probability proportional to exp( - fin,/ 
T, ), i.e., the absorption and stimulated emission. In this ap- 
proximation we have 
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where T,(E) is the time of spontaneous emission of the Kf2, 
phonon, and the flux along the energy axis is 

The term C,, describes the ee scattering. In the Landau 
diffusion approximation we have 

1 d 
C , e ( f , f l e ) =  --- 

g ( & )  Cis 
[ g ( ~ ) J e e ( ~ )  1, 

where the flux on the energy axis, due to ee scattering, is 

The designation C,, emphasizes that this quantity is a bilin- 
ear functional o fk  the dynamic friction coefficient A,, and 
the energy-diffusion coefficient Dee are linear functionals of 
f and are given according to Ref. 4 by 

e 
" 1 

x [ j  de' e r g ( e l )  f ( 8 ' )  + e h j  d e l - g ( s l )  f ( e r ) ]  . 
?'7 

0 8 

Here re, ( E )  is the ee-scattering time, and we shall find it use- 
ful to represent it in the form 

where a,, ( E )  is the Coulomb logarithm and depends on the 
form off ( E ) ,  while 

1 8ne'm -en-  
? ,* ~ 0 2 ~ 0 3  ' 

In the last formula k, is the static dielectric constant of the 
lattice, m is the effective mass of the electron, and 
p i / 2 m  = W,. 

We shall consider polarization PO interaction with lon- 
gitudinal LO phonons. In this case 

1 1 
-=- 

1 
y-'I' Arch y", - = 2 a P o ,  

T P O ( E )  T ~ o  T  PO 
( 1 0 )  

where a is the Frohlich coupling constant. At high energies 
( ~ > l ) ,  

Near the threshold ( y  - 1  ( 1 )  

We note that such a dependence on E near the threshold is 
valid also for DO scattering by the deformation potential of 
the optical phonons. 

Equation ( 1 )  is solved under the following assumptions. 

1 )  Almost all the electrons are in the passive region I 

E < t i n , ,  and the distribution f ( E )  in this region is close to 
Maxwellian 

fTI ( E )  =n ( m T o / 2 n f i 2 )  -'lae-CITe. (1 3) 

Therefore in the lowest approximation the coefficients A,, 
and Dee can be calculated with the distribution ( 1 3 ) ;  this 
yields 

where 

wherex,, is the minimum Coulomb-scattering angle. 
2 )  The recombination and A scattering are slow com- 

pared with 0 scattering and ee scattering, so that the terms R 
and S, can be left out of (1) in the lowest-order approxima- 
tion. When this procedure is used, the parameters n and T, 
should be initially regarded as given and should be later be 
determined from the energy and particle-number balance 
equations. 

3 )  It is assumed that T, (tin, and ee scattering by the 
active electrons can be neglected. In the active region we 
have E ) T , ,  and we get therefore from (14) for the dynamic- 
friction and diffusion coefficients 

A,, ( E )  =&/aee ( E )  =Dee ( 8 )  I T , ,  &>fiQo. ( 1 6 )  
4 )  The pump is assumed monochromatic, so that 

G ( E )  = [Golg ( 6 0 )  ] 6 ( E - 8 0 )  , ( 1 7 )  
where Go is the number of photoelectrons with energy E, in 1  
cm3 and in 1  sec. It is assumed that E , > W , .  

2. QUALITATIVE DESCRIPTION OF THE ENERGY 
DISTRIBUTION ABOVE THE THRESHOLD, AND THE NATURE 
OF THE OSCILLATIONS 

We discuss the character of the distribution f ( E )  in the 
active region on the basis of qualitative considerations. 

If ee scattering is neglected, f ( E )  is a sum of peaks3 that 
have the same shape as the generation peak G ( E )  and are 
centered at the points 

where s is the maximum number ofLO phonons that can be 
emitted by an electron of energy E, as it cascades down over 
the levels E:;  by assumption, s) 1 .  It is assumed also that E, is 
"nonresonant," i.e., it is not a multiple of integer fin,; in 
other words, 

The number k of the electrons at the peak is 3 

It can be seen from ( 1 0 )  that n, decreases with decreasing 
energy. 

We now take ee scattering into account, assuming ini- 
tially that T, = 0. After staying a time T, ( E )  on the level E ,  
the electron can then "glide" downward in energy on ac- 
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count of dynamic friction by an amount 

Using (9), (1 I), and (14) and neglecting the logarithmic de- 
pendences on the energy, we find that at &)f in ,  the glide 
does not depend on e, i.e., 

Here n, is the density at which, in the active region, the time 
of energy exchange in ee scattering becomes comparable 
with the time of energy relaxation on emission of LO phon- 
ons. We note that the parameter 17 differs somewhat from the 
parameter used in Sec. 4, namely, 7 = ?jApo. As a result of 
the glide, the distribution peaks are no longer at the points&: 
( 1 8 ) ,  but at the points 

The glide does not change the number of electrons in each 
peak, so that relation (19) is valid as before also in the pres- 
ence of ee scattering. 

So long as n is small and E, - , > tin,, the number of 
distribution peaks in the active region and the number of LO 
phonons emitted by each photoelectron are each equal to s 
and independent of n. With increasing n, however, at a cer- 
tain density n,  determined from the condition 

the last peak turns out to be at the threshold e = tin,. At 
n > n,  the number of peaks and the number of emitted phon- 
ons will be each smaller by one. The critical density n,  corre- 
sponds to the parameter value 

- 
~i=[&~-SfiQ~]/(S-l)fiQo. 

