
Nonlinear relaxation absorption of ultrasound in amorphous metals 
Yu. M. Gal'perin, V. L. Gurevich, and D. A. Parshin 

A. l? Ioffe Physicotechnical Institute, Academy of Sciences USSR 
(Submitted 5 November 1983) 
Zh. Eksp. Teor. Fiz. 86, 1900-1914 (May 1984) 

A theory of nonlinear relaxation absorption of sound by two-level systems (TLS) in amorphous 
metals (metallic glasses) is developed. Absorption nonlinearity arises when the amplitude of the 
modulation of the separation between the levels of the TLS by a sound wave exceeds the tempera- 
ture T. The existence is established of two frequency ranges in which the behavior of the relaxa- 
tion absorption has different dependences on the sound intensity J ,  on the frequency o ,  and on the 
temperature. Nonlinear effects become significant at J >  Jc2,  where the critical intensity Jc2 is 
proportional to T Z  and to the cube of the sound velocity. At J >  Jc2, the absorption coefficient is 
TZT,(J/J~,)-'/~ in the high-frequency region and ~ ~ T o [ a l ( J c ,  /J)'/' + az/ln(J/Jc2 in 
the low-frequency region. Here To is the linear absorption coefficient in the corresponding fre- 
quency range, T, is the characteristic relaxation time of the population density of the TLS; a ,  and 
a, are numerical coefficients of the order of unity. The features of nonlinear relaxation absorption 
in amorphous superconductors are discussed briefly. 

1. INTRODUCTION 

A new type of nonlinear behavior of sound absorption 
has recently been observed in metallic glasses at low tem- 
peratures. l4 That is, two steps were seen on the curve of the 
dependence of the absorption coefficient on the inten~ity.~ 
The first step is connected with the nonlinearity of the well 
known resonance absorption. So far as the other is con- 
cerned, it can be connected, as has been shown by us,5 with 
the nonlinearity of the relaxation absorption. In our brief 
note,5 qualitative considerations were expressed and order- 
of-magnitude estimates given. Here we wish to present a 
more complete quantitative theory and to analyze the var- 
ious limiting cases. At the same time, we would wish to cor- 
rect certain inaccuracies present in Ref. 5. 

The relaxation absorption is due to the modulation of 
the population density f, of two-level systems (TLS) by the 
alternating deformation field of the sound wave. The modu- 
lation is due to the time-periodic change in the level spacing 
E, which is assumed to depend on time t and is given by the 
following expression: 

E ( t )  = [ ( A +  d cos o t )2+Ao2]  "', (1) 
Here A and A, are parameters that characterize the Hamil- 
tonian of the TLS in the absence of deformation, which has 
the form 

'IzAc~s-'IzAo~i, 

where ui are Pauli matrices, d is the amplitude of the change 
of the parameter A under the action of the deformation 
created by the sound wave: d = 2y, uyk, where y, is the ten- 
sor of the deformation potential and uyk is the amplitude of 
the deformation in a sound field with frequency o. The cor- 
responding change in the tunnel transmissivity A, we shall, 
following Jackle6 and Black,' assume to be small and ne- 
glect. 

Such a modulation of the spacing E produces in the 
population density f of the upper level a change (in compari- 
son with its equilibrium value f,) which lags in phase the 

splitting. This also leads to sound-wave energy dissipation. 
The power absorbed by a single TLS is 

where the angular brackets indicate averaging over the peri- 
od. The derivation of this formula is given in Sec. 4. It is 
obtained in the adiabatic approximation. In the general case, 
the conditions of its applicability are'' (see Ref. 8 and the 
literature cited there): 

f i  I dE/dt I <E2, fio<E. (3) 

They represent the requirement of sufficient slowness of the 
change in the perturbation, which should not by itself pro- 
duce quantum transitions. 

The occupation numbers f a r e  determined from the 
equation: 

af f-fo , -=-- 
at Z 

where 
fo= (l+eEIT) -I 

is the equilibrium population density of the upper level, T is 
the relaxation time of the TLS. As is known (see the review of 
Black7), in metallic glasses it is due primarily to the interac- 
tion of the TLS with the conduction electrons; the expres- 
sion for it has the form 

Here 

x=V"V,", 

the matrix element Vcharacterizes the change in the param- 
eter A due to interaction of the TLS with the conduction 
electrons; the bar indicates averaging over the states of the 
electrons with which the TLS interacts (see below, Sec. 4); 1/ 
Vo is the density of electron states at the Fermi level per 
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electron." Thus, generally speaking, the relaxation time T 

entering into (4) should be regarded as dependent on the time 
t according to Eqs. (1) and (5)-by virtue of the T(E ) depen- 
dence. 

