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The behavior of a system with spontaneous current in a homogeneous magnetic field has been 
studied. The homogeneous magnetic field induces a current order parameter localized in the 
region of inhomogeneity of the spontaneous order parameter. A scheme for calculating the sus- 
ceptibility in the vicinity of the transition point is proposed that is based on the establishment of 
the balance of forces and makes it possible to take into account the dynamic effects in the magnetic 
field. For magnetics and ferroelectrics, the balance-of-forces scheme is equivalent to the conven- 
tional procedure of minimization of the free-energy functional., The magnetic susceptibility of the 
system is calculated below the point of transition to the current state. The susceptibility is of 
diamagnetic character, and its magnitude is determined by the square of the current correlation 
length A,. A distinctive feature of the current state is a specific coordinate dependence of the 
expression for current, ensuring a zero total moment of the current contour. A model in which the 
diamagnetic susceptibility can assume values close to that of an absolute diamagnetic is described. 
In conclusion, the behavior of the current state in a magnetic field at = 0 is discussed in terms of 
a microscopic scheme. 

1. INTRODUCTION 

In their behavior in a magnetic field, all substances can 
be divided into two groups: paramagnetics and diamagne- 
tics.' The paramagnetics include substances with suscepti- 
bility values covering a range of many orders of magnitude. 
The susceptibility of all known diamagnetics, however, var- 
ies over a fairly narrow range.2 In a class by themselves are 
superconductors, which are absolute diamagnetics, i.e., sub- 
stances that completely expel a magnetic field (Meissner ef- 
fect). Simultaneously with the Meissner effect, superconduc- 
tors have infinite conductivity. It is natural therefore to 
consider the possibility of the existence of low-conductivity 
substances with a high diamagnetism of a nonsuperconduct- 
ing character. 

The present work shows that the current state394 can be 
used as an example of such a highly diamagnetic state of a 
collective but not superconducting character. As has now 
become clear, the current state is more accurately referred to 
as the toroidal state (TS), since it is related to the ordering of 
local toroidal moments (Ref. 5). "The position held by the TS 
in the conventional classification of the states of a solid' is 
determined by the symmetry properties of the solid. 

We shall consider an isotropic case in which the macro- 
scopic properties of a solid can be described by means of a 
vector. Then there exist four vectors which realize irreduci- 
ble representations of a group formed by the operations of 
space and time inversion. There are the polar vector P, 
which is symmetric with respect to the time inversion, the 
polar vector T, which changes sign when time is inverted, the 
axial vector M, which has antisymmetry with respect to the 
time inversion, and the vector G symmetric with respect to 
both the space and time inversion. To each of the vectors one 
can set in correspondence a specific type of ordering in the 
s01id.~ Ferroelectric properties correspond to the vector P. 
When the system is described by vector M, the ordering is of 
a magnetic character. The symmetry of vector G coincides 

with that of the moment flux-density vectord M/dt. It can be 
shown that the appearance of vector G against a background 
of ferroelectric or magnetic ordering corresponds to an ori- 
entation-type phase transition, and the transverse suscepti- 
bility diverges at the transition point. If, however, the order- 
ing is characterized by vector T, the system possesses the 
magnetoelectric effect,ls5 and the vector T is then the anti- 
symmetric component of the magnetoelectric tensor. Toroi- 
dal magnetoelectrics form a subset of the aggregate of mag- 
netic-symmetry classes in which antiferromagnetism is 
possible. In the toroidal state, however, there is an additional 
lowering of symmetry relative to antiferromagnetics and is 
due to a violation of invariance to space inversion. Toroidal 
magnetoelectrics should also be distinguished from ferro- 
magnetics, where the violation of space and time symmetry 
takes place independently and is described by the vectors P 
and M. Both the spontaneous polarization P and the sponta- 
neous magnetization M are equal to zero in the toroidal 
state. 

Electric, magnetic, and toroidal moments generate 
three independent families of electromagnetic m~lt ipoles .~ 
The description of a system with specified distributions of 
electron density p(r) and current density j(r) in external elec- 
tric and magnetic fields is not complete unless all three types 
of multipoles are considered. The vector G, in contrast to the 
other three vectors, is generally not related to any particular 
type of electromagnetic ordering, but is a particular case of 
the tensor order parameter describing the field of the displa- 
cements in structural and orientational transitions. 

Ascher6 noted that the symmetry of vector T coincides 
with the symmetry of the current-density vector. It would 
seem that in the toroidal state, the existence of spontaneous 
currents of density 

j (R) -T (R) (1) 

is possible. In the case of an inhomogeneous order parameter 
T(R) such that (T(R)) = 0, Bloch's theorem for current (1) is 
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fulfilled. However, the existence of current of type (1) is for- 
bidden by the requirement of gauge invariance. Indeed, to 
the spontaneous current (1) there corresponds a contribution 
to the energy functional 6F = j.A a - A.T(R), where A is 
the vector potential. Then minimization of the functional 
with respect to order parameter T causes the appearance, in 
the induced order parameter and correspondingly in the en- 
ergy, of a gauge-noninvariant contribution proportional to 
the vector potential, and this is impossible. The erroneous 
conclusion reached in Ref. 6 concerning the possibility of the 
Meissner effect in TS is actually due to the choice of an incor- 
rect expression for the spontaneous current. The correct 
gauge-invariant expression for the density of spontaneous 
current in an inhomogeneous toroidal state, in an approxi- 
mation linear in T(R), is of the form7 

j ( R )  = ( e lm)  7 rot rot T  ( R ) ,  (2) 

where e is the electron charge, m is the electron mass, and y is 
a coefficient determined by the details of the microscopic 
model. 

An assessment of the conditions under which the toroi- 
dal state is realized requires a microscopic analysis. The mi- 
croscopic nature of the TS is due to the instability of a system 
with congruent proportions of the Fermi surface relative to 
electron-hole pairing.8 The new state is described by intro- 
ducing a certain self-consistent potential or order parameter 
A (R).This potential is the equivalent of crystal potential and 
it has the following distinguishing features: 

(1) possibility ofboth singlet and triplet spin structure of 
the potential; 

(2) leeway in the phase of the potential, corresponding 
to different phase shifts of the wave functions of the electrons 
and holes participating in the pairing. 

It was found that thanks to the presence of these degrees 
of freedom in the model, the latter successfully describes the 
most diverse states of the solid, i.e., orbital9 and spin1' ferro- 
magnetism, antiferrornagneti~m,~'~~' intrinsic and nonin- 
trinsic ferroelectricity,I2 as well as TS4 In the model of Ref. 
8, the role of vector T is played by the product P 1 , I d s  (R ), 
where PI, is the interband matrix element of the momentum 
(hybridization), and I d s  (R) is the singlet imaginary com- 
ponent of the potential. To the polarization P corresponds 
P12Red"R ), and to the magnetic moment corresponds 
Redr (R ) or L121md\ where L,, is the interband matrix ele- 
ment of the angular momentum, and to vector G corre- 
sponds I d t  or L12Red"R ). The main feature of the model 
is the fact that it admits of asymptotically exact solutions in 
the weak-interaction limit, when it is possible to indicate 
system parameters at which one or another of the indicated 
states will be realized. In another limiting case-that of the 
model of a semiconductor with a band gap a little smaller 
than the exciton binding energy ''-the smallness parameter 
is the density of the exciton Bose condensate. l3  The interac- 
tion in this case is strong but, as before, a multicomponent 
potential can be introduced. It should therefore be expected 
that the results obtained with the model involving weak 
binding and congruent portions of the Fermi surface are not 
unique and remain qualitatively in force for an intermediate 
value of the interaction in the presence of partial con- 

gruence. As the deviation from congruence increases, there 
is an increase in the critical value of the interelectron interac- 
tion, above which one of the indicated phase transitions or a 
series of them is possible. 