It can be seen from (20) that 77,-s-'(1. One more peak 
vanishes at a density n, determined from the condition 
E,  - , - fin, = tin,, i.e., at 

It is easy to verify that the interval between the critical densi- 
ties is constant: 

The foregoing means that the number of emitted LO phon- 
ons decreases stepwise with increasing n, and it is this which 
explains the meaning of the oscillations referred to in the 
Introduction. 

The oscillation smearing is due to the broadening of the 
peaks of the distribution f (E) .  We shall discuss here the 
broadening due to ee scattering. We consider first the limit- 
ing case T, = 0, when ee scattering produces no diffusion 
along the energy axis, and there is only dynamic friction-a 
systematic downward glide of the electron in energy. None- 
theless, the peaks broaden in this case, too. The point is that 
rPO ( E )  is the average time of stay in the transition from the 
level E to the next step e - tino of the cascade: some elec- 
trons stay longer, others less. Therefore some electrons glide 
more and others less. Then 

where (. . .) denotes averaging over electrons staying on the 
LO-phonon emission level e. As a result, the peak at E,  is not 
only displaced by an amount im,, but also broadens by 
;fin,. The peak at e; for k ) l  shifts by (k  + l)?;ltin, and 
broadens by (k  + 1 ) ' 1 2  im, (since the broadenings add up 
randomly). 

Additional broadening of the peaks sets in at T, #O. 
The diffusion "length" after a stay lasting rp0 ( E )  at &)f in ,  is 

it does not depend on e. The broadening of a peak with num- 
ber k )  1 is a random sum of ( k  + 1 )  of such lengths, so that it 
amounts to ( k  + 1)'I2(ij8 ) l i 2 f i n 0 .  

Thus, finally, the peak numbered k )  1 is shifted down- 
ward on account of ee scattering by an amount (k + l ) i t ino  
and broadens by an amount of the order of 
(k  + 1 ) l J 2 ( j 2  + if? )'"tin,. We are interested in the region 
77 -s-I, when the number of emitted LO phonon varies. It is 
easy to verify that in this region the displacement of the over- 
whelming majority of peaks greatly exceeds their broaden- 
ing. This means at the same time that the widths of all the 
peaks are much smaller than tin,, so that the oscillations due 
to the peak broadening are weakley smeared. 

Everything stated above concerning the locations and 
widths of the peaks pertained, strictly speaking, only to 
peaks located far from the threshold, in the region &)fin,. 

The estimates of the width and of the glide are valid also for 
those few peaks that are located in the region &-fin,, since 
the width and the glide build up during the cascading and the 
main contribution is made to them by the steps for which 
&)tin,. As for Eq. (19) for the number of electrons in the 
peak, it is independent of the assumption  fin,. 

Another cause of the smearing of the oscillations might 
be a smearing of the threshold E = tin, on account of ee 
scattering. The meaning of threshold smearing is the follow- 
ing. An electron located above the threshold can be dragged 
by dynamic friction and by diffusion below the threshold 
and can therefore not emit an LO phonon. On the other 
hand, an electron located below the threshold can be pushed 
out by diffusion above the threshold and emit an LO phonon. 
The probability of the phonon emission is given by the func- 
tion W(z) ,  obtained in Sec. 4 [z = (e - fin,)/tin,]. The 
smearing of the threshold is determined by the difference 
between the function W ( z )  and the step function O (2). Using 
the dharacteristic scales given in Sec. 5 for the function W, it 
is easy to verify that at all combinations of the parameters i 
and 8 these scales are smaller than the width of the last peak 
of the distribution f (e),  so that the threshold smearing does 
not influence the oscillation smearing. 

3. ENERGY DISTRIBUTION IN THE ACTIVE REGION FAR 
FROM THE THRESHOLD 

It is clear from the results of Sec. 2 that in the density 
region n(n,  corresponding to the onset of oscillations we 
can neglect the overlap of different peaks of the distribution 
f ( E ) .  Under these conditions the first peak of the distribution 
in the vicinity of E,  is obtained as the solution of Eq. ( 1 )  with 
B = 0, which is the equation for diffusion with drift in the 
presence of a source G and a drain f /rp0 ; this solution must 
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be solved with the boundary conditions 

f (+m) =f (-w) =O. (21) 

The peak near E, - fin, is obtained similarly, except that 
now G = 0 and the role of the source is assumed by B of Eq. 
(4), in which f (E + fin,) is now determined by the peak ob- 
tained near E,. All the succeeding peaks are obtained similar- 
ly; an exception is the last peak if it lands in the near-thresh- 
old region, where (E  - fin,((fin,. 

We transform to the dimensionless distribution 

We note that if we integrate p(z) in the vicinity of one of the 
peaks and use (19) we obtain Idzp (z) = 1. This means that 
the function p(z) is a superposition of the form factors of all 
the peaks. The variablez can be interpreted as the number of 
steps of the LO-phonon emission cascade. 

Using for S,, the representation (4) with the flux (5) and 
integrating the kinetic equation from E to infinity with ac- 
count taken of (17), we obtain the equation 

where 
- 
q ( z )  = e ~ ~ ~ ( e ) / ~ ~ z ~ . ( e ) .  

Most peaks lie in the region &)fin,, were i (z )  can be 
replaced by the constant 77. It is important, however, that 
this substitution yields correct form factors also for the last 
few peaks located in the region &-fin,. This follows from 
the results of the qualitative treatment in Sec. 2. 