In order to obtain the total absorption, the absorption 
p(A,A,) from the individual must be summed over all TLS, 
viz., over the parameters A and A, that characterize them 
and are assumed to be random: 

Here N(A,A,) is the corresponding distribution function, 
which at its presently known accuracy is regarded as a con- 
stant, NW3' The final expression for P should have included 
averaging also over all possible values of the deformation 
potential y,. We shall not write down this procedure nor 
give it in explicit form. The fact is that at the present time 
there are no reliable data on the width of this distribution 
and especially to the degree of which it correlates with the 
distributions of the parameters A and A,. We can only state 
that a typical absolute value of y is of the order of 1-3 eV. 

The results that will be given below were obtained un- 
der the assumption of the absence of a correlation between 
the parameters yik and A,, A for some definite value of the 
same quantity x for all TLS. It is necessary to note, however, 
that the frequency and temperature dependences of the ab- 
sorption coefficient in limiting cases remain the same even 
under more general assumptions concerning the character of 
the distribution of these random quantities (cf. for example, 
the averaging method used in Ref. 9). 

At low sound amplitudes (the so-called linear region), 
Eq. (4) must be solved in the linear approximation in d; here T 

can be assumed to be independent of the time t ,  and for the 
contribution (2) from a single TLS to the absorption we ob- 
tain a formula of the Mandel'shtam-Leontovich type: 

It is clear from this expression that the fundamental contri- 
bution to the absorption is made by the TLS with E 5 T. On 
the other hand, the relaxation time T depends onA, as well as 
on E. Correspondingly, for each characteristic value of E we 
can indicate a minimum relaxation time T,~, corresponding 
to E =Ao, to wit, 

It is seen from (9) that the minimum relaxation time T,~, (E ) 
has the same value in metals both at E=: Tand at E(T: 

At E(T this equality becomes exact. 
We begin with a discussion of the results of linear the- 

ory,'in order to compare it later with the nonlinear case. The 
frequency and temperature dependence of the linear absorp- 
tion coefficient is determined by the parameter w~, .  

If W T ~ )  1, then the condition wr) 1 is satisfied for all 
TLS with E 5 T. This means that we can neglect the term 1 in 
the denominator of (8) in comparison with ( ~ 7 ) ~ .  In the up- 

shot, the absorption coefficient turns out to be independent 
of the frequency and proportional to T; ', i.e., to the tem- 
perature. According to (7) and (8), it is equal to1' 

Here j = I, t is the index of polarization (longitudinal and 
transverse), p is the density of the glass, uj is the velocity of 
sound, 

1 
y," - -- (Sp 7) 2+2 Sp yZ)), 

15 
1 (12) 

yl"= - (3 Sp yZ- (Sp y) 2>. 
3 0  

The averaging in (12), which is denoted by (( ...)), is carried 
out over all TLS. As follows from (12), the inequality 

y,z>413yt2 (13) 

holds. Experimentally, the independence of the sound ab- 
sorption coefficient of frequency and its proportionality to 
the temperature were observed in Ref. 10 in amorphous Ni- 
P in the range of frequencies of the order of hundreds of 
MHz and at temperatures in the range of seveal tens of de- 
grees. 

In the opposite limiting case, wr0< 1, the physical pic- 
ture is as follows. the TLS with ~ ( l / w  relax rapidly, their 
population densities differ little from equilibrium, and their 
contribution to the absorption is small. The TLS with T, l/w 
"feel" only the average field during the time T, and therefore 
their population densities are almost time-independent, so 
that their contribution to the absorption is also small. This 
means that the fundamental contribution to the absorption 
is made by TLS with 

7(E, Ao) =llo. 

There are always TLS with such T, therefore the distribution 
of T over the parameter A, is assumed to be very broad. The 
absorption in this case does not depend on T and is propor- 
tional to w (Refs. 7, 11, 12): 

Such a dependence of the absorption coefficient has been 
observed experimentally in several glasses. 12.13 

The range of frequencies and temperatures at which the 
condition w~, (  1 is satisfied in metallic glasses is achieved in 
most experiments, and the sound absorption under these 
conditions permits experimental observation. On the other 
hand, for the satisfaction of the condition w~, ) l  [with T, 

determined by (lo)], either very high frequencies or very low 
temperatures are required. Therefore, the dependence (1 1) 
has been observed only in Ni-P glass, which, at the experi- 
mental temperature ( ~ 0 . 3  K) is still in the normal state. 

However, at low temperatures, many metallic glasses 
undergo a transition to the superconducting state. Here, as 
Black and Fulde have shown,14 the relaxation time of the 
TLS due to electron excitations increases exponentially with 
decrease in the temperature. Therefore, at sufficiently low 
temperatures, the relaxation time T~ is determined by the 
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interaction of the TLS with the phonons and the situation 
turns out to be the same as in dielectric glasses, where r0 (at 
T- 1 K )  is three orders of magnitude greater than in metallic 
glasses and, as a rule, the situation with wro)l is realized 
experimentally. l5 

All these considerations are valid in the absence of a 
magnetic field. A magnetic field exceeding the critical value 
destroys the superconductivity and we are returned to the 
picture of a normal amorphous metal (see Ref. 16). 