Depending on the ratio of the Coulomb electron-hole 
interaction constants, either a ferroelectric state (Red') or 
an antiferromagnetic state (Red') is realized in the limit of 
an arbitrarily weak interaction. The state with I d s ,  how- 
ever, can be realized, for example, at a sufficiently high con- 
centration of the charged impurity, to the scattering from 
which the ferroelectric14 (antiferromagnetic) state is more 
sensitive than the toroidal state. Other ways of realizing the 
toroidal states are also possible. l5 Most favorable to the ap- 
pearance of I d b r e  the regions of the domain walls of 
electron ferroelectrics.16 Suitable objects are direct-band 
narrow-gap semiconductors and semimetallic compounds1' 
(for which the extrema of the conduction and valence bands 
coincide in momentum space). The coincidence of the ex- 
trema of the bands may itself result from a phase transition, 
i.e., in the initial phase the congruent regions of the spectrum 
may be separated in momentum space. 

The central problem of TS theory is that of the response 
of the system to a magnetic field. Let us emphasize that we 
are dealing with the collective component of the response, 
caused by interelectron interaction, and not with the one- 
electron contribution to the response. The latter is primarily 
determined by the effective masses of electrons and holes, 
and also by the spin-orbit interaction.I8 The possibility of 
high diamagnetism of the TS was attributed in Ref. 19 to 
diamagnetic Larmor precession in a current contour in a 
magnetic field. However, the consideration of Larmor 
precession alone when determining the response is justified 
only in the case of "rigid" wave functions, as is the case in 
superconductors, and leads to the Meissner effect. In our 
case, such rigidity is absent, and the change in wave func- 
tions corresponds to the paramagnetic contribution and off- 
sets the London term in the response.20 In Ref. 20, the collec- 
tive component of the magnetic susceptibility above the 
transition point to the TS was calculated by minimizing the 
free-energy functional (TI .  In the approximation linear in 
the magnetic field B 

e F { T ) = F { T ) - j  d R -  i B  rot T, 
m 

where F ( T  J is the usual Landau functional in the absence of 
a field. In the functional (3) we omitted the term X f  B2 qua- 
dratic in the field. The contribution made by order param- 
eter T to the  coefficient^^ is due to the renormalization to T 
of the one-electron spectrum. It was shown in Ref. 20 that 
above the transition point, the procedure of minimization of 
the functional is equivalent to summing, in the expression 
for the current, the ladder diagrams responsible for exciton 
instability. The susceptibility x ' of the system is determined 
by the relation jq  = q2x ;A,, where A, l q  is different from 
zero only in the case of an inhomogeneous field 
(X  ' a q2,Bq a qA, ) and diverges in paramagnetic fashion at 
the point of transition to the TS. The order parameter deter- 
mined from the condition SWST = 0 is also induced only by 
an inhomogeneous field (Ti, d a qBq). 
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The purpose of the present work was to study the re- 
sponse of the system to a homogeneous magnetic field below 
the point of transition to the TS. Section 2 proposes a scheme 
for determining the ground state of the system in an external 
field, free from the necessity of integrating by parts in the 
minimization of the functional. The scheme is local in char- 
acter and based on the establishment of the balance of the 
forces in the system. For ordinary ferromagnetics and ferro- 
electrics, the scheme of establishment of the balance of 
forces is equivalent to the procedure of minimization of the 
functional and gives a Curie-Weiss type law for susceptibil- 
ity. 

The scheme proposed is used in Sec. 3 to describe the RS 
in a magnetic field near the transition point in various mod- 
els of order-parameter inhomogeneity: in the model of a sin- 
gle domain wall, in a Fuld-Ferrel-Larkin-Ovchinnikov type 
model, and in the model ofbuilt-in inhomogeneity, when the 
system is described by Landau's functional with coordinate- 
dependent coefficients. The induced order parameter proves 
to be localized in the region with spontaneous current. The 
susceptibility of the TS is diamagnetic in character, and its 
magnitude is determined by the new characteristic scale of 
the theory-the effective radius of current correlations A,,  
so that 

~ ' = x L  (h~/ra) ' 9  (4) 

wherex, is the Landau diamagnetic susceptibility, and r, is 
a distance of interatomic order of magnitude (usually 
A, Bra ). In a system with built-in inhomogeneity, which may 
be due to the presence of domain walls, to an inhomogeneous 
distribution of the impurity, etc., the magnitude of the sus- 
ceptibility in the vicinity of the point of transition to the TS 
can reach values close to the susceptibility of an absolute 
diamagnetic, reaching the value (4) as the temperature is 
lowered. 

In Sec. 4, to describe the TS in a magnetic field at T = 0, 
a microscopic calculation scheme was developed for the case 
of a domain-wall type inhomogeneity. The results obtained 
are consistent with the results of the phenomenological cal- 
culation in Sec. 3. 

2. THE BALANCE-OF-FORCES SCHEME 

The procedure of minimization of the functional, used 
in Ref. 20 for calculating the magnetic susceptibility of the 
TS, describes the reaction of the TS only to an inhomogen- 
eous magnetic field with curl B #O. Actually, this procedure 
is a static one and does not consider the dynamic effects 
associated with the behavior of the circuit and of the current 
lines as a whole a magnetic field. Accordingly, the preces- 
sion in the circuit and the associated diamagnetic compo- 
nent of the response are not considered in the classical sense. 
From a formal standpoint, the absence of a response to a 
homogeneous field is due to the integration by parts of the 
gradient terms during the minimization of the functional. In 
this approach the surface contribution, which contains in- 
formation on the response of the system to an external homo- 
geneous field, is discarded. The fact that the interaction of 
the TS with a homogeneous field is determined precisely by 
the surface contribution follows directly from the expression 

for the term expressing the interaction of the current order 
parameter with the field in the free-energy functional (3). A 
constant B this term is a total derivative and reduces to a 
surface integral. 

This section presents a scheme for determining the 
ground state of a system describes by Landau's functional, 
based on the establishment of the balance of forces. The 
scheme permits a local and explicit consideration of the 
boundary conditions on the surface. The basic idea of the 
proposed approach is the description of the interaction of the 
system with the field, not in energy terms, as is usually the 
case,' but in terms of the force characteristics. The switch- 
ing-on of the field gives rise to an external force. The equilib- 
rium value of the order parameter is determined from the 
condition of balance of the external and internal forces. The 
latter result from deformation of the system, i.e., from the 
appearance of an induced component in the order param- 
eter. Both the external and internal forces stem only from the 
derivatives with respect to the coordinate of the order pa- 
rameter. The approach developed is therefore aimed at es- 
sentially inhomogeneous systems. 

We shall proceed from the expression for free energy 
density 3 ( R )  in the absence of a field and confine the discus- 
sion to the dependence 3 ( R )  only on the first derivatives 
with respect to the coordinate of the order parameter: 
3 ( R )  = F [ T  (R),VT (R)]. Extension to the case ofhigher de- 
rivatives is not difficult. To describe the reaction to an exter- 
nal force, we must exclude from the free energy 7 ( R )  the 
energy ofinternal stresses fin,. These stresses are also present 
in the absence of an external field and are due to the spatial 
inhomogeneity of free energy density 

Internal stresses f,,, can be caused by the imposition of spe- 
cific boundary conditions as well as by the characteristics of 
collective interactions in the system, as for example in the 
formation of the inhomogeneous state of superconductors in 
the internal magnetizing field.21 An important type of so- 
called built-in inhomogeneities will be examined in the next 
section. 

In the ground state, the function F ( R )  in Eq. (5) mini- 
mizes the free-energy functional F ( T ] = J F ( R ) d  R. This 
means that the free-energy density satisfied the Euler equa- 
tion 

F d  d F  
----= 
dT dx BVT 0, 

which is obtained by minimizing the functional F ( T ] (here 
and below, for the sake of simplicity, we shall consider the 
dependence of F ( R )  on a single coordinate). 

