
Relaxation of nonequilibrium carrier-density matrix in semiconductors with 
degenerate bands 

M. I. D'yakonov and A. V. Khaetskii 

A. l? Iofe  Physicotechnical Institute, USSR Academy of Sciences 
(Submitted 12 October 1983) 
Zh. Eksp. Teor. Fiz. 86, 1843-1856 (May 1984) 

A general method is developed for the description of kinetic phenomena in cubic-symmetry 
semiconductors with degenerate bands (such asp-Ge or HgTe). It is shown that the investigation 
of the relaxation of the carrier-density matrix in quasi-elastic collisions is substantially simplified 
if it is expanded in finite-rotation matrices. It is found that equations in closed form exist for the 
momentum distribution functions only in the Born approximation. Outside the limits of this 
approximation there arise specific effects due to the strong spin-orbit coupling. An expression is 
obtained in the quasiclassical limit for the field terms in the equation for the density matrix. The 
relaxation times of certain physical quantities are found. 

1. INTRODUCTION 

We propose here a general approach to the description 
of kinetic phenomena in cubic-symmetry semiconductors 
with complicated valence band (such as p-Ge), as well as in 
zero-gap semiconductors (such as HgTe). The energy spec- 
trum of the carriers in such materials consists of two bands 
with different effective masses. At the center of the Brillouin 
zone there is fourfold degeneracy (T, representation). The 
state of the carriers is characterized by a rigid coupling of 
their angular momentum and the momentum due to the 
strong spin-orbit interaction. 

Galvanomagnetic effects in type p-Ge semiconductors 
were first investigated theoretically by Pikus, Bir, and Nor- 
mantas.'*' They derived and solved kinetic equations for the 
momentum distribution functions of light and heavy holes 
with allowance for the possibility of the conversion of some 
particles into others on scattering. Within the framework of 
such an approach the presence of spin-orbit coupling affects 
only the numerical values of the relaxation times and of the 
interband-transition probabilities. The premises developed 
in Refs. 1 and 2 have by now become universally accepted. 

A nonequilibrium state of the carriers in a complicated 
band, however, cannot be described solely by the momentum 
distribution function. Moreover, in the general case there 
are no closed equations for the distribution functions of the 
particles, since the scattering is accompanied by mutual con- 
versions of the particle fluxes and their spin fluxes. In the 
presence of a magnetic field, its interaction with the spin 
leads, owing to spin-orbit coupling, to additional action on 
the orbital motion (and vice versa). The spin and transport 
phenomena can generally speaking not be separated. This 
circumstance, not taken into account in Refs. 1 and 2, may 
turn out to be significant in galvanomagnetic phenomena. 

A complete description of the nonequilibrium state 
calls for the use of a density matrix that describes, besides the 
distribution in momenta, also the spin state of the carriers. 
The present paper is devoted mainly to the relaxation of the 
density matrix in elastic (or quasi-elastic) collisions. It is 
known that for electrons in a simple band with isotropic dis- 
persion law one can introduce, after expanding the distribu- 
tion function in spherical functions, the relaxation times of 

its different moments. In the considered case of a complicat- 
ed band this approach is inapplicable in view of the strong 
coupling between the angular momentum of the carrier and 
its momentum. We shall show that the problem is greatly 
simplified if the density matrix is expanded in finite-rotation 
matrices. The initial integro-differential equation breaks up 
then into a system of unrelated pairs of differential equations 
with constant coefficients. This makes it easy to determine 
the character of the relaxation of any physical quantity. 

It will be shown that equations in closed form can be 
obtained for the momentum distribution functions only in 
the Born approximation. Therefore if this approximation 
holds (which is the case as a rule in semiconductors of thep- 
Ge type), the approach used in Refs. 1 and 2 is perfectly 
applicable. If, however, the Born approximation is not valid, 
as, e.g., in the case of resonant scattering of electrons by 
impurities in zero-gap semiconductors, the aforementioned 
relation between the flux of the particles and their spin flux 
becomes substantial. It alters, for example, the expression 
for the effective relaxation time that determines the electric 
conductivity. 