Taking the Fourier transform 

and transforming (23), we get 

To solve Eq. (23) with the condition (21) at E = - cu we 
must introduce in this equation a weak "drain," correspond- 
ing to the following inverse transform 

+iO+m e - i k z  

z )  d k -  
2n 

+iO-m 
D ( k )  

At z < 0 the integration contour is closed in the half-plane 
Im k  > 0, where there is a single pole at 

The high-energy wing of the first peak is therefore described 
near E, by the function 

~ ( z )  =p-' exp [ - l z l  ( l+p '") /20] .  (26) 
This wing appears only in the presence of diffusion and is 
therefore absent at T, = 0. 

At z > 0 the integration contour is closed in the half- 
plane Im k  < 0, so that 

FIG. 1. Poles ofthefunctionD (k ) - I .  The parabolic asymptote(28) and the 
logarithmic asymptote (29) are shown. 

Here k ,  are the zeros ofD (k ), and the prime denotes that the 
term with m = 0 corresponding to k ,  = 0 in the sum is writ- 
ten out separately. 

The arrangement of the singularities k ,  is shown in 
Fig. 1. At not too large numbers we have at m i 4 1  and 
m2?0< 1 

k,-2nm ( 1 - 5 )  -i2n2m202, 02=Tj2+2?j0. (28) 

The parameter a is the total smearing of the peak (in units of 
fin,) per step of the LO-phonon emission cascade-see Sec. 
L. 

For very large numbers, when m i )  1 and (or) m2i8)  1 
we get 

A more lucid expression for p(z) at z > 0 can be obtained 
in the region z)l;  this corresponds to a large number of 
emitted phonons. 

If the number of steps of the cascade is so large that the 
total broadening exceeds fin, and the peaks overlap strong- 
ly, i.e., $z)l, only the terms with m = + 1 are significant 
in the sum (27), so that 

The principal term of this representation corresponds to that 
expression which can be obtained for f (e) by transforming in 
(4) at e)W, to the "diffusion" representation for the current 

J o ( E )  =-[fiQolao.(e) I f  ( 8 )  

(only dynamic friction is present here, since LO-phonon ab- 
sorption is not taken into account in (4)). 

If, however, the number of cascade steps is not so large 
and the peaks do not overlap, i.e., $241, the significant 
terms in (27) are those for which m d <  1. Noting that c, z 1 
for these terms, using (28), and then extending the summa- 
tion over m to infinity, we obtain at z > 0 

where 

The sum over m can be transformed by noting that $satisfies 
the equation 

(aiat-a2iax2) lp ( x ,  t )  =o (32) 
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Taking all the foregoing into account, we can represent 
Eq. (1) in the active region in the form 

At t = 0 this Il, corresponds to the distribution f (&) obtained 
with allowance for the glide but without taking the peak 
broadening into account. The "development" with respect 
to t corresponds to accumulation of the broadening as the 
cascade progresses. Using the known Green's function of 
Eq. (32), we get 

where 0, is the normalized Gaussian distribution 

Q, (a I E )  = (2naZ) -'" exp ( - tz /2az) .  

Returning to dimensional quantities, we see readily that (34) 
corresponds to the f (e) dealt with in Sec. 2. 

The function (34) gives the correct form factors of all the 
peaks numbered k> 1; the total number of electrons in each 
of these peaks can be obtained from (19). An exception is the 
peak that lands on the threshold, a fact that can be seen 
already from (19), since r,, (E) becomes infinite at the thresh- 
old. To find the form of this last peak we solve below, in Sec. 
4, an auxiliary problem concerning the form of the distribu- 
tion function in the case of near-threshold pumping, whose 
role in the case of interest to us is played by the arrival term 
B (E) (4) due to phonon emission by the electrons of the penul- 
timate active-region peak that has not yet reached the 
threshold. The form factor and the number of electrons of 
this peak are determined from (34) and (19) 

4. ELECTRON DISTRIBUTION FOR NEAR-THRESHOLD 
EXCITATION 

We consider Eq. (1) for the case when electron genera- 
tion by the light takes place near the phonon-emission 
threshold E = fin,, i.e., IE, - fino/ (fin,, in an energy band 
A E ~ ( U ~ ,  whose center is the point E ~ .  The relation between 
Ace and the mismatch E, -fino, and also the sign of the 
mismatch, can be arbitrary. We introduce the pump form 
factor 0 ( y -yo), centered about yo = &,/fino, having a 
width A yo = A . E ~ / ~ ~  and normalized to 

The pump can then be represented in the form 

where Go is the number of electrons produced in 1 cm3 per 
second and S = ( E ~  - fino)/fino, while the characteristic 
density is 

no=hSlog (hQ0) =p,3/ (2nfi) 3 .  

Inasmuch as in the considered auxiliary problem elec- 
trons are present in the active region only near the threshold, 
we can use the expansion (12). Next, calculating from (16) 
A,, and Dee for the active electrons, we can put E = fino. 
Near the threshold we have B (E )  = 0, since there are no elec- 
trons in the region & z 2 m O .  

d d  
rl- [ f ( Y ) + e - f ( Y ) ]  - f ( Y )  ( ~ - l ) ' = - ~ @ ( ~ - ( 1 + 6 ) ) ,  

dy dy 

We have introduced here the dimensionless pumpp = Go;id 
no, as well as a parameter that determines the competition 
between the 0 scattering and the ee scattering, viz., 
7 = A,. r,,/;,,, wherenee is calculated from (1 5) at E = fin,. 
In this notation, the equation in the passive region is 

The boundary conditions imposed on the system (36) and 
(37) are 

f ( Y )  =O ( y - t w )  ; (38) 

The absence of a boundary condition at y = 0  leaves undeter- 
mined one of the four constants that arise in the integration 
of the system (36), (37). This constant is determined by speci- 
fying the density n. 