Having determined the density of internal stresses fint 
in Eq. (5) by means of the Euler equation (6), we find that in a 
state of equilibrium 

U (x) =const. (7) 

The function U ( x )  is related to the free energy density as 
follows: 

U = F -  VT (8'/8VT). (8) 

The extension of Eq. (8) to the case of dependence of 7 on 
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V2T is as follows: 
8.9- a~ 

U=9-VT--  V2T-  
d 39- 

BVT BV2T f V T d T a .  (8') 
Equality (7) signifies that the free energy density of the 

system minus the energy of inhomogeneity retains a con- 
stant value. Equation (8) resembles formulas that relate var- 
ious thermodynamic potentials to one another and accom- 
plish the transition from some independent variables to 
others. The function U, however, is not some thermodynam- 
ic potential, for when the external medium specifying the 
boundary conditions is neglected U does not have a mini- 
mum in the state of equilibrium. Equation (7) makes it possi- 
ble to consider the boundary conditions in local form at any 
point of the system, since the boundary conditions deter- 
mine the value of the constant in Eq. (7). When the determin- 
ation of the constant in Eq. (7) is difficult, for example, for a 
periodic solution of T(x), use may be made of an alternative 
form of the equilibrium equation (7) 

v U (x) =o. (7') 

The introduction of an external field signifies the appearance 
in Eq. (7') of a force exerted by the field on the system 

VU(x) =-fert. (9) 

In this case U (x) in Eq. (9), in contrast to Eq. (7'), is a function 
of an order parameter already dependent on the field. The 
interaction of the order parameter with the field is described 
by the right side of Eq. (9). Equation (9) is the fundamental 
relationship of the balance-of-forces scheme. 

The equilibrium state of a system in a field is usually 
determined from the Euler equation (6), written for the free 
energy density in a field p ( x ) .  Thus, to describe a system in 
an external field, there are two possibilities: the Euler equa- 
tion and the equilibrium equation. We shall discuss the areas 
of their applicability. Depending on the form of the term for 
the interaction of the order parameter with the field in the 
expression for the free energy density in a field P ( x ) ,  two 
cases are possible. We shall discuss the areas of their applica- 
bility. Depending on the form of the term for the interaction 
of the order parameter with the field in the expression for the 
free energy density in a field y ( x ) ,  two cases are possible. 

(1) The interaction of order parameter A with field h is 
described by a term simply proportional to the order param- 
eter, not to its derivatives: 

# = F - h ~ .  

This case corresponds to ordinary ferroelectrics and ferro- 
magnetics with interaction terms P.E (where P is the polar- 
ization and E is the electric field) and M-B, respectively. For 
a ferromagnetic, the Lorentz force 

fnr=[jxBl, 

acting on internal currents j = curl M, appears on the right 
side of Eq. (9). The equilibrium equation in this case reduces 
to the form 

The first factor in the vector product (10) is the left side of the 
Euler equation (61, written for the free energy density in an 

external field 9. Hence for a ferromagnetic, the Euler equa- 
tion and equilibrium Eq. (9) are equivalent. An analogous 
statement is also easily proven for ferroelectrics. In the case 
of ferroelectrics, f,,, should be taken to mean the force exert- 
ed by the field on the internal charges: 

f,,,=Epint, pint=-div P. 

(2) The interaction of the order parameter with the field 
is determined by the derivatives of the order parameter with 
respect to the coordinate. The linear response to a homogen- 
eous field in this case is described by an equilibrium equa- 
tion: TS (3)  is precisely an example of a system with a field 
dependence of the indicated type. It should be emphasized 
that in the absence of a field, the structure of the TS (and of 
any other system) is described by the Euler equation (6), 
while the quantity U(8) is simply the first integral of the 
Euler equation. The problem of correct description of the 
boundary conditions and the associated necessity of switch- 
ing from the Euler equation to the equilibrium equation arise 
only when the external field is turned out. Let us note that 
the equilibrium equation actually represents the results of 
averaging of Hamilton's equation 

h 

over the ground state of the Hamiltonian H of the system 
(here p is the momentum operator) if the quantum-mechani- 
cal analog of the Lorentz equation is used to write the right 
side of Eq. (1 1). 

We write the equilibrium equation for the TS: 
dU e -=- p [B rot rot TI. 
dR m 

If Eq. (12) is written in Fourier components, the left side will 
be a vector parallel to q. Expanding the vector product for 
the right side of Eq. (12), we obtain 

A term perpendicular to q then appears on the right side of 
Eq. (12). The apparent contradiction is resolved by the fact 
that in the approximation considered (with a single anisotro- 
py axis parallel to T), the system will be restructured by an 
arbitrarily weak field to a state with qlB, and the second 
term in Eq. ( 14) will become zero. As indicated in Ref. 16, the 
condition of free-energy minimum specifies the direction 
qlT. In the plane normal to T, however, degeneracy along 
the q direction takes place. A magnetic field lifts this degen- 
eracy. As the transition point is approached from above in 
the TS in the presence of a magnetic field, an order param- 
eter is immediately realized such that qlB. The orientation 
of the current contours becomes perpendicular to the mag- 
netic field, and the Lorentz force turns our automatically to 
be parallel to q. 

On the left side of Eq. (12) is a force arising from the 
displacement of internal coordinates on SR in the direction 
of the force, i.e., in the direction of performance of work on 
the body. A question may arise as to the physical basis of 
equating this force, which does work, to the Lorentz force, 
which does none. Indeed, the Lorentz force does no work. 
However, in a conductor (or, as in our case, in a volume 
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element) moving under action of the Lorentz force, there is 
induced an electric field E = v.B, where v = S R/Gt is the 
speed of the motion, and this field in a time St performs work 
SA = E-jSt = - Ij.B].SR (see for example Ref. 1). This ex- 
plains why Eq. (12), which no longer includes time in explicit 
form, contains the dynamic effects mentioned at the begin- 
ning of this section. The system with current will be restruc- 
tured until the Lorentz force is balanced by the internal 
stresses due to the spatial changes of the order parameter. 
Thus the equilibrium equation (12) describes the situations 
resulting from the dynamic effect, i.e., a restructuring of the 
current contours-a situation which, as follows from the 
discussion below and from the analysis given in the introduc- 
tion, amounts to the appearance of diamagnetic surface cur- 
rent in the system. 

3. INDUCED ORDER PARAMETER AND MAGNETIC 
SUSCEPTIBILITY NEAR THE TEMPERATURE OF 
TRANSITION TO THE TOROIDAL CURRENT STATE 

We shall use the standard definition of magnetic sus- 
ceptibility 

To determine the susceptibilityx ' (14), the value of the order 
parameter found from the equilibrium equation should be 
substituted in the expression for the free-energy density of a 
system in a magnetic field. 

We write the expression for the free energy density of 
the system: 

F(T)=aIT12+pITI '+yJ  VTI2 ,  (1 5) 

where a = a ( F  - Fc ) and a ,  p, y > 0. 

- Above the temperature of transition to the TS with 
T >  Fc, the spontaneous order parameter is equal to zero 
[To(x)=O]. The Lorentz force acting on the induced current 
appears on the right side of the equilibrium equation (12). It 
can be shown that for a homogeneous magnetic field, the 
equilibrium equation with free energy density (15) has no 
nontrivial solutions when F >  Fc. For an inhomogeneous 
field, however, the equilibrium equation gives for the order 
parameter [and hence, for the susceptibility (14)] a value 
equal to the result obtained by another method in Ref. 20. 