It is important to note that in obtaining the result (14), 
the decisive circumstance leading to such frequency and 
temperature dependences is the assumption that the random 
quantity In A, has an equilibrium or near-equilibrium distri- 
bution. A consequence of this assumption is the presence of a 
broad spectrum of relaxation times T at a given energy E. 
The experimental verification of the presence of such a broad 
spectrum of relaxation times in metallic glasses has been giv- 
en in Refs. 12 and 13. 

2. NONLINEAR ABSORPTION. QUALITATIVE PICTURE 

We begin with the remark that in the linear region the 
relaxation absorption is determined in all cases by TLS with 
E-T. The boundaries of the nonlinear region are deter- 
mined by the inequality d k T. We shall limit ourselves in 
this analysis to the case of strong nonlinearity [the general 
picture will be given in Sec. 3; its consideration requires nu- 
merical calculations according to Eqs. (25) and (26)l; 

d>T. 

For this case we analyze the dependence of the level 
separation E on the time t. If A,)T, this separation is also 
much greater than Tat  all instants of time, so that such TLS 
cannot be excited in the interaction with the equilibrium 
electron system and make a contribution to the absorption. 
The same circumstance holds for systems in which A)d. 
Thus, the effective contribution to the absorption can be 
made only by systems for which A 5 d and A, 5 T. The sepa- 
ration between levels of such TLS reaches a minimum value 
A, at the instant of time to determined by the condition 

A+d cos oto=O. 

In the immediate vicinity of these instants of time, the TLS 
can be excited by the electrons (see Fig. 1). 

The interval of times in which such excitation is possi- 

FIG. 1. The time dependence of the spacing E between levels of the TLS 
under the conditions A,<  T, d>T. The interval t , zT/dw is the time 
interval within which E (t ) < T. 

ble is of the order of 
tT-T/do<<o-'. 

The characteristic relaxation time in the course of this inter- 
val is 7,. Therefore, two additional limiting cases are possi- 
ble. 

1) High-frequency: wr,)T/d (tT/r0(l)-the relaxa- 
tion does not take place in the thermal layer in the course of a 
single period of the sound wave. 

2) Low-frequency: wr,<gT/d (tT/to) 1)-the relaxation 
takes place (by relaxation, we mean both excitation of the 
TLS by electrons and their de-excitation; in the thermal lay- 
er, E < T, the times of both these processes are of the same 
order). 

In order to analyze qualitatively the relaxation absorp- 
tion in both limiting cases, we introduce the quantity 
il (E ) = t,/r, where t, z E /dm is the time during which the 
energy E changes by a quantity of the order of itself. The 
physical meaning ofil (E )is that it characterizes the probabil- 
ity of relaxation of the TLS, W(E ), during the time t, : 

w ( E )  ~ l - e - " ( ~ ) .  (15) 

Since this expression is required by us only for qualitative 
analysis, we shall not trouble ourselves with the determina- 
tion of the numerical coefficients in the exponent of Eq. (1 5). 
All that is important for us is only that at il (E  )g 1 the prob- 
ability W (E ) -A (E  ) and at case A (E )) 1 the probability 
W (E ) = 1. Using Eq. (5) for T we obtain for il (E ): 

Aa2 E Ao2/dEoro at E<T, 
k(E) - cth- = 

dTozo 2T Aa21dToza at E>T. (16) 

This quantity reaches its maximum value A,,, = Ao/Aol, 
whereA,, = dwr, at the instant of time to when EzA,.  The 
minimum valueil,,, (A0/A02)2 where A,, = ( ~ T W T , ) ~ / ~ ,  is at- 
tained when E=. T. It is important thatA (E ) does not depend 
o n E a t E k T .  

The high-frequency case w~, )  T/d permits the simplest 
qualitative analysis, and we shall therefore begin with it. In 
this case, T<Ao2<Aol. Taking it into account that we are 
interested in systems with A, 5 T, we obtain the result that 
A,,, g 1. This means that the TLS, passing the thermal layer 
in energy (E < T )  can be excited in it only with low probabil- 
ity, Wzil,,, . This probability is maximal for systems with 
A,-  T; therefore, the disequilibrium of their distribution is 
very large and they will make the main contribution to the 
absorption. 

Such TLS, excited in the thermal layer, i.e., drawing an 
energy of order T from the electron subsystem, will remain 
in an excited state for the duration of many periods (the num- 
ber of which is of order 7,/tT). Since the probability of de- 
excitation of such a TLS does not depend on the energy, 
upon de-excitation, it will return an average energy of order 
d) T to the electron subsystem. Thus, in the mean and over a 
time of order ( ~ T / o ) ( T ~ / ~ ~ )  the considered TLS will be excit- 
ed once and de-excited once. Therefore, the power absorbed 
by it will be 

p=dl(2nlo) (.coltT) =T/zo. (17) 

The power absorbed in a unit volume by such systems is 
obtained by the multiplication of (17) by the concentration of 

1106 Sov. Phys. JETP 59 (5), May 1984 Gal'perin eta/. 11 06 



such TLS, which is of the order of Nod. Dividing the ob- 
tained quantity by the sound-energy flux density (the intensi- 
ty) J ~ ( d y ) ~ p v ~ ,  where y is the characteristic value of the 
deformation potential tensor y, , we find the estimate for the 
absorption coefficient: 

r=ro ( T l d ) ,  (18) 

where To is determined by Eq. (1 1) [for a detailed derivation 
of (18), see Sec. 3, Eq. (3  I)]. 