The solution of (36) reduces to construction of the 
Green's function of the single-parameter equation 

with the parameter R = (v2/8 3)'15. This can be easily veri- 
fied by making the change of variables y - 1 = p2x, 
p = (78 )'I5. We impose on the Green's function the bound- 
ary conditions g(0,x) = 0, ~ ( C C  ,x) = 0. The solution of (36) 
can then be written in the form 

f ( Y )  = f l  ( y ) + f z ( y )  ( y > l ) ,  (41) 

where A is the integration constant and u(x) is the solution of 
the homogeneous equation (40) with boundary conditions 

u(O)=I, u(w)=O. 

Introducing also a second independent solution 

that satisfies the boundary conditions 

u(O)=O, v'(O)=I. 

we can express the Green's function explicitly: 

g(x ,  2') =eL' [0 (x-2') u ( x )  v (x')  +0 (2'-x) u (xr )  u  ( x ) ]  . (45) 

By the same token, the construction of the solution in the 
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active region reduces to construction of the function u(x) 
which is investigated in the Appendix. 

Substituting (41) in the right-hand side of (37) we obtain 
an equation for the distribution in the passive region. By 
assumption, this distribution differs little from Maxwellian, 
but this smallness has only an "integral" character. Thus in 
the matching region y = 1, where fTe is smallest, the true 
distribution can differ greatly from fTe. This is precisely why 
Eq. (37) must be solved in the passive region. Since we are 
interested in a solution only at y)B we can assume that 
H = 1, after which (37) can be readily integrated. The result 
is 

m 

f ( y ) = ~ e - ~ ~ ~ j - I - + . 4 ~ ( ~ ) + ~ ~  dy'm (y l - - ( I+G))L(y ,  y ' ) ,  

(46) 
where C and j are the integration constants in the passive 
region. The second constant has the meaning of the (dimen- 
sionless) flux at the threshold: 

j= (f+Bdfldy) I,=,. 
The kernel L consists of two parts: 

L ( Y ,  y')=@(y'-I)L+ ( Y ,  Yf)+e(l-Y'rL-(Y, Y' ) .  (47) 
The second term in (37) is connected with the pumpp@ in the 
right-hand side of (37). Then 

(e"'"I) +8 (y-y')  (eUfe-1) 1 

(48) 
This quantity is in essence the Green's function of Eq. (37) at 
H = 1. The first term in (47) is connected with the distribu- 
tion f, (43) which is substituted in the right-hand side of (37); 
it is of the form 

The term AK in (46) is due to the distribution f, (42) substitut- 
ed in the right-hand side of (37). In analogy with (49) we have 

1 "  
K ( y )  = - 5 dxL- ( y ,  k2x)  u ( I ) .  (50) 

g o  

Using the properties of u(x) whihc are described in the Ap- 
pendix, it is easy to verify that at y>B we have at all values of 
and 

where 

In the region y)B of interest to us the term AK in (46) can 
therefore be omitted, changing the meaning of the constant 
C. Since, by assumption, f (a) differs little from fTe(a), we can 
assume that Cis determined by the density n ,  as in (13), and 
write ultimately for the distribution in the passive region 

The constant j in this equation and the constant A in the 
distribution (41) in the active region are determined from the 
matching conditions (39); this yields 

where 

and 

a=h I u' (0) I -'. (57) 

We note that the distribution (53), obtained only for 
a> T, , can be assumed to be valid also at E 5 T, , for in this 
region the corrections to fTe are small. Further, it can be 
easily seen that in the solution of the kinetic equation we use 
only the fact that there are few electrons in the active region 
and that all are located near the threshold. The solution ob- 
tained holds therefore not only for the case of near-threshold 
pumping, but also for the case when the pumping goes into 
the passive region far from the threshold (S < 0, IS / - 1). 

We proceed now to discuss the formulas obtained for 
the distribution f (a) and elucidate the meaning of the param- 
eter A. To this end we must understand the cause of the char- 
acteristic scale of the function f,(a), which is given according 
to (A.5) and (A.9) by 

AE- (qB)'l~hQ~=hT,, h<l. 

We consider an electron produced at the threshold and as- 
certain how far it can penetrate into the active region by the 
diffusion due to ee scattering. The diffusion depth Ae is li- 
mited by phonon emission and by gliding into the passive 
region via dynamic friction. It can be estimated from the 
equation 

The left-hand side is the diffusion time, and the right con- 
tains the phonon emission time and the time of gliding via 
dynamic friction. The choice between the two possibilities in 
(59) depends on A. If A >  1, the diffusion is bounded by dy- 
namic friction, but ifAg 1 it is bounded by phonon emission. 
The solution of Eq. (59) for the penetration depth Aa in these 
two cases is given by (58). 

It can be seen from (53) that in the passive region the 
distribution function is distorted compared with fTe for two 
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reasons: the presence of pumping (the terms proportional to 
p)  and the scattering by optical phonons (the terms remain- 
ing at p = 0). 

Let us consider in greater detail the case whenp = 0 (the 
pump is turned off or the electrons are heated by a static field 
E ). The distribution in the active region is then f, (42) with 
A = afTe (E = tin,), while the distribution in the passive re- 
gion differs from fTe by the constant j, with j = (1 - aVTe 
(E = tin,). At A )  1, when the departure from the active re- 
gion is determined by dynamic friction, we can use for u ( x )  
Eq. (A.6), and according to (A. 12) we have a=: 1. It is clear 
therefore that the distribution is close to fTe(&) for all E. At 
Ag 1, when the departure is determined by emission of opti- 
cal phonons, a z O  and jz fTe(& =tin,), so that the value 
A = f (E = tin,) of the distribution function at the threshold 
decreases drastically compared with the Maxwellian distri- 
bution, while the distribution in the active region decreases 
at a penetration depth AT, much smaller than T, . 