Let us turn to the case F <  F, and consider the situation 
in which the inhomogeneity of the spontaneous order pa- 
rameter [and the appearance of spontaneous current (2)] is 
related to the presence of antisymmetric boundary condi- 
tions To( - oo ) = - To( ccr ). The solution of Euler equations 
which satisfies these boundary conditions is 

To (x) =To th ( X / ~ ' ~ E ~ ) ,  ET2=-y/a, To2=-a/2p. (16) 

The physical meaning of the inhomogeneity of Eqs. (16) is 
rather obvious. It is a domain wall separating regions of op- 
posite signs of the order parameter. In the state described by 
the order parameter (16), the spontaneous current (2) and the 
Lorentz force acting on it (12) are zero at infinity. In the case 
of a homogeneous magnetic field, this makes it possible im- 
mediately to obtain the first integral of the equilibrium equa- 
tion: 

Hence we find the implicitly given expression for the order 
parameter in a magnetic field: 

As will be shown presently, the susceptibility is deter- 
mined by the contribution T,(x), linear in the field, to the 
order parameter T (x): 

T ( x )  =To ( x )  +Ti ( x )  +o ( B )  . (19) 
Since at infinity the order parameter (19) reaches its unper- 
turbed value (16), we have 

Ti ( + m )  =O. (20) 

From Eq. (18) follows the antisymmetry of the total order 
parameter T(x) with respect to the coordinate. Hence 

From Eq. (18) we establish the asymptotics at infinity and at 
zero: 

Ti  ( x - t o )  - - xB, maxTl ( r>Eo)  - ey B. (22) 
m ( ya) '" 

We thus find that even in the linear approximation a 
homogeneous magnetic field induces an order parameter 
that is localized in the inhomogeneous region of the sponta- 
neous order parameter (i.e., in the region with spontaneous 
current) and vanishes at its center. This fact makes it possible 
to conclude that the susceptibility of the TS is of a diamagne- 
tic character. Let us note that the term of interaction of the 
order parameter with the field in the functional 3 ( T ) ,  hav- 
ing the form B curl T, becomes zero at the center when the 
integration involves any solution satisfying the conditions 
(20) and (21). Therefore, what actually appears in Eq. (14) is 
F ( T J , not ( T)  . Since the minimum of the functional F ( T )  
under the given boundary conditions corresponds to the so- 
lution To(x) (16), any deviation from To(x), for example, de- 
pending on the magnetic field (19), leads to an increase in free 
energy, i.e., the response of the system to the magnetic field 
is diamagnetic. 

To determine the magnitude of the susceptibility, we 
must separate in F ( T )  the second-order terms in T,(x) and 
first-order terms in T,(x), where T,(x) = O(B 2) .  However, by 
virtue of the condition of the free energy minimum 

6F/6T) T = T , p , = O  

the term containing T,(x) becomes zero, and the susceptibil- 
ity is determined exclusively by the contribution to the order 
parameter linear in the field. We obtain the following esti- 
mate for its magnitude from Eqs. (14) and (22): 

x'=cS ( m 8 / m )  1 Pi2 I 'tO2xL. (23) 

In deriving Eq. (23), we used the expressions for the 
coefficients of the functional in terms of the microscopic 
characteristics of the system of Ref. 16 in the model of Ref. 8. 
In particular, we took account of the fact that y -f i, where 
f o  is the correlation length of the order parameter. The 
meaning of the other symbols in Eq. (23) is as follows: c is the 
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concentration of the domain walls in the sample, m is the 
mass of the free electron, m* is the effective mass, S- 1 is a 
form factor describing the details of the coordinate depen- 
dence of the induced order parameter, and xL = - e2kF/ 
12?m is the Landau diamagnetic susceptibility of the non- 
interacting electron gas. Assuming m* - m and omitting an 
insignificant numerical multiplier, we rewrite Eq. (23)  in the 
form 

X'=XL (toIra) I Piz/k~ 1 ', (24)  

where r, is a characteristic length of the order of atomic size. 
Thus as follows from Eq. (24) ,  the magnitude of the suscepti- 
bility is determined by the square of the correlation length of 
the order parameter. 

- In the limit of small hybridizations we have Jo = v,/ 
T, . However, the real values of hybridization in semimetals 
are large, of the order of the Fermi energy: /PI,  I - k,. Hybri- 
dization results in a decrease of the fraction of the Fermi 
surface participating in the formation of the order param- 
eter, and hence, in a decrease of the correlation length. In the 
limit of large hybridizations, it can be shown that 

~ o Z " ~ F Z m /  1 Pi2  1 kpTe P 5 )  
We then obtain for the susceptibility from (24)  and (25)  in 
order of magnitude 

x'% ( I Pi2 1 kFlmT,)~,. 

It should be emphasized that the abnormally high value 
of diamagnetic susceptibility is not due to the large radius of 
the current loops, but rather, to the large radius of the elec- 
tron current correlations. According to the well-known 
Langevin formula, the diamagnetic susceptibility of an indi- 
vidual electron is proportional to the area of the orbit which 
it describes. However, the number of orbits per unit area is 
inversely proportional to the area of the orbits. Therefore, a 
large orbit radius alone cannot ensure a large value of the 
susceptibility in terms of a unit volume. When the orbits are 
mechanically imbedded one into the other, the self-induc- 
tion effect also supresses the increase in diamagnetism. We 
introduce into Eq. (24)  a new characteristic scale of current 
correlations AT = Jo I PI, l/kF. We then obtain Eq. ( 4 )  for the 
susceptibility. The mechanism, taking place in the TS, of 
interelectronic correlations in a magnetic field can be inter- 
preted as a mechanism of effective imbedding of orbits of 
radius A T ,  whereby the correlations suppress the self-induc- 
tion effect. 

In order to analyze in more detail the dependence of the 
magnitude of the susceptibility on the parameters of the sys- 
tem, we shall consider a model in which the TS is not local- 
ized in the region of the domain wall (16), but occupies right 
away the entire volume of the sample. The inhomogeneous 
state in this case is related not to the boundary conditions, 
but to the change in the sign of the coefficient y of the gradi- 
ent term in the functional. The point on the phase diagram at 
which y becomes zero and the line of transition to the inho- 
mogeneous state begins is called the Lifshitz point. To deter- 
mine the minimum of the functional, in the vicinity of the 
Lifshitz point, the free energy density should be supplement- 
ed with a term containing higher derivatives of the order 
parameter: 

F, (R)  =F (R) +G I V2T I '. (26)  

Here 3 ( R )  is given in Eq. (1 5), and S > 0. The corresponding 
term with higher derivatives 

j'= (elm) 6 rot rot gradz T (R) (26') 

should also be added to the expression for current ( 2 )  and for 
the Lorentz force (12) .  

Like the model ( l 5 ) ,  the model (26)  permits an exact 
solution for the order parameter, namely, a solution of the 
form 

To (R) =To exp (iq,R) . 
Let 

y =g (T-TCq) , with TCq>Tc, P O .  

Then at the temperature T r  = PC + ?/*a a transition 
takes place to an inhomogeneous state characterized by the 
wave vector and the modulus of order parameter To 

1,2=--y/26, To2=-a*/2b, a*=a (T-T,') . (27)  

We find from the equilibrium equation that the homogen- 
eous field induces a homogeneous order parameter 

where n, is the unit vector of the q direction. 
Substituting the value of the induced order parameter in 

the formula for the susceptibility, we obtain 

At the transition point 

Expressing qf in Eq. (29)  in terms of the coefficients of 
the functional (26), we obtain for x ' a formula that is the 
same as Eq. (24)  to within a numerical factor of the order of 
unity and c= 1 .  

However, analysis of the general equation for the re- 
sponse (29)  shows what changes in the initial model can lead 
to an increase in diamagnetism. In the simplest scheme (27) ,  
the order parameter wave vector q, determines the phase- 
transition temperature and is uniquely related to the value of 
the denominator (30)  in expression (29) .  As a result, the sin- 
gularity of the denominator is substantially suppressed and 
the correlation radius lo at T = 0 enters into the answer (24) .  
In the general case, such a relationship is not mandatory. 
Constructed below is a model in which the wave vector of the 
order parameter can serve as an arbitrarily variable param- 
eter independent of the transition temperature. 