Thus, in the high-frequency case, the relation between 
the nonlinear and linear coefficients of absorption is the 
same as in dielectric glasses (see Ref. 8 and the literature 
cited there). However, since To depends on the temperature, 
the temperature dependence of the absorption in the linear 
regime is Tz  T 2 J  - 'I2. 

The low-frequency case, w~,gT/d ,  is much more com- 
plicated. Here Ao,<Ao2gT. This means that TLS with 
A,=: T passing through the thermal region E < T, is repea- 
tedly excited and de-excited by the electrons [A (E )) l]. On 
leaving the thermal layer, they discard the excitation almost 
instantly, and in the superthermal region E > T they are al- 
ways in the ground state. Thus, their distribution relaxes 
very rapidly to the equilibrium value f, and hence the con- 
tribution of such systems to the absorption is small (similar 
to the low-frequency case in linear theory). In this situation, 
the principal contribution is made by TLS for which A,gT. 
By virtue of the smallness of the tunnel transmissivity A,, 
such TLS relax to equilibrium more slowly and their popula- 
tion density can be significantly far from the equilibrium 
one. 

It is easy to understand which TLS makes the principal 
contribution to the absorption. This is the TLS with A, de- 
termined from the condition Amin z 1, i.e., with A o ~ A o 2 .  
We shall call such TLS intermediate. For them, r(Ao, 
E = T )  - t ,  . The unusual physical phenomenon of "protrac- 
tion of relaxation," which is absent in dielectric glasses, is 
connected with the intermediate TLS. Leaving the thermal 
layer, such a TLS can turn out to be in an excited state with 
probability of almost unity. Since the quanity A ( E )  does not 
depend on the energy at E 2 T, this TLS can, with probabil- 
ity of the order of unity, be de-excited, transferring energy of 
the order of T to the electrons, but it can also keep its relaxa- 
tion, reach an energy E z d ,  and only then give it off to the 
electron subsystem. Correspondingly, the power absorbed 
per unit volume by an intermediate TLS can represent the 
sum of two terms: N&w Tand N&od. Allowance for the first 
term against the background of the second may seem un- 
justified, since we assume that the condition d) Tis satisfied. 
Actually, the absolute value of the absorbed power is deter- 
mined by the second term, and the sound absorption coeffi- 
cient turns out to be of the same order of magnitude as in the 
linear theory [see Eq. (14)l. The meaning of the separation of 
the small first term is that frequently it is not the absolute 
value of the sound absorption coefficient that is measured 
experimentally, but only the part that is dependent on the 
intensity. This value is determined by just this term. The 
quantitative analysis carried out in Sec. 3 gives the following 
dependence of the absorption coefficient on the intensity in 
the low-frequency case: 

where a ,  and a, are numerical coefficients of order unity, 
while To is determined by Eq. (14). Equation (19) is consis- 
tent with our qualitative considerations. It is seen from it 
that at dwr,gT the dependence T(J)  represents the sum of 
the relatively rapidly decreasing term J - ' I 2  and the relative- 
ly slowly decreasing part ln-'J.4' Apparently the first part 
was measured in Refs. 1-4, while the slowly changing part 
played the role of the background. For a comparison of this 
theory with experiment, it would be interesting to measure 
the absolute value of the absorption coefficient. 

We shall now discuss briefly the contribution to the ab- 
sorption from the "slow" TLS with AogAo2 and from the 
"'fast" with (A,)A,,). For rapid TLS, A (E )) 1 for all E; this 
means that all the relaxation processes with these TLS take 
place in the thermal layer. Outside the thermal layer (E > T), 
they are all in the ground state, since they rapidly discard the 
excitation, reaching the boundary layer region E z  T. The 
energy SE which the fast TLS deliver to the electron system 
within a single period is the same in order of magnitude as 
the increase in the energy of the TLS within the time between 
two successive relaxation acts, i.e., d w ~ .  This quantity 
reaches its greatest value in the thermal layer at E z T .  
Therefore, 

GE=doa (A,, T) =doaoT2/Ao2=T ( A o ~ / A o ) 2 .  (20) 
The power absorbed per unit volume by the fast TLS is of the 
order of NdwSE and correspondingly, the contribution 
from them to the absorption coefficient turns out to be (A,/ 
A,,), times smaller than the value ofthe first term in Eq. (19). 