Turning now to the casep #0, we show that the distri- 
bution f (E) can be calculated at A41 and A)  1 for different 
values ofp and S by using the results of the Appendix. The 
form of the distribution can vary greatly, depending on the 
sign of S and on the values ofp and A. 

The results of the present section were subsequently 
used to determine the form of the distribution function near 
the threshold and in the passive region for a pump (17) high 
in the band. To this end the pump form factor @contained in 
the equations of this section must be replaced by the form 
factor g, of the penultimate peak in the active region, shifted 
downward in energy by tin,. 

5. POWER LOSS IN THE CASE OF NEAR-THRESHOLD 
EXCITATION 

The distribution (41) in the active region can be used to 
calculate the power transferred to the lattice via spontane- 
ous emission of optical phonons in the case of near-threshold 
excitation 

Gathering together all the terms that are explicitly propor- 
tional to the pump, we can represent the calculation result in 
the form 

where 

Qn=Qoq ( l - a ) f T , ( e = f i Q o ) ,  

We have introduced here the characteristic power loss 
Q, = notino/;, and the function 

W  ( z )  =I-aekru(x) I.=,,,,a, z>O, 

W ( z )  =(I -a)  ede, zC0.  
(64) 

The term Q, , which is proportional to the density n and 

does not depend explicitly on the pump, becomes simpler in 
limiting cases: 

The ee-scattering time drops out of Q, at A)  1, and the 0- 
scattering time at A <  1. The physical meaning of this is the 
following. The energy relaxation is due to the joint action of 
the ee and 0 scattering: the ee scattering pushes the electron 
out above the threshold, where it emits an optical p h ~ n o n . ~  
At A)l the bottleneck is the second step, and at A 4  1 the 
first. The power loss (62) was obtained in Ref. 6. (The param- 
eter B, introduced there is connected with the factor 1-a 
used by us.) 

The function W (z) with z > 0 is the probability that an 
electron produced above the threshold will manage to emit 
an optical phonon before it goes off into the passive region by 
the diffusion and the dynamic friction which are due to ee 
scattering. At z < 0, W(z) is the probability that an electron 
produced below threshold will rise to the threshold by diffu- 
sion and then emit an tin, phonon. At the threshold, 
W(0) = 1 - a, so that a is the probability that an electron 
produced at the threshold will go into the passive region 
without emitting a phonon. It is easy to verify that W(z) and 
W ' (z)  are continuous at z = 0. A plot of W (z) is shown in Fig. 
2. The characteristic scale in z at z < 0 is 0 for all A. At z > 0 
the characteristic scale depends on A. It can be seen from 
(AS) and (A.9) that it is equal to 77'13 = BA 5'3,8 at A )  1 and 
to (76 )'I5 = @Age at A< 1. In the limiting cases, using (A.5), 
(A.9), (A. lo), and (A. 1 I), we obtain: as A+ w (e.g., as 6+O) 

and as A-tO (e.g., as 7-t m ) 

FIG. 2. Influence of ee scattering on the dependence of the probability of 
emitting an optical phonon (a-A(1, b--A>l). 
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The characteristic scales ofthe function W (z) are easy to loss (60) due to spontaneous emission of optical phonons is a 
understand. We consider for this purpose the fate of an elec- nonmonotonic function of the electron density. 
tron produced in the active region at a point E near the Consider, for the sake of argument, the density region 
threshold. This electron will emit an optical phonon if n,<n <n,, when the active region far from the threshold 

70 (8) a (8-hQo)lAee, (e-hQo)ZID,,. (69) 

On the right are written out the glide time and diffusion time 
from the point E to the boundary of the active and passive 
region, while A,, and Dee were calculated at E = W2,. If ei- 
ther of the inequalities in (69) is reversed, the electron goes 
into the passive region by ee scattering. Substituting in (69) 
the emission time (12), we can verify that the parameter de- 
termines which of the inequalities in (69) is decisive. 

IfA) 1 (low temperatures, high densities), the most dan- 
gerous is dynamic friction and it follows from (69) that 

~ - f i ~ ~ ~ ~ " f i ~ 0 = 8 h " ' ~ f i f i , = ~ ~ ' ~ T , .  

If, however, A N  1 (high temperatures, low densities), diffu- 
sion dominates in the active region, and it follows then from 
(69) that 

E - ~ ~ Q ~ B  (q~)2'5fiQo=0hfiQO=hT,. 

This explains the scale of the function W(z) at z > 0. At the 
same time, the limiting values (A. 10) and (A. 12) of the pa- 
rameter a become clear. If dynamic friction predominates, 
a = 1 and W(0) = 0, i.e., an electron produced at the thresh- 
old certainly goes into the passive region without emitting a 
phonon. If, however, diffusion dominates, then a = 0 and 
W(0) = 1, i.e., the electron crosses many times the boundary 
between the regions and sooner or later emits a phonon. 

We emphasize that the scales of the functions f l (  y) and 
W (z) (at z > 0) coincide only if A < 1. In the case 2 )  1 they are 
different, with the scale of W(z) the larger. 