We shall consider a system with so-called built-in in- 
homogeneity. By built-in inhomogeneity is meant a macro- 
scopic modulation of internal microscopic parameters, i.e., 
interaction constants, forbidden gap width, etc. A built-in 
inhomogeneity can appear as a result of the technology used 
to fabricate the sample. The domain walls of ferroelectrics 
are the most likely  example^.^^'^ If the phase transition in 
such a system is described phenomenologically, the free en- 
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ergy functional can as before have the form (47). However, 
all the coefficients now become functions of the coordinates 
a = a(R), p= P (R), etc. We separate in the coefficients the 
constant and oscillating parts: 

a (R)  =ao+'a', p (R) =po+p', . . . , 
where 

According to the physical meaning of the problem, a' 
andB ' are smooth funcitons. Let us note that a phenomeno- 
logical formulation similar to (31) was used in Ref. 22 to 
describe the pinning of vortices in type I1 superconductors. 
The phase transition in such an inhomogeneous system is 
described in the usual manner by the functional (26) and Eqs. 
(27), the only difference being that it is necessary to consider 
right away the inhomogeneity of the order parmeter, even if 
the transition takes place to the left of the Lifshitz point, i.e., 
y(R ) > 0. It is convenient to consider the oscillating parts as 
small additions: 

af/'u0<l, p7/p0<1, (32) 

which makes it possible to linearize all the equations. The 
first of these conditions makes it possible to neglect the local 
renormalization of the temperature Fc because of a' and to 
assume the temperature to be constant for the entire system. 
The discussion in this case will be correct when 
JT  - Tc J > max al/a,  where Fc is determined from the con- 
dition ao(Tc ) = 0. We isolate a small oscillating part in the 
order parameter as well: 

T(R) =To+Tf, (T'>=O. 

The possibility of appearance of the inhomogeneous 
component of the order parameter to the Lifshitz point, i.e., 
when y(R) > 0, is due to the presence in the functional of the 
term a 'TfT0 linear in To and T'. By selecting a suitable sign 
for To or T', one can always achieve an energy gain in excess 
of the loss due to the gradient term y JVT 1 2 .  This is obviously 
possible in the case of similar spatial dependences of a' and 
T '  ( (a 'T  ') # 0). We isolate them in explicit form 

ux;'(R) =af (R), T' (R) =Tf (R), 

a, T=const, (f2 (R) >=I. 

Considering E, T,p to be small quantities of the same order, 
linearizing the functional and minimizing it with respect to 
T, we obtain for the amplitude of the oscillating part with - 
T < Tc and a, < 0: 

T=-To (a+ 2 T : p ) / ( - 2 + ~ ~ + ~ ~ ~ ' ~ ) ,  (33) 

where To is the equilibrium value of the homogeneous com- 
ponent of the order parameter T i  = - a d 2 6  Thus the in- 
homogeneous component of the order parameter arises si- 
multaneously with the homogeneous component. The wave 
vector q' in Eq. (33) is given by the equality 

( ( ~ f ( R ) ) ~ ) = q ' ~ .  (34) 

A condition similar to (32) must be satisfied for the ratio 
of components T '  and To: 

IF/ToI =(a+2T02p)/ ( - 2 ~ ~ + ~ ~ ~ ' ~ )  <1. 

Performing calculations similar to those made in the deriva- 
tion of Eq. (4), we obtain for susceptibility in the case of built- 
in inhomogeneity (3 1) 

The factor yd1'/a0, additional in comparison with Eq. 
(4), can certainly be much greater than unity [while Eqs. (3 1) 
are satisfied at the same time]. Let us note that y,Jao-<:, 
where 6, is the correlation length of the order parameterT, 
near Tc. Over this length, a change in To takes place, and 
hence, in oscillation amplitude when boundary value 
problems are considered. The oscillation scale q' is of a built- 
in character, i.e., it is given by the condition of the problem 
(34). The limitation on the scale q' is 6 ;qt2( 1, where 6 -yo, 
and determines the possibility of expanding the free energy 
functionalF ( T 1 in powers of q". However, when the limita- 
tion on the quantity / T - Tc I > max a'/a is considered, the 
inequality 5 :q") 1 is consistent. 

It was found above that in the case of a TS occupying 
the entire volume of the sample (27), a homogeneous magnet- 
ic field induces a homogeneous order parameter (28) that 
does not contribute to the local current density. However, 
differentiatingF { To + TI J with respect to B, one can readily 
ascertain that a homogeneous magnetic moment directed 
opposite to B appears in the system. As shown in Sec. 2, the 
procedure of establishment of the balance of forces, in con- 
trast to the procedure of minimization of the functional, 
takes into consideration the surface contribution to the re- 
sponse of the system. It is natural therefore to attribute to 
surface currents the magnetic moment which has appeared 
in the system. 

Let us also note that in the case of the free energy func- 
tional with constant coefficients (15) and (26), the magnetic 
field does not induce an order parameter above the tempera- 
ture of transition to the TS. The susceptibility at the transi- 
tion point shows up as a jump [see Eq. (24)l. This is not 
mandatory in a system with built-in inhomogeneity. For 
built-in inhomogeneity, the equilibrium equation can in 
some cases also have solutions above the transition point in a 
specified temperature range. At the same time, the diamag- 
netic susceptibility will increase as the transition point is 
approached. 

The equations for the induced order parameter and sus- 
ceptibility of the TS (24) and (35) were derived for the neigh- 
borhood of the transition point in the TS. As the temperature 
is lowered, it is necessary to take into account in the expres- 
sion for the spontaneous current density terms with higher 
derivatives with respect to the coordinate of the order pa- 
rameter. The expressions for the current becomes nonlocal. 
The dependence of the free energy density on the order pa- 
rameter also becomes substantially more complex. The 
problem of studying the TS in a magnetic field at F = 0 
therefore requires one to change from the equilibrium equa- 
tion to the microscopic scheme of calculation, wherein the 
order parameter is determined from the equations of motion 
for the wave functions of the system. In addition, a calcula- 
tion using the balance-of-forces scheme for the domain-wall- 
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type inhomogeneity (16) showed that the induced order pa- 
rameter is localized in a region of space with dimensions of 
the order of coherence length 6, , i.e., the result is at the limit 
of accuracy of the phenomenological scheme. The details of 
the spatial behavior of the induced order parameter can also 
be obtained only in the framework of the microscopic 
scheme. 

4. TOROIDAL CURRENT STATE IN A MAGNETIC FIELD AT - 
T=O 

Let us consider a two-band model with band extrema 
coincident in the momentum space. The Hamiltonian of the 
model in the Lattinger-Cohn basis is of the form 

i 
II= z c ,  ( k + e ~  (R) ) aikiajk+ - P (k+eA (R) ) aniaik 

m 
I,* 

+ g Uikia2kiUik+qU2k-q+ H.C., j=i, 2. (36) 
k,q 

where A(R) is the vector potential of the total magnetic field 
B = curl A; it will be assumed everywhere below that div 
A(R) = 0. In the Hamiltonian (36) we have averaged over the 
scale of the unit cell, and separated in explicit form of the 
interband momentum matrix element (hybridization) 
P = - iP,, = (u,(r) lVlu,(r)), calculated in the Lattinger- 
Cohn basis; a,: and ajk are the operators of creation and 
annihilation of an electron with momentum k in band j; 

(k) is the law of dispersion in bands 1 and 2: 

fp is the shift of the Fermi level due to doping). As above, this 
section will discuss the inhomogeneity along a single coordi- 
nate, for example, x. Let us note that the system has a sepa- 
rate direction along P which specifies the direction of the 
characteristic vector of inhomogeneity in the plane perpen- 
dicular to P. We separate the corresponding component in 
the law of dispersion 

el=v,k+t (k,)  , (37') 

where k is the quasimomentum reckoned from the Fermi 
surface in the x direction, and k, is the quasi-momentum of 
transverse motion. 

Use of the Luttinger-Cohn approximation (36) is justi- 
fied by the fact that in contrast to Peierls' single-band model, 
in the two-band scheme (37) the Fermi momentum may be 
assumed to be much smaller than the reciprocal-lattice vec- 
tor. In the Hamiltonian (36), the electron hole Coulomb in- 
teraction potential was replaced by the constant g in the 
weak-binding approximation (e2/u, ( 1). We assume that the 
constant g includes processes which fix the phase of the or- 
der parameter, and the maximum constant g corresponds to 
the transition to a state with an imaginary order parameter. 