In Sec. 2 we introduce the carrier-density matrix, which 
is next expanded in finite-rotation matrices. The connection 
is established between the corresponding moments of the 
density matrix with the mean values of the physical quanti- 
ties. 

In Sec. 3 are obtained simple equations for the relaxa- 
tion of the density-matrix moments in quasi-elastic colli- 
sions. 

In Sec. 4 we discuss the character of the relaxation of 
various physical quantities. We consider for simplicity the 
case of a zero-gap semiconductor, when there are no inter- 
band transitions in elastic scattering. An expression is ob- 
tained for the electric conductivity of the electrons in an 
alternating field, with allowance for effects that occur out- 
side the limits of the Born approximation. The hole spin- 
relaxation time is obtained. 

The final Sec. 5 is devoted to the derivation of the field 
terms in the kinetic equation for the density matrix in the 
quasiclassical limit. Owing to the presence of the spin-orbit 
coupling the field terms differ in form from the usual ones. 
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An equation of motion is obtained for the average spin of 
heavy holes in a magnetic field. 

We confine ourselves in this paper to the spherical ap- 
proximation, neglecting the corrugation of the equal-energy 
surfaces. This is precisely the approximation in which is val- 
id the method developed here, which explains fully the char- 
acter of the relaxation of an arbitrary physical quantity. In 
the band of light holes (electrons in a zero-gap semiconduc- 
tor) the corrugation is negligible. In the heavy-band hole, 
however, it is generally speaking not small. One can hope, 
however, that the main qualitative features of the phenom- 
ena due to spin-orbit coupling are correctly described even in 
the spherical approximation. 

2. DENSITY MATRIX 

The energy spectrum near the band degeneracy point in 
semiconductors such as Ge or in zero-gap semiconductors 
such as HgTe is described by the Luttinger Hamil t~nian.~ In 
the spherical approximation it is given by 

where m, is the mass of the free electron, y = (2y, + 3y3)/5; 
y,,y,,y3 are the Luttinger parameters, p is the quasimomen- 
tum operator; J, , J, , J, are 4 x 4 matrices corresponding to 
an angular momentum 3/2. 

It is known that the Schrodinger equation with Hamil- 
tonian (1) yields two energy-spectrum branches correspond- 
ing to the free motion of particles with effective masses 

m,=m,l(yi+2y), m2=mol(yi-2"1. 

Depending on the values of the Luttinger parameters, 
these branches correspond either to the bands of the light 
and heavy holes in semiconductors such as Ge (at 
y1 + 2y > 0, y, - 2y > 0), or to the electron and hole bands 
in a zero-gap semiconductor such as HgTe (at y, + 2y > 0, 
Y1 - 2 ~ < 0 ) .  

The states are characterized by the projection of the 
angular momentum M on the quasimomentum direction (by 
the helicity), with M = k 1/2 corresponding to the band 
with effective mass m,, and the values M = & 3/2 to the 
band with effective mass m,. Each of the bands is doubly 
degenerate. The wave functions of these states can be written 
in the form4 

where up are the eigenfunctions of the matrix J, ( ,LA = + 1/ 
2, _+ 3/2), DEc) is the finite-rotation matrix,'' and o, is the 
rotation that aligns the z axis of the laboratory frame with 
the direction of the momentum p. The rotation is defined by 
the Euler angles p,8,$, with p and 8 obviously coinciding 
with the polar angles of the vector p in the lab, while the 
angle $ is arbitrary and determines the phase factor of the 
wave function: exp( - iM$). 

We introduce the single-particle density matrix fMMS / 
(o, ) that characterizes the state of the ensemble of the parti- 
cles described by the Hamiltonian (1). Its dependence on the 
Euler angle $ is determined by the factor exp(i(M - MI)$). 