We note that the power loss Q obtained in Ref. 6 at A( 1 
differs from Q obtained in Ref. 5, although at first glance the 
same formulation of the problem was used in both papers. 
The point is that in Ref. 6, just as in the present paper, the 
Landau diffusion approximation was used for C,,.  This 
means that, by assumption, the depth AE of penetration into 
the active region is much larger than the characteristic ener- 
gy (SE),, -EX 2, transferred in ee scattering. In this ap- 
proach, the distribution at the threshold E = fd2, is contin- 
uous. If, however, (SE),, )A&, the diffusion approximation is 
not valid and f (E) has a discontinuity at the threshold. This is 
precisely the case considered in Ref. 5. If it is assumed that 
xmin is determined by the ratio of the ee-collision parameter 
at E = W2, to the Debye length, then the energy transfer is 

Comparing this transfer with AE according to ( 58 ) ,  we can 
verify that the diffusion approximation is applicable. 

To conclude this section, we emphasize that the pres- 
ence of a pump even below the threshold leads to an addi- 
tional contribution to the power loss, a contribution that 
does not reduce to a change of the density n in Q, . 

6. POWER-LOSS OSCILLATIONS 

We turn finally to our final problem, that of proving 
that upon excitation high into the band (E,,W~,) the power 

contains (s - 1) peaks of the distribution f (E), with numbers 
k = 0, 1, ..., (s - 2). If resonance is present (n zn , ) ,  the peak 
numbered (s - 1) lands near the threshold, and if there is no 
resonance this peak does not exist at all. Each of the peaks 
that are far from the threshold makes a contribution Gofino 
to Q, i.e., the total is (s - 1)G0W2,. To calculate the contribu- 
tion of the threshold region we use (61), taking @ to mean, as 
indicated in Sec. 4, the form factor q, of the peak (s - 2), 
shifted by W2, downward in energy. 

The peak (s-2) is - localized at the point 
y,-, = y o - s + 2 - ( s -  1 ) ~  Writing y,-, = 2 + S ,  
where 6 < 0, we have S = - (s - l)(? - V,), so that S = 0 
corresponds to n = n, and S < 0 corresponds to n > n ,. The 
form factor of the shifted peak is, according to (34), 

Q, ((~(s-2)'" 1 y- (1+6)). 

1ts widthisoftheorder o f ~ " ~ ( 7 7 ~  + 2778)lI2 ats-77-', i.e., of 
the order of (77 + 8)112. Going through all the possible rela- 
tions between the parameters 77 and 8 (and assuming that the 
parameters 7 and 77 are of the same order), we can show that 
the width (77 + 8 )'I2 is always larger than the characteristic 
scales of the change of the function W contained in (63). In 
the integration we can therefore replace the function Wby a 
step function, and obtain 

DD 

Q,,= (s-1) G ~ ~ ~ R ~ + Q . + G ~ ~ ~ R ~  I dyOO (o(s-2)"l y- ( I+  
I 

The last expression can be rewritten in the form 
Yo-1 

Qm=Q.+GofiQo5, 5= j. dzp(z), 
0 

where S is the average number of the LO phonons emitted by 
each of the not-yet-thermalized photoelectrons, while Q, is 
the power lost by the thermalized electrons. Obviously, Eq. 
(70) is valid not only in the considered interval n, (n < n,, but ' 

at all densities. 
From (24) we get at yo) 1 

Calculating this integral for the limiting cases, we obtain the 
s that correspond to the distribution s(30) and (34). At 2 y )  1, 
when most peaks overlap strongly, we have 

At dyo ( l ,  when the peaks do not overlap, we obtain the 
relation of interest to us 

The square and curly brackets in the last formula denote 
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respectively the integer and fractional parts of the number. 
The first term is obtained if the peak widths are neglected. It 
is a stepwise function of ;-a "staircase." The remaining 
terms are responsible for the seamring of the stairs because 
of the finite widths of the peaks. The second term is connect- 
ed with the high-energy tail (which actually does not exist) of 
the peak that landed in the passive region, and the third is 
connected with the low-energy tail of the last peak in the 
active region. 

7. ENERGY BALANCE 

The energy-balance equation for the determination of 
T, is 

GOBO=QPO+QA, (74) 
where the two terms in the right-hand side correspond tcr 
energy relaxation by the optical and acoustic phonons. The 
term QA can be calculated by neglecting the deviation of the 
distribution from Maxwellian, i.e., 

where E* = 2TL for DA scattering by a deformation poten- 
tial and E* = TL for PA scattering by a piezoacoustic poten- 
tial. We represent the term Q,, in the form (61) and combine 
in (74) the terms proportional to the pump. The balance 
equation takes then the same form as for the thermalized 
part of the distribution in the passive region: 

Goeo=Q,+Qa, 
where 

~~=e~-s"AS2~ 

is the energy that each photoelectron brings into this region 
after emitting the optical phonons. 

The oscillatory effect referred to above is connected 
with the nonmonotonic dependence of 2, on n in the case of 
excitation high into the band. This dependence is illustrated 
by the plot in Fig. 3, where the dimensionless quantities ZO/ 
+i120=jo = y - I and n/n, = 77 are used. We assume for sim- 
plicity that 8 = 0, so that a = 77.  At low densities, i.e., 
779; 'I2, the plot is a smoothed "staircase" with step 
A7 = y o  ' along the 77 axis and with step 1 along thej, axis. 
The staircase begins on the level jo = { yo J (fractional part) 
at 77 = 0. The smearing of the first steps is S? - G y ,  "'. This 
part of the curve is described by Eq. (73). When Gmy; "', 
the smearing 1377 becomes of the order of the step d i  and the 
staircase is completely smeared out. At higher densities, i.e., 
yo- "2477< 1, the plot approaches a smooth one correspond- 
ing to the first term of (72). The second term gives exponen- 
tially weak oscillations with a somewhat enlarged period. 