The slow TLS can be divided into two groups: with 
Ao<Aol and with Ao>Ao2 (but Ao<Ao2). The first group 
possesses such small tunnel transmissivity that it is excited 
in the thermal layer only with the small probability A,,, g 1. 
Becoming excited, it remains excited over the duration of 
several periods. The greatest probability A,,, of discarding 
the excitation is achieved at the instant of time close to to in 
which EzA,. However, the power absorbed by such TLS is 
determined by the very rare acts of de-excitation in the su- 
perthermal region (E > T )  with the probability A,, g 1, when 
a large energy of the order of d is transferred to the electron 
system. The power absorbed by such TLS per unit volume is 
determined by the expression 

NododAm,n~Nodod ( AoIAoz) ' .  (21) 

The same result turns out to be valid also for slow TLS with 
A, > A ,,. Although they relax rapidly in the thermal region, 
they give little energy to the electrons in this region. The 
absorption is determined by the relatively rare de-excitation 
processes, which take place over several periods in the su- 
perthermal layer with transfer of energy of the order of d. 
Thus, the contribution from the slow TLS to the absorbed 
power is determined by Eq. (21). The absorption coefficient 
here turns out to be (Ao2/Ao) times smaller than the second 
term in Eq. (19). 

We now see that the qualitative picture of the absorp- 
tion in the low-frequency region is much more complicated 
than that in the high-frequency region. This is due, in final 
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analysis, to the already mentioned protraction of the relaxa- 
tion, the reason for which being that the relaxation time in 
metallic glasses increases with increase in the energy E (at a 
fixed tunnel transmissivity A,). 

We not discuss briefly, from the point of view of the 
theory developed in the present work, the results of the ex- 
periments of Ref. 4, where two steps were observed in the 
amplitude dependence of the ultrasonic absorption coeffi- 
cient. The first step is connected with the nonlinear reso- 
nance absorption. At first glance, resonance absorption 
should not be observed in the investigated situation, since in 
resonance absorption those TLS with E = fiw are important, 
and the condition that is satisfied here is 0~ , (1 .  But, as we 
have seen, the time r0 is the minimum relaxation time of the 
TLS with energies less than T. Therefore there are TLS with 
larger values of T (having a small transmissivity A,). More- 
over, as a consequence of the broad distribution of the TLS 
over A,, the concentration of such systems is of the same 
order (with logarithmic accuracy) as the concentration of 
systems with TZT,  Therefore, there are always systems 
available to take part in the nonlinear resonance absorption. 
These are systems for which wr(A,,tiw))l, i.e., A, 
gfiw(w~,)'/~gfiw. In other words, the contribution to the 
resonance absorption is made by a strongly asymetric dou- 
ble-well potential in contrast with what happens in dielectric 
glasses, where, as a rule, the condition wr,) 1 is realized. 

In addition, a plateau is observed on the plot o f r  (J ), and 
after that, a new falloff. We shall assume that this falloff is 
due to the nonlinear relaxation absorption considered above. 
Unfortunately, there remains an open question as to how to 
interpret the results in accord with (19), since the absolute 
sound intensities were not given in Refs. 1-4 and the "back- 
ground" part of the absorption was not measured. More- 
over, Eq. (19) has an asymptotic character; it is valid at d) T, 
dwrO4T. The first inequality here is satisfied without great 
margin. 

The critical intensity J,, , beginning with which a signif- 
icant decrease in the relaxation absorption coefficient takes 
place, is determined from the condition d =: T. We then have 

It is thus proportional to the square of the temperature, 
which agrees with the results of experiment.'v3 Moreover, it 
follows from (22) that, at a given intensity, the nonlinear 
effects should be more clearly expressed for transverse sound 
than for longitudinal, since in the latter the critical intensity 
is (v, /v, )3 times greater. This is in agreement with the results 
of Ref. 1. 

We note that while the nonlinear relaxation absorption 
has been observed in metallic glasses, the corresponding 
nonlinearity has not been seen in dielectric glasses, so far as 
we know.' It is possible that the point is that the coefficients 
of proportionality in the amplitude-dependent parts of the 
absorption are different: in metallic glasses, at wrirn'< 1, the 
coefficient isAo, where A is some constant, and in dielectrics 
at wrid)) 1 in order of magnitude, it is A /rid', where r f i i s  the 
analog of T,, in dielectric glass. Thus, the order of the ratio of 
the corresponding coefficients is wrhd)) 1. 

To conclude this section, we shall make a few numerical 
estimates. Assuming y z 2  eV, p =: 10 g/cm2 and v z 2  X lo5 
cm/s, weobtaind = ( F J ~ V ~ ) ' / ~ = :  3.10-" [ J ( W / C ~ ~ ) ] ' / ~  erg. 
Thus, at J=: 10 W/cm2, the quantity d can rach 10-l4 erg 
and at TzO. 1 K, the ratio of d /T=: 10. A typical value of 7, 

at Tz0 .3  K amounts to lop9 s in metallic glasses. There- 
fore, the quantity wr, can, in experiment, be both less than 
and greater than unity. 