The equations for the wave functions of the system are 
obtained by diagonalizing the Hamiltonian (36) by a canoni- 
cal transformation which intermixes the wave functions in 
bands 1 and 2 (at A = 0): 

where E (k,k, ) are the eigenvalues of the Hamiltonian (36) in 
the A (x) potential. In deriving Eqs. (38), we separated in the 
basis functions of the transformation the dependence on the 
x coordinate and on the transverse coordinate rc: 

Ilfi,zr (R) = v i , ~  (x) exp i(kLrL+kFx). 

Here k, is the projection of the Fermi momentum on the x 
axis. 

Introduced into Eq. (38) is a potential (order parame- 
ter)A ( x )  independent of momentum: 

where the wave functions u, and u, are given by the relation 

1 
(x) = -- [uk (x) f u k  (x) lexp [iv8-'t ( k ~ )  X I .  

1 2  

In the new notation, Eqs. (38) are 

In contrast to Eqs. (38), by using Eqs. (40) one can express 
one wave function in terms of the other in local form. The 
order parameter A (x) and wave functions U, (x) and vk (x) are 
considered smooth functions of the x coordinate. 

From Eqs. (39) and (40), one can reconstruct the energy 
functional of the system at T = 0: 

In contrast to Landau's functional, the functional 0 allows 
exactly for the contribution made to the energy by the bound 
states in the electronic spectrum. 

We shall consider the case in which the system is doped 
by a single charge carrier. In the one-band scheme, in the 
absence of hybridization (P=O), Eqs. (40) were solved by 
Brazov~k i i .~~  In the two-band model, in contrast to the one- 
band model, the wave functions depend not only on the mo- 
dulus, but also on the direction of quasimomentum k. More- 
over, in Eqs. (40), gradient linearization in the direction of 
the inhomogeneity (37') in valid everywhere except in a nar- 
row region in the vicinity of the plane k, = 0. The phase 
volume of this region is of the same order as the volume of 
the region where the energy dependence of the density of 
states becomes significant, and it may be neglected in terms 
of the parameter i3/cF, where ii, is the cutoff energy in Eq. 
(39). 

We specify the antisymmetric boundary condition 

A (*m) =T~A,. 

For a given direction k we have the following soliton solu- 
tion of Eqs. (40) and (39): 
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In the energy spectrum for the potential (42), there is 
one discrete state with energy go = 0 and wave functions 

and states of the continuous spectrum 

The amplitude of the order parameter A, is determined from 
the self-consistency equation (39). The level of the chemical 
potential is located between the level of the bound state and 
the conduction band. 

For the opposite direction of the quasimomentum 
( - k), the expressions for the wave functions are obtained 
from Eqs. (43) by means ofthe substitution uctv, v,+ - u,. 
It is precisely in a narrow region near the plane k, = 0, 
where Eqs. (40) do not hold, that a restructuring of the wave 
functions takes place. 

The introduction of hybridization complicates the 
problem. In the absence of hybridization, the state with one 
extra electron is the limiting case of a system with a finite 
concentration of excess carriers that permits an exact solu- 
tion. In this case, the ground state of the Hamiltonian (36), 
which realizes the minimum of the functional (41), is a peri- 
odic solution A (x) (Refs. 24 and 25), which belongs to the 
class of finite-band potentials.' Hybridization leads to the 
appearance of a term linear in A (x) in the functional. A term 
analogous to Eq. (41) and linear in the order parameter was 
discussed in a discrete one-dimensional model in Ref. 27. 
The authors of the latter showed that the introduction of a 
term of the type of (41), linear in the order parameter, vio- 
lates the property of exact integrability of the model; the 
same paper presents arguments in favor of an infinite-band 
character of the spectrum. It goes without saying that exact 
integrability is also violated in the limiting case of a single 
excess charge carrier. However, to determine the induced 
order parameter S (x) in an approximation linear in the field, 
it suffices to confine oneself to the hybridization perturba- 
tion theory with the functions (43) as the zeroth approxima- 
tion. 

It is pertinent to note that the explicit gauge-invariant 
model (36) requires both the absence of current of type (1) 
and the absence of the corresponding components, simply 
proportional to the vector potential, from the order param- 
eter. In the microscopic scheme in the homogeneous case, 
the absence of nongauge components from the current and 
from the order parameter is demonstrated by reducing their 
kth components in momentum space to total derivatives of 
the expressions containing the exact value of the spec- 
t r ~ m . ~ . ~ '  On summing over the momentum with any parti- 
tion function dependent solely on energy, the nongauge 
components become zero. Unfortunately, for nonzero hybri- 
dization in the inhomogeneous case, we do not have an ana- 
lytical expression for the spectrum. Nevertheless, having 
used the property of completeness of the system of finite- 

band  potential^,^^ we can describe with any given precision 
the spectrum of a system with a nonintegrable perturbation 
(41) by finite-band potentials, for each of which the value of 
the spectrum is known. Thus, also in an inhomogeneous sys- 
tem, in the expressions for all the physical quantities such as 
energy, current, and order parameter, there takes place the 
cancellation of the gauge parts simply proportional to the 
vector potential, but not to its derivatives. Without resorting 
to expansion in finite-band potentials, we shall omit these 
parts everywhere below. 

Let us turn to the calculation of the induced order pa- 
rameter S (x). For this purpose, as follows from the structure 
of the self-consistency equation (39), we must determine the 
corrections, linear in the magnetic field, to the wave func- 
tions. We choose the vector potential A(R) parallel to the 
hybridization vector P. We direct the wave vector of the field 
along the x axis; this corresponds to a magnetic field applied 
at right angles to P and x, i.e., at right angles to the current 
contours (2): 

PIIA(R) , A ( R )  =A ( x )  =Aqeiq4"+A-,e-'4". (44) 
Then the equations for the wave functions in the magnetic 
field are obtained from Eqs. (40) by means of the substitution 
k, +k, + eA. It can be shown that the diagonal component 
of perturbation eA(x)dt (k, )/d k, does not contribute to the 
terms proportional to the magnetic field, i.e., to terms linear 
in q. Therefore, we shall consider everywhere below only the 
nondiagonal component of perturbation (e/m)P.A(x). 

Expressing u in terms of u  by means of Eqs. (40) to first 
order in the vector potential and hybridization, we obtain an 
equation for the correction to the wave function v', linear in 
the field: 

- ( v ~ V , ) ~ V ' -  (E2-Ao2) V' 

=-iW ( x )  EuO- [ A  ( x )  -vFV.] W ( x )  v", (45) 

W ( x )  = (e/m) P A  ( x )  +'6 ( x )  . 
Equation (45) is in the form of a Schrodinger equation with 
source h (x): 

- ( v F V , )  2v' - (EZ-A02)  v f = h  ( x )  . (45') 

The Green's function of the corresponding homogeneous 
equation is well known: 

where u,L = E. Knowing the Green's function, one can also 
find the solution v' to the inhomogeneous equation (45'): 

m 

u' ( x )  = S d x ' ~  ( x ,  x') h  ( X I ) .  
- m 

We separate in the self-consistency equation the source 
I (x)-the part of the self-consistency equation dependent on 
the perturbation (e/m)P.A(x). Substituting the value of the 
wave function calculated from Eqs. (46) and (45) into the self- 
consistency equation (39), we obtain for the source 
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In writing Eq. (47), we assumed that A - , = A,*. For the kth 
component of the source we have 

Direct substitution of Jk ( + q) from Eq. (48) into Eq. (47)  will 
show that the second term in Eq. (48) with integration from 
( - ) to x in the expression for the source (47) is canceled by 
its complex conjugate. This circumstance considerably fa- 
cilitates the calculations and is due to the simple form of the 
basis wave functions (43) and Green's functions (46). Omit- 
ting the second term in Eq. (48), we obtain 

The first term in Eq. (48') contains only components 
quadratic in q. This is the term responsible for the paramag- 
netic component, discussed in Ref. 20, of the response of the 
current state to an inhomogeneous field. This term is differ- 
ent from zero both above [where A,(x) = 01 and below the 
point of transition to the state with an imaginary order pa- 
rameter and is weakly dependent on the inhomogeneity of 
the order parameter. The second term arises only in the state 
with spontaneous current, since its existence is wholly due to 
the inhomogeneity of the spontaneous order parameter. It 
contains linear powers of q, i.e., describes the reaction of the 
system to a homogeneous magnetic field. 