In the region of the first steps, 77 -yo ', the jumps of the 
functionj, are large, of the order of the function itself. It is 
therefore meaningless to speak of separating the monotonic 
part of the function yo. The oscillations become relatively 
small at 6 N Y ;  '. At such densities the monotonic part of the 
dependence of jo on 77 is 

go=yoq/ (I+$. (78) 

FIG. 3. Dependence of the energy delivered by the photoelectron to the 
thermalized part of the distribution (in units of hn,) on the photoelectron 
density (in units of n,). 

It describes also the region of the remote steps of the stair- 
case in the region when only exponentially weak oscillations 
remain. The relation (78) is valid also at 77% 1. 

For excitation near the threshold we have 

If the pump is far from the threshold (outside of the region of 
variation of W(z), where we can assume W (z) = 1 at z > 0 and 
W(z) = 0 at z < 0), we have Eo = E~ for pumping below the 
threshold and So = E, - fin, for pumping above the thresh- 
old, which is physically understandable. 

Let us compare the balance energy (76) with the ones 
used in other papers. In Ref. 7 it was found from physical 
considerations that 

~ ~ = e ~ n l ( n + n , ) ,  (80) 

which corresponds to (78). It is clear from the foregoing that 
(80) is a good approximation only in the region n)n,/s, 
which corresponds, e.g., for GaAs at typical s - 10, to a den- 
sity n) 10" ~ m - ~ .  It is assumed in Ref. 8 that 

It can be easily seen, however, that this relation is not an 
approximation of the true Eo in any region of the parameters. 
The point is the following. The second term is taken to mean 
the energy that the photoelectron transfers to the therma- 
lized part of the distribution on account of ee scattering in 
the course of cascading with emission of LO phonons, while 
the first is taken as the energy that it contributes to this dis- 
tribution after landing in the passive region. If, however, the 
ee scattering is significant, the electron glides in the active 
region and arrives in the passive region with an energy differ- 
ent from E ,  - sfin,. This circumstance was likewise not tak- 
en into account in Ref. 3, where Eq. (35) corresponds to (81) 
at n<n,. 

In the balance equation used in Ref. 9, the energy Eo for 
the near-threshold excitation is taken to be (in our notation) 
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This expression, obtained from qualitative considerations, 
does not agree with 2, (79) at any value of the parameters. 

We turn now to the right-hand side of the balance equa- 
tion (76). If only spontaneous emission of LO phonons is 
taken into account, the expression assumed for Q, almost 
everywhere (see, e.g., 

It is presupposed in it that the distribution in the active re- 
gion near the threshold, at E - fin, - Te , is Maxwellian. 
Yet, as shown in Ref. 6 and in Sec. 4, this is the case only at 
sufficiently high densities and low temperatures, if the fol- 
lowing inequality holds: 

Transforming to dimensional quantities, we have 

For GaAs this means n)10'5, 1016, 10" cmP3 respectively 
at T, = 5, 20, 80 K. These conditions are satisfied far from 
always. For example, under the conditions typical of the ex- 
periment in Ref. 11, at Te = 20 K and n = 1.2X 1014 cmP3, 
we have A-0.5. Thus, in many cases the energy balance 
equation used is in fact wrong. 

8. EXPERIMENTAL MANIFESTATIONS OF THE 
OSCILLATORY AND THRESHOLD EFFECTS 

The stepwise character of the dependence of Eo on n 
should lead, when solving the balance equation (76), to step- 
like singularities in the dependence of Te on Go, and these 
singularities might be experimentally observable. If the ef- 
fective recombination time depends on Te , the dependence 
of n on Go will also be steplike. It is even possible for hystere- 
sis regions to appear, with non-single-valued dependence of 
Te on Go in certain intervals of Go. 

Bearing in mind experiments in which the oscillations 
in question might be observable, we must discuss a few more 
circumstances. 

The additional broadening of the peaks of the distribu- 
tion f (E) and the ensuing smearing of the oscillations are the 
result of the finite dispersion of the LO phonons. Let us esti- 
mate this broadening ( 6 ~ ) ~ ~ .  The dispersion law ofLO phon- 
ons at low phonon momenta q is L?, = nO[ l  - ( q ~ ) ~ ] ,  where 
a is of the order of the lattice constant. Typical values ofq are 
of the order of the electron momentum k, so that the charac- 
teristic broadening of the peak in one step of the cascade is 
finok 2a2-fing/E, where E = fi2/ma2. The total broaden- 
ing can be estimated at - ~ ~ ' ~ f i n g ~ / E .  Thus, the 
smearing due to the dispersion of the LO phonon is quite 
small. 

The exponential damping of the exciting light at the 
absorption depth leads to an energy release that is not uni- 
form over the sample thickness. It follows hence that Te will 
vary with the distance from the surface, and this will mask 

, the oscillations, since the quantities usually measured are 
integral over the sample volume. This difficulty can be 
avoided by using the method of two-photon absorption, in 

which a sufficiently thin sample can be excited uniformly 
over its depth. 

Additional difficulties are caused by the complicated 
structure of the hole band. The presence of two hole bands 
(light and heavy holes) leads, at a fixed photon energy fiv, to 
two values of the initial energy E, corresponding to excita- 
tion of electrons from each band. The result should be two 
series of oscillations with different periods. In addition, 
owing to the corrugation of the hole bands both energies E, 

will be smeared, and the smearing Aso will be larger the larg- 
er c0. It can be estimated from the formula 

where me and m, are the masses of the electron and of the 
corresponding hole, while Am, is the variation of m, along 
different directions of the hole momentum. 

The variation of the mass of GaAs with direction is 
25% for heavy holes and 2% for light ones. This yields for 

the values 0.03 and 0.01, respectively. Putting s = 10, 
we obtain for the ratio AE,/M~, the values 0.3 and 0.1. The 
smearing of the heavy-hole peak is found to be quite appre- 
ciable. 