It must be noted that Arnold, Doussineau, and Levelut, 
in their paper,17 with the aim of explaining the experiments 
of Refs. 1 4 ,  also took the point of view that the sound relax- 
ation absorption in amorphous metals can fall off with in- 
crease in the intensity. From their theory, an estimate for J,, 
is obtained that agrees with ours [Eq. (22)]. 

However, a number of results of our theory differ from 
the conclusions of Ref. 17. We shall consider the most im- 
portant of these: 1) the dependence on the intensity of the 
parameter wr,(T)d/T, which determines the boundary 
between the low- and the high-frequency nonlinear absorp- 
tions, and 2) the phenomenon, predicted by our theory, of 
protraction of the relaxation, which makes a contribution to 
the coefficient of nonlinear absorption that is inversely pro- 
portional to ln[d /TorO(T)]. 

The reason for this difference lies in the different char- 
acter of the approximations used in our research and in Ref. 
17. In our opinion, under the condition of satisfaction of the 
inequality (3), it is necessary, for the calculation of the non- 
equilibrium distribution function of the TLS, to use the adia- 
batic approximation, while the resonance approximation is 
applicable upon satisfaction of opposite inequalities. Since 
the basic contribution is made by TLS with E z  T in the ex- 
periments of Refs. 1 4 ,  the conditions (3) were satisfied. 

It should be kept in mind that attempts to calculate the 
contribution of direct transitions with the absorption of a 
sound quantum in the interaction of the TLS with the sound 
wave under the conditions or,, ( T ) g  1 run into serious diffi- 
culties, as is clear from the work of Maleev." These are con- 
nected with the fact that those TLS with E<fir;d(T) are 
important in the expression for the corresponding contribu- 
tion to the absorption, and their interaction with the elec- 
trons cannot be described by perturbation theory. 

3. NONLINEAR ABSORPTION. QUANTITATIVE 
CONSIDERATION 

For quantitative analysis, it is convenient to introduce 
the following dimensionless variables: 

E=A/d, q=A0/2T, w=d/2T, E = E / ~ T ,  x=ot, 

v (x) =vo cth E (x) /E  (x), vo=q2/o~o. 
(23) 

In these variables, 

E (x) =[w2(g+c0s x)Z+q2]'it, 

and the power absorbed per unit volume is 

Here (wT/2n-)q({,~) is the power absorbed by a single TLS 
with the parameters {, 77, i.e., p(A,A,)-see Eq. (7). The 
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expression for q ( 6 , ~ )  is obtained after substitution of the peri- 
odic solution of Eq. (4) in Eqs. (2). We shall use two equiva- 
lent expressions for q, obtained one after the other by inte- 
gration by parts: 

Y 

exp(-  S v ( 5 - 2 )  dz) 
q = ~ k ~ d y  E ' ( x )  e' ( x -  y )  o 

o o ch2e (5-y)  I-exp(-2nv> ' 
(26) 

Zn zn 
cth e ( x )  

X J dx  J dY ---- exp {-I v (x-2)  d z ) ]  . (27) 
0 0 E (x-Y)  0 

where ~'(x)=d&/dx and the angle brackets denote averaging 
over the period. 

It can be seen from (26) and (27) that the principal con- 
tribution is made by TLS for which {< 1, 7 5 1; we shall 
carry out all the estimates only for such systems. In the 
quantity 

at { < 1 the principal contribution is made by the neighbor- 
hood of the points + no = + arcos( - { ). The estimate of 
this contribution is 

It is convenient to represent this expression in the form 

where 
~ ~ ~ = w o T o = ~ ~ ~ / T  

It is seen that at w w ~ ~ )  1, (the high-frequency case) for all 
characteristic 7 we can assume that (27744 1. Using (27), we 
then obtain the following equation for the power absorbed 
per unit volume: 

P=c, (NodT/zo)  , (31) 

where 

The coefficient c ,  --, 1 and can be determined by numerical 
integration. Equation (3 1) has a clear physical meaning. As 
we have already ndted in Sec. 2, in the case d w ~ ~ , T ,  the 
processes of relaxation of the distribution function f rarely 
takes place: no more than once during several periods (the 
number of which is of the order of dw~,/T) .  This menas that 
the distribution function f differs little from its mean value 
( f )  over the period, which can be determined by averaging 
the kinetic equation (4) over the period: 

( f > ( ' C i > = ( f 0 / ' T > .  (32) 

The power absorbed by a single TLS, p(A,A,), can be deter- 
mined from (2) (in this expression, it is convenient first to 

carry out integration by parts). With account of the explicit 
forms of fo and T [(4),(5)], we have 

(33) 
This result, after substitution in (7), leads to (31). The esti- 
mate (1 8) for the absorption coefficient follows directly from 
(31). 