The self-consistent part of the self-consistency equation 
is calculated like the source: 

A"x) sin (2k ( y - x )  ) ] . (49) cos(2R(y-2) ) - -  
E k 

The induced order parameter 6 ( x )  is determined by equating 
D ( x )  and I (x) .  For sufficiently large x(x > f,, where f ,  = u,/ 
A ,  is the correlation length of the order parameter), one can 
obtain the expression for S ( x )  in the form of a series: 

where we introduce the dimensionless variable z = x/f, .  
Using the well-know11 expansion of the spontaneous or- 

der parameter 

and performing the summation over momentum in Eqs. (48) 
and (49), we obtain for the coefficients in Eq. (50)  in an ap- 
proximation linear in q 

do=O1 dzn+i=O, 

and d ,, is determined by the recurrence relation 

d 2 ( x )  =2 ( e / m ) x (  [PxB] G ) ,  n=l  

d2, ( x )  = (d2Ai' ar+d22' ) ( d m )  ( [ P x  Bin,) , n > l ,  

where 

n-m 

Ll (n-m)  [2d2i:)-.m) ( n - I )  - ( - 1 )  ' d z ( : ~ - ~ - l )  I} ; 
&d 
I=i 

n- i  

+ 8 x m ~ ~ ( m )  )]} ; 
here 

L  ( 1  2 L2 ( 1 )  = 2 / 3 ,  

and for n > 1 

n, being the unit vector in the x direction. 
For sufficiently large x(x >lo), only the first term can be 

kept in the sum (50) ,  and we thus obtain for the order param- 
eter when x+ m 

which is in qualitative agreement with the behavior of the 
induced order parameter when T< T, . Let us note that in the 
selected gauge (44)  

(n,  [PxB] ) =PB. 

The expansion (50) was obtained only for positive x .  
However, even without resorting to the direct solution of the 
integral self-consistency equation, one can establish the gen- 
eral property of 6 ( x )  relative to the inversion x+ - x .  We 
shall choose as the Green's function the function (x ,  x ' ) ,  
which is the complex conjugate of the function G (x ,  x ' )  (46). 
The source in the self-consistency equation Jk (q, - x),  cal- 
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culated by means of the function (x, x'), is of the following 
form at the point ( - x): 

Changing the sign within the limits of integration in Eq. 
(54) and comparing with Eq. (48), we verify that such a trans- 
formation changes& (q, - x) into J :(q, x) with the substitu- 
tion A, *A,*. This means that the terms linear in the mag- 
netic field B (B = const) in the source 7 are equal to the 
corresponding terms in the source I and of opposite sign. 
Since the form of the solution to the self-consistency equa- 
tion is independent of its notation, by performing a calcula- 
tion similar to (34) of the self-consistent part 5 and requiring 
that = - D, we find 

6 (5 )  =-6 ( - x )  , (55) 

i.e., the induced order parameter S (x) is an antisymmetric 
function, in accordance with the result of the phenomenolo- 
gical calculation (21). 

We found the induced order parameter a(x) within the 
framework of perturbation theory. The applicability of per- 
turbation theory in this case is determined by the condition 
A,(x))S(x) for all the values  of^.^^ Since Ao(0) = 0, the ques- 
tion of behavior of the induced parameter S (x) as x-0 re- 
quires special consideration. It follows from Eq. (55) that 
S (0) = 0. However, the nature of the decrease of S (x) as x-0 
is significant. We rewrite the self-consistency equation, per- 
forming the summation over momenta: 

j a(.. Y ) ~ ( Y ) ~ Y = I ( x )  ; (56) 
I 

Here p@) = 2A,@)S@) - vFVS@), and I (x) is the source (47). 
For the kernel X(x,y),  we have the following expression: 

where KO,, (z) are modified Bessel functions of imaginary ar- 
gument, and HO,, are Strube functions. 

To find the asymptotic form of p(x) as x- '+ 03, we take 
the Laplace transform of Eq. (36). As is well known, the 
behavior of the function p(x) at small values of the argument 
is uniquely determined by the behavior of its Laplace trans- 
form p(p) at p-03 (if the inverse transform exists). We are 
therefore interested in low values of the arguments in the 
coordinate representation. At small values of ly - xj, the 
main contribution to the kernel (57) is made by the first term 
on the right side: Ko(z)+ - lnz(z+O,z-O), and in the rel- 
evant region, the kernel of Eq. (56) can be replaced by a dif- 

ference kernel. This makes it possible to obtain in explicit 
form an expression for the Laplace transform p(p) at large 
values ofp: 

where 
m 

cp (2) = cp ( p )  = S rp ( x )  e p x  dx, I (z) = I (p) ,  
0 

m 

K (-p)  = 5 K ( x )  ep'dx. 
0 

The analyticity regions of I@) and K ( -p) are half 
planes open to the right and left, respectively. For the inverse 
transform p(x) to exist, they must overlap. It can readily be 
ascertained that this is indeed the case here, since I (z) and 
K (z) damp out exponentially at largez. Separating out the far 
asymptotic form in Eq. (58) and performing the inverse La- 
place transformation, we obtain when x-0 

Let us note that formula (59) was obtained for x<f,, i.e., for 
scales on which the result (22) of the balance-of-forces 
scheme (12) is known to be inapplicable. 

We thus found that in the TS at = 0, a homogeneous 
magnetic field induces an order parameter localized in the 
region with spontaneous current. As in Sec. 3, the appear- 
ance of a localized induced order parameter signifies a dia- 
magnetic character of the response of the TS. The corre- 
sponding substantiation is completely analogous to the 
reasoning which follows from Eq. (22). 

Relations (53), (55) and (59) for an induced order param- 
eter may be regarded as direct microscopic confirmation of 
the phenomenological results of Sec. 3. Let us note in this 
connection that although the microscopic calculation is the 
most consistent approach to the study of the magnetic prop- 
erties of the TS, the range of application of the phenomeno- 
logical balance of forces scheme is broader, and the scheme 
itself is physically clearer. 

5. CONCLUSION 

This work has shown that the response of a system with 
spontaneous currents to a homogeneous magnetic field is 
diamagnetic in character. The susceptibility can reach ab- 
normally high values close to absolute diamagnetism; see 
Eq. (35). To our knowledge, this is the first model of abnor- 
mally high diamagnetism of a collective but not supercon- 
ducting character. The diamagnetic state is actually an inho- 
mogeneous phase of toroidal state.29 It should be 
emphasized that high diamagnetic susceptibility is wholly 
and completely due to the collective interaction of electrons 
and is not related to the one-particle spectrum. The diamag- 
netism of the system increases with the effective radius of 
current correlations AT (4). The high value of the susceptibil- 
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ity is due to the magnitude of this parameter and is related to 
a much lesser degree to the proximity of the system to the 
phase-transition point. Therefore, the high absolute value of 
the susceptibility of a diamagnetic with spontaneous current 
is retained when the temperature is lowered, in contrast to 
ferromagnetics, in which the susceptibility is high only in the 
vicinity of the Curie point. The TS differs from ordinary 
magnetics not so much in the scale of the current contours as 
in their characteristic structure with a total moment equal to 
zero. This structure in turn is caused by a specific coordinate 
dependence of the current on the order parameter ( j -q2A, 
not j - qA ,  as in ordinary magnetics). The microscopic part 
of the theory developed above was based on the model of the 
excitonic dielectric. Of importance is the fact that the proce- 
dure proposed in this work for calculating the susceptibility 
from the condition of balance of forces is based exclusively 
on the characteristic structure of the expression for current 
(2) and on a completely general form of the free-energy func- 
tional (3).  Therefore, the results obtained here for collective 
diamagnetism are applicable to any microscopic model in 
which a spontaneous current of the type of Eq. (2) is pro- 
duced. 