Since the angle tC, is arbitrary, we could set it equal to zero (in 
the given coordinate frame). We shall find it more conven- 
ient, however, not to fix this angle and regard the density 
matrix as a function of the rotation o, . The density matrix 
depends as usual also on the energy E, on the coordinates, 
and on the time.'' For the sake of brevity we shall not write 
out these arguments. 

The elements of the density matrix with 
IM I = IM'I = 1/2 describe particles in the band with mass 
m, (light holes in Ge or electrons in HgTe), while the ele- 
ments with IM 1 = IM'I = 3/2 describe particles in the band 
with mass m2 (heavy holes). 

The off-diagonal elements with IM I # IM ' 1  describe the 
coherence of the states belonging to different bands. It can be 
shown that in the absence of alternating fields that induce 
interband transitions such elements are small in the param- 
eter fir-' I E , ( P )  - E, (P)~  -', where T is the characteristic re- 
laxation time, and ~ ' ( p )  and E,(P) are the energies in bands 1 
and 2 at the characteristic m0mentum.p. If the masses m, 
and m, differ noticeably, this parameter is small under the 
conditions of applicability of the kinetic equations. Off-diag- 
onal elements with IM 1 # IM ' 1  can be not small in the pres- 
ence of an alternating field that causes transitions between 
bands 1 and 2. Such transitions are not considered in the 
present paper, and we shall therefore neglect hereafter den- 
sity-matrix elements with IM I # IM'I. There exist then two 
density matrices, containing four elements each and describ- 
ing the particles in bands 1 and 2. 

For further investigation of the isotropic relaxation it is 
convenient to resolve the density matrix into parts that 
transform in accord with irreducible representations of the 
rotation group. This can be done by expanding fMM* (up ) in 
terms of finite-rotation matrices D &!(a, ) with integer val- 
ues of x. Since the density matrix depends on the angle $like 
exp(i(M - MI)$), we must have q' = M'  - M. Thus, the 
sought expansion is - X 

The moments fGM, are expressed as follows in terms of the 
density matrix fMM, : 

where do, = sinededqdt,b. 
An expansion similar to (3) was first used in Ref. 6. It is a 

generalization of the usual expansion of a distribution func- 
tion in spherical functions Y,, , and the diagonal elements of 
both coincide, since D $)(up ) a Y zq ( 8 , ~ ) .  

Let us discuss certain properties and the physical mean- 
ing of the momenta f &. . From the fact that the density 
matrix is Hermitian and from (4) we obtain 

It follows next from the definition that the momenta differ 
from zero at IM - M ' 1  (x. Therefore the elements that are 
not diagonal in M exist in band 1, where IM / = 1/2, only at 
x >  1, and in band 2, where IM 1 = 3/2, only at x)3. 
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The mean value calculate: with the aid of the density 
matrix fMM, for any operator A xqq(v) that depends on the 
unit vector along the p direction and constitutes a tensor of 
rank is expressed only in terms of angular momenta having 
the same tt. We write the mean value of such an operator in 
one of the bands in the form 

m 

<A.)= J dep ( . ) ~ q ,  (6) 
0 

wherep(e) is the density of states in one of the subbands of the 
corresponding band, 

(7) 

When calculating the trace in (7) account should be taken of 
only states pertaining to the band in question. 

The matrix elements in (7) of the operator 2 xq on the 
functions/y,, defined by Eq. (2) can be expressed in terms of 
matrix elements of the same operator in a coordinate frame 
in which the z axis coincides with the direction of p (x,, 
= u, in this system): 

In the calculation of the matrix elements in the right- 
hand side of (8) the unit vector v must be assumed directed 
along the z axis. With the aid of (3), (7), and (8) we get 

pq= f z M v  ( u M  ldx~Mr-M ( v )  1 u M )  . (9) 
M M '  

Calculations with Eq. (9) yield, particularly for the band 
1, where lM 1 = 1/2: 

- 
( J v )  = ' / z  ( f P I P ~ e - f y ~ ,  - ' I , ) ,  (10) 

iq tq 
- 

1q 19 
q q = f ' l r  ~ h + f - ' h  -'bt ~q ( v J )  = ' I 2  (fill ~ h - f - l h  - 1 1 ~ )  9 (I1) 