Analysis of the case d w ~ ~ . g T i s  carried out conveniently 
on the basis of Eq. (27). Making use of the identity 

where x(x)=Y~/E(x) are functions identical with v(x) outside 
the region where E 5 1, we can reduce (27) to the form 

9 (L q) =qi+q2+q37 (35) 
q1=2nvo exp (-2nx>, (364 

To avoid any misunderstanding, we emphasize that the rep- 
resentation of the quantity q in the form of a sum of three 
terms has no relation to the corresponding contributions 
from fast, intermediate and slow TLS. 

The estimated order of magnitude of (277%) is T'/WWT, 

[see (38)l. Therefore at 

q>ilz= ( w o t O )  ' " sAoz /T  

the quantity q, falls off rapidly with increase in 7. This term 
corresponds to the principal part of the contribution from 
the intermediate TLS. As a result, we obtain the following 
contribution to the power absorbed per unit volume: 

Here we have the estimate 

(the factor 2 is connected with the presence of two points of 
minimum E ) .  Therefore, 

The asymptote of the integral over z at ln(w/w~,)) 1 is 

Since the logarithm depends weakly on its argument, a good 
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approximation is the expression 

It leads results in the second term in Eq. (19). We note that 
the corresponding contribution is determined by the entire 
period of the wave and not by the small vicinities of the in- 
stants to. 

The term q, is negative and falls off rapidly with in- 
crease in 7 at 7 > 7 ]. Taking it into account that v1 (v2 in the 
low-frequency case, and using (38), we arrive at the following 
estimate for the contribution of this term: 

Numerically, this contribution is obviously very small in 
comparison with the contribution of (40) and the contribu- 
tion from q,, which we shall consider below, since we have 
actually required the statisfaction of the condition 
v2 = ( W W T ~ ) ~ ' ~ ~  1, and the fourth power of a small quantity 
enters into the estimate (41). Therefore, we have neglected 
this term in Eq. (19). 

The value of the term q, in (35) is determined by the 
neighborhoods of the points x,. At v1(7, this term is small 
in comparison with the considered quantity relative to the 
parameter ~ - ' ( v / 7 , ) ~  (the factor w-' is connected with the 
fact that the integration in this expression is taken over the 
neighborhoods of the points x of width w- I ) .  Therefore, the 
basic contribution is made by the region 7 k 77, and at the 
same time both q, and q, are determined by the region 7 5 7,. 
For the determination of the dependence of the contribution 
of q, on the amplitude d, it is convenient to make use of Eq. 
(26) for the total absorbed power. Setting 

jv(x-r)di=yv(x), exp(-hv)=O 
0 

in this expression, and cutting off the integration at the lower 
limit 7, we obtain Eq. (19) of Sec. 2. 

4. KINETIC EQUATION AND THE DERIVATION OF THE 
EXPRESSION FOR THE ABSORPTION COEFFICIENT 

We shall write the Hamiltonian of the TLS interacting 
with electrons and with the deformation field in the sound 
wave in the form 

where u, = up, cos wt is the deformation tensor in the 
sound field at the location of the TLS, u:k is the amplitude of 
the deformation, w is the frequency of the sound wave, Vao is 
the diagonal matrix element describing the change of A in 
the transition in the electron subsystem, and c,+ (c,) are the 
creation (annihilation) operators of the electron in the state 
a. Further, we shall not assume that the electron states are 
plane waves, keeping it in mind that such an assumption is 
not strictly valid in the amorphous metal. Assuming the va- 

lidity of the adiabatic approximation, the condition of which 
(3) was given above, we make a canonical transformation, 
diagonalizing the three terms in (42). As a result, we find 

where 

The quantity E depends on the time and is determined by Eq. 
(1). 

We have the following set of equations for the popula- 
tion density f s  of the upper level of the sth TLS and for the 
distribution function n, of the electrons over the states a: 

d f "  - 231 --- I ~~~-,'~"[-f"n~(l-np)+(l-f")n~(l-na) I 
a t  ti 

a6 

Here E, is the energy of the electron in the state a and T - ' 
is the integral of the electron-electron  collision^.^' We shall 
assume that the electron-electron collisions take place much 
more frequently than the collisions of electrons with the 
TLS. In this case, the electron distribution function n, can, 
with sufficient accuracy, be regarded as equal to the equilib- 
rium Fermi function n: . More precisely, 

where the nonequilibrium part Sn is small in comparison 
with the equilibrium part in the parameter I ' - TLS/I - e( 1. 