This work completes in general outline the develop- 
ment of a theory of the toroidal current state. At the same 
time, a number of interesting problems unquestionably de- 
serve separate consideration. These are problems of realiza- 
tion of the TS within the framework of specific band models, 
finding the structure of the TS while allowing for the real 
symmetry of the crystal, and microscopic analysis of dia- 
magnetic susceptibility in the vicinity of the point of transi- 
tion to the TS. 

Although the conditions for formation of the TS are 
rather stringent4.16 it is our view that the feasibility itself of 
realizing the TS is unquestionable. Of great significance for 
the experimental identification of TS, in addition to the spe- 
cific diamagnetic properties described in this work, are the 
presence of the photovoltaic effect and the semiconducting 
character of conduction in a weak electric field below the 
point of transition to the TS, as well as the temperature 
anomaly of the magnetoelectric tensor at the transition 
point, all of which were studied in Ref. 29. 

In conclusion, the authors express their deep gratitude 
to V. L. Ginzburg, L. P. Gorikov, L. V. Keldysh and L. P. 
Pitaevskii for fruitful discussions. 

"This was pointed out to us by V. L. Ginzburg. 

'L. D. Landau and E. M. Lifshitz, Elektrodinamika sploshnykh sred 
(Electrodynamics of Continuous Media), Nauka, Moscow, 1982 [Perga- 
mon]. 

*Ya. G. Dorfman, Diamagnetizm i khimicheskaya svyaz' (Diamagnetism 
and the Chemical Bond), Fizmatgiz, Moscow, 1961. 

'B. A. Volkov and Yu. V. Kopaev, Pisma Zh. Eksp. Teor. Fiz. 27, 10 
(1978) [JETP Lett. 27, 7 (1978)l. 

4B. A. Volkov, A. A. Gorbatsevich, Yu. V. Kopaev and V. V. Tugushev, 
Zh. Eksp. Teor. Fiz. 81, 729 (1981) [Sov. Phys. JETP 54, 391 (1981)l. 

5V. M. Dubovik and L. A. Tosunyan, El. Chast. At-Yad., 14,1193 (1983) 
[Sov. J. Part. Nuclei 14, 504 (1983)l. 

6E. Ascher, in Magnetoelectric Interaction Phenomena in Crystals, A. J. 
Freeman and H. Schmid, Eds., N. Y., 1975, p. 69. E. Ascher, Helv. Phys. 
Acta 39,40 (1966). 

'B. A. Volkov, Yu. V. Kopaev, M. S. Nunuparov and V. V. Tugushev, 
Pisma Zh. Eksp. Teor. Fiz. 30, 317 (1979) [JETP Lett. 30, 293 (1979)l. 

V. Keldysh and Yu. V. Kopaev, Fiz. Tverd. Tela 6,2791 (1964) [Sov. 
Phys. Solid State 6, 2219 (1965)l. 

9B. A. Volkov, V. G. Kantser and Yu. V. Kopaev, Zh. Eksp. Teor. Fiz. 76, 
1856 (1979) [Sov. Phys. JETP 49, 943 (1979)l. 

1°B. A. Volkov, Trudy Fiz. Inst. Akad. Nauk 104, 3 (1978). 
"A. N. Kozlov and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 48,1184 (1965) 

[Sov. Phys. JETP 21, 790 (1966)l. 
12B. A. Volkov, V. G. Kantser and Yu. V. Kopaev, Fiz. Tverd. Tela 22, 

1091 (1980) [Sov. Phys. Solid State 22, 635 (1980)l. 
"L. R. Keldysh and A. N. Kozlov, Zh. Eksp. Teor. Fiz. 54, 978 (1968) 

[Sov. Phys. JETP 27, 521 (1968)l. 
14B. A. Volkov, Yu. V. Kopaev and M. S. Nunuparov, Fiz. Tverd. Tela 21, 

2733 (1979) [Sov. Phys. Solid State 21, 1571 (1979)l. 
I5B. A. Volkov, V. G. Kantser and Yu. V. Kopaev, Zh. Eksp. Teor. Fiz. 

75,1402 (1978) [Sov. Phys. JETP 48,707 (1978)l. Yu. V. Kopaev and M. 
S. Nunuparov, Fiz. Tverd. Tela 22, 3599 (1980) [Sov. Phys. Solid State 
22, 2108 (1980)l. 

16A. A. Gorbatsevich and V. V. Tugushev, Zh. Eksp. Teor. Fiz. 77,2104 
(1979) [Sov. Phys. JETP 50, 1006 (1979)l. 

17Yu. V. Kopaev and I. M. Tsidilkovskii, Vestn. Akad. Nauk SSSR 8,49 
(1983). 

18E. N. Adams, Phys. Rev. 89, 633 (1953). L. A. Falkovskii, A. V. Bro- 
dovoi and G. V. Lashkarev, Zh. Eksp. Teor. Fiz. 80, 334 (1981) [Sov. 
Phys. JETP 53, 170 (1981)l. 

19B. A. Volkov, V. L. Ginzburg and Yu. V. Kopaev, Pisma Zh. Eksp. 
Teor. Fiz. 27, 221 (1978) [JETP Lett. 27, 206 (1978)l. 

'OB. A. Volkov, A. A. Gorbatsevich, Yu. V. Kopaev and V. V. Tugushev, 
Zh. Eksp. Teor. Fiz. 81, 1904 (1981) [Sov. Phys. JETP 54, 1008 (1981)l. 

"P. Fulde and R. Ferrel, Phys. Rev. 135,550 (1964). A. I. Larkin and Yu. 
N. Ovchinnikov, Zh. E k s ~ .  Teor. Fiz. 47, 1136 (1964) ISov. Phvs. JETP , , -  
20, 762 (1965)l. 

22A. I. Larkin and Yu. N. Ovchinnikov. Zh. E k s ~ .  Teor. Fiz. 61. 1221 
(1971) [SOV. P ~ Y S .  JETP 34,65 1 (i972)j. 

23S. A. Brazovskii, Zh. Eksp. Teor. Fiz. 78, 677 (1980) [Sov. Phys. JETP 
51, 342 (1980)l. 

24S. A. Brazovskii, S. A. Gordyunin, and N. N. Kirova, Pisma Zh. Eksp. 
Teor Fiz. 31, 486 (1980) [JETP Lett. 31, 456 (1980)l. 

"S. A. Brazovskii, L. P. Gorkov and A. G. Lebed, Zh. Eksp. Teor. Fiz. 83, 
1198 (1982) [Sov. Phys. JETP 56, 683 (1982)l. 

26V. E. Zakharov, S. V. Manakov, S. P. Novikov and L. P. Pitaevskii, 
Teoriya solitonov (Soliton Theory), Nauka, Moscow, 1980. 

271. E. Dzyaloshinskii and I. M. Krichever, Zh. Eksp. Teor. Fiz. 83, 1576 
(1982) [Sov. Phys. JETP 56, 908 (1982)l. 

*'A. I. Baz, Ya. B. Zeldovich and A. M. Perelomov, Rasseyaniya, reaktsii 
i raspady v nerelyativistskoi kvantovoi mekhanike (Scattering, Reac- 
tions and Decays in Nonrelativistic Quantum Mechanics), Nauka, Mos- 
cow, 1971. 

29A. A. Gorbatsevich, Yu. V. Kopaev and V. V. Tugushev, Zh. Eksp. 
Toer. Fiz. 85, 1107 (1983) [Sov. Phys. JETP 58, 643 (1983)l. 

Translated by A. Peiperl 

1098 Sov. Phys. JETP 59 (5), May 1984 Volkov et aL 1098 