Threshold singularities in the dependence of Te on c0 
were observed in Ref. 12. This dependence shows clearly 
how the ee scattering "smears" the threshold E = M2,. 

To find Te from Eq. (76) it is necessary to add to it the 
electron-number balance equation or to use some depen- 
dence of the density n on the pump Go. By way of illustration 
we found the dependence of Te on E, for electrons in GaAs 
by using the relation 

For the energy relaxation time in A scattering we have 

- 
where s is the speed of sound, and & and T, are the char- 
acteristic times of the deformation and polarization scatter- 
ing. Substituting (85) in (75) we obtain 

2 2msZ 1 1 
Q . = n - - ( T r T L )  n'" AQ, [ - y L " + - y ; ' h ]  T. D A  7 PA , 

The pump was assumed monochromatic, i.e., we put 
= 0. The calculation results for several values of the 

pump are shown in Fig. 4. It hardly makes sense to compare 
them with the experimental results, since the model em- 
ployed does not take into account many factors that are pos- 
sibly significant: the electron-energy relaxation on holes, 
and the presence of two electron-excitation points E~ due to 
the presence of two hole bands (thus, if electrons are pro- 
duced at a threshold with E, = 36 meV in transition from the 
heavy-hole band, electrons are simultaneously produced in 
transitions from the light-hole band at a threshold with 
c0 = 20 meV). 

The following numerical values were used in the calcu- 
lations and estimates for the parameters of GaAs: 
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FIG. 4. Dependence of electron temperature T, on the initial photoelec- 
tron energy e ,  for different ratios GJG, = 10, lo2, lo3, lo4. Lattice tem- 
perature T, = 4.2 K. 

energies 

scattering times 

? DA=4,6 psec ?pa=I 1  psec %p0=0,14 psec 

? ee (n=no) 4 . 2 2  psec 

densities 

n0=4,5 .  10" cm-: n,=3.1018 cm-3, f io=2. 1013 cm-3; 

Pumps 
no/a ,=3.2 .  lo3' cm-'/sef ( a t  this G o  we have p = l )  , 

C0=0 ,65 .  10'" cm-'/set (exponent a=0 ,7 ) .  

We point out that at an absorption depth 1 p m  and at a 
photon energy 1.53 eV the pump Go corresponds to an ab- 
sorbed flux 1.6 mW/cm2. 

The authors thank D. N. Mirlin, E. I. Rashba, and D. E. 
Khmel'nitskii for a discussion of the work and F. Kh. Sule- 
imanov for the computer calculations. 

APPENDIX 

To study the homogeneous equation (40) it is conven- 
ient to make the substitution 

u ( x )  =e-'"&cp ( x )  . (-4.1) 
This yields the equation 

dZcp/dx2- ( X ' ~ ~ + ~ / ~ A ~ )  q=O. ( A 4  

At largex%A we can discard the termA 2p, after which the 
equation reduces to a Bessel .e&uation whose solution is 

( x )  =x"Kzl, ( 4 / s ~ " * )  = K  ( x )  . (A31 
The solution I,,,, as can be easily seen, does not satisfy the 
condition on u(x) at x = CQ . At small xgA we have 

cp ( x )  =e*'"". (A.4) 

At A(1 the region x(A does not contribute to the nec- 
essary integrals with the function u(x), so that we can put 

u ( x )  = K ( x ) / K ( O ) ,  K ( O )  = l l Z  ( 5 / 2 ) 1 f 5 r  (v5).  (A.5) 
Under these conditions 

v ( x )  =I  ( x ) / I '  (0). 

I ( x )  = x ~ ~ ~ I ~ ~ ~ ( ~ / ~ x ~ ~ ) ,  I! ( 0 )  = ( 5 / 2 )  a15/r ( 2 1 ~ ) .  

At A %  1 the approximation (A.4), which corresponds to 

u ( 2 )  =e-&, ( A 4  

is in many cases insufficient, as will be shown subsequently. 
For such A we can obtain a solution by the WKB method, 
viz., 

q ( x )  = p  ( x )  -'" exp * d x  p ( x  ) , r s 11. 
p ( x )  = ( X ' " + ' / ~ A ~ )  lh. 

This solution is valid at x ) A -'. At )A such a solution 
with a minus sign in the exponential leads to an asymptotic 
expansion of the function K (x) at x )  1. At x(A the solution 
(A.7) with a minus sign coincides with the decreasing expo- 
nential (A.4). It is clear therefore that at A)  1 the function we 
need is of the form 

Actually, at A)  1 a sufficient approximation is obtained by 
expandingp(x) in reciprocal powers of A, namely 

As for the function v(x) at A)  1, when it is used in the Green's 
function (45) to calculate the distribution f (a) it suffices to use 
the aprpoximation (A.4); then 

1  
u ( x )  = - ( l - e - A x ) .  

h 

With the aid of (A.5) we can obtain 

(A. 10) 

To find the corresponding expansion at large A, it is conven- 
ient to use the relation 

(A. 11) 

which follows from the equation for the function u(x). We 
can substitute in it u(x), retaining only the first term of the 
expansion in (A.9); this yields 

a = l -  (a~'"/2)A-"~, D l .  (A. 12) 

We note that if we confine ourselves at A )  1 to the approxi- 
mation (A.6), the function W (z) at z > 0 turns out to be close 
to unity everywhere all the way to the threshold z = 0 itself, 
patently contradicting the physical meaning. The integral 
(52) also diverges in this approximation. 
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