Taking into account what has been said above, we can 
substitute n, in the kinetic equations (45) and (46) in the 
collision integrals of electrons with TLS in place of n, , while 
the integral of the electron-electron collisions I' - 'is linear- 
ized with respect to Sn, . As a result Eq. (45) transforms into 
(40), while the relaxation time T is determined by the relation 

We shall carry out the summation over a andB in (38) in two 
stages. First, we sum over the states a andp that correspond 
to certain energies E, = E and E~ = E',  and then integrate 
over E and E' from zero to infinity. As a result, we obtain the 
following expression, with account of the S function 

where 

x ( e ,  c',) =2 I Va0I26 (e-e.)  8 ( e l - E D ) .  (50) 
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It is natural to assume the functionx (E,E') which character- 
izes the interaction of the electrons with the TLS as slowly 
varying function of&, E' at E -E' -p in the scale of energies T, 
E@. This allows us simply to replace it in the integral (49) 
by the constantx =X (p,p) .  Calculating the integral (49), we 
arrive at the formula (5). 

We can calculate the absorbed power if we take it into 
account that in final analysis it is transferred to the electron 
subs~stem.~'The rate of increase of the energy of the electron 
subsystem is equal to 

The, with account of (46) and after uncomplicated transfor- 
mations, we obtain 

With account of (4) and subsequent averaging over the peri- 
od of the sound wave, we come to the conclusion that this 
formula is equivalent to (2). 

In order to obtain (7) from (2), it is necessary to find the 
solution of Eq. (4), where T and fo depend on the time 
through the dependence E (t ), which is determined by (1). 
Substitution of the periodic solution (4) in Eq. (2) leads to the 
expressions (26) and (27). 

We shall now discuss the limits of applicability of the 
perturbation theory, on the use of which the calculation of 
the collision operator of the kinetic equation is based. In 
order that perturbation theory be applicable, satisfaction of 
the condition 

is necessary in every case. 
In the study ofnonlinear relaxation absorption, we have 

been interested in an energy E of the order of or greater than 
T. In this region, the quantity on the left side of the inequa- 
lity is a constant of the operator ofx, the experimental value 
of which varies for different metallic glasses in the range 
from several hundredths to several tenths of degrees. How- 
ever, the relaxation time of the TLS on phonons, which de- 
pends on E as15 

increases rapidly with increase in E. Therefore, at some val- 
ue E = El, the relaxation time of the TLS on phonons be- 
comes comparable with the relaxation time on electrons. 
The value of E is determined by the estimate 

where9 E, =: 10-20 K. Numerically, the value of E, amounts 
to several degrees. Since we have not taken into account the 
relaxation of the TLS on phonons, the obtained results are 
valid at dgE,. Upon violation of this inequality, it is general- 
ly necessary to consider (along with the electron mechanism) 
the phonon mechanism of absorption. 

5. CONCLUSION 

The results indicate that the nonlinear relaxation ab- 
sorption of sound (especially in the case of low frequencies) is 
very sensitive to the energy dependence of the relaxation of 
the TLS. Therefore, it seems to us that the experimental val- 
ue of the nonlinear absorption should allow us to obtain a 
whole series of data on the mechanism of TLS relaxation. An 
especially interesting picture should be observed in super- 
conducting glasses, where it is easy to create conditions in 
which the various relaxation processes compete with one an- 
other. Actually, the number of normal excitations in the su- 
perconducting state decreases exponentially with the tem- 
perature. The same is true for the reciprocal of the relaxation 
time of those TLS for which E < 2A0, (24, is the width of the 
superconducting gap). The relaxation time of the TLS with 
E > 2A, is much less and depends very weakly on the tem- 
perature, since such TLS can relax, separating the Cooper 
pair. Therefore, at T < 2A,, apeculiar situation is possible, in 
which the TLS, excited in the vicinity of to remains in an 
excited state until the time at which E becomes equal to the 
width of the superconducting gap, after which de-excitation 
takes place very rapidly. 

A second interesting aspect of the nonlinear absorption 
in superconducting glasses is that at sufficiently low tem- 
peratures, the relaxation time of the TLS on the quasiparti- 
cles becomes equal to the corresponding relaxation time on 
the phonons. Since these two times depend differently on E, 
a rather variegated picture arises of the behavior of the non- 
linear absorption, the study of which by experiment would 
be, it would seem, very interesting. However, a detailed con- 
sideration of the nonlinear absorption in amorphous super- 
conductors goes beyond the range of the present research. 

"It should be kept in mind that the very possibility of introducing the 
concept of a time-dependent level spacing E is a consequence of the 
adiabatic approximation. 

"This is the quantity that Black7 denotes by Po. 
"This corresponds to an assumption that the distribution functions of the 

random quantities A and In A ,  are constant.' 
4'It was this contribution which was not taken into account by us in Ref. 5. 
"Generally speaking, in the writing down and in the analysis of this inte- 

gral of the collisions, we must bear it in mind that in dirty metals, as 
Schmidt9 and Al'tshuler, AronovZO have shown, the expression for the 
opefator of the inelastic interelectron collisions must be modified in 
comparison with those for pure metals. 

6'This derivation is easily generalized to the case in which we must take the 
electron-phonon collisions into consideration. In that case, it would be 
necessary to consider also the transfer of energy to the phonons while the 
expression (2) would remain unchanged. 
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