I P  
J ~ = ' / ~  ( f ;  1,,-j::1, - I / > )  +2'Is ( f ; : -~ / , - f - l / ,  11,) , (12) 
- 
[ J  ~ v ] ~ = 2 ' " i ( f ~ , ~ - l / ~ + f I ~ ~ ~  ' h ) ,  (13) 

where the circular components of the vector are determined 
from the rule Y, = vZ, Y, = - (vX + i ~ ~ ) / 2 ~ ' ~ ,  
Y-, F (vX - i~ , , ) /2"~ .  For band 2, where IM I = 3/2, we 
have 

- 
( J v )  =S/2(f;*oR-f:: /*  -%), (14) 

- 
~ ~ = ~ / 2 ( f ~ ~ ~ ~ l ~ - f ~ ~ / ~ - q ~ ) ,  [ J x v ] = O .  (16) 

00 The combinations f E, ,,, + f - ,,, - ,,, determine the num- 
ber of the particles (with specified energy) in bands 1 and 2, 
respectively. 

We note that for the velocity operator 

8 = m 0 - ' [  ( Y , + ~ / ~ Y ) P - Y  ( J ( P J ) + ( P J ) J )  I (17) 

the relation = (p/m)V holds in each band (m is the effec- 
tive mass in the considered band). 

3. COLLISION INTEGRAL 

The relaxation of the nonequilibrium density matrix 
fMMf (w,) in elastic collisions is described by the following 

equation (see, e.g., Ref. 6): 

This equation is a generalization of the usual kinetic 
equation for the distribution function to include the case 
when the system is characterized by a nondiagonal density 
matrix. The kernel K, just as the density matrix, depends on 
the energy E as a parameter. The integration with respect to 
dm,, includes integration with respect to the Euler angles 
p,, el, that determine the rotation that aligns thez axis in 
the lab with the direction of the momentum p , .  The depen- 
dence of the matrix K Ez on the angles $ and $, can be 

readily shown to be determined by the factor exp[i(M 
- M ')$ - i(Ml - M ; )$,I. The integrand is in fact indepen- 

dent of the angle $,, and the integration with respect to this 
angle was added for convenience. 

As already noted in the preceding section, the density- 
matrix elements that are not diagonal in the bands 1 and 2 
can be neglected as small. Accordingly, account should be 
taken in both sides of (18) of only fMM. elements with 

I M I = I M ' 1 .  The quantities K Ec should therefore be re- 

garded as different from zero only at IM I = IM 'I, 
IMll = IM; I. 

The intraband transitions are determined by the ele- 
ments of the matrix K 2% that have 

IM / = IM ' 1  = lMl 1 = IM ; 1, and the interband transitions 
by theelements with lM I = lM'I # lM,I = IM; 1 .  Inscatter- 
ing by impurities, the values of K are expressed in terms of 
the scattering amplitude P Z , ,  for the transition from the 
initial state Mlpl to the final state Mp as follows: 

where N is the impurity density and mi and mf are respec- 
tively the masses in the initial and final states: 

The elements of K with M = M '  and M, = M ', are the pro- 
babilities of the transitions from the state (M,p,) to (Mp). 

The isotropy of the relaxation process means that the 
kernel K is a function of the parameters that determine the 
rotation w, , , = w; 'w, , which transforms the coordinate 
system connected with pl into the system connected with p. 
This circumstance allows us to represent the kernel K in the 
form of an expansion in finite-rotation matrices: 

where the expansion coefficients are determined by the in- 
verse transformation 
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Using the properties (25a)-(25c), we can represent this 
system in the form 

Substituting the expansion (21) in Eq. (18), using Eqs. (3) 
and (4) as well as the addition theorem for finite-rotation 
mat rice^,^ we obtain a system of equations for the angular 
momenta f zM : 

Equation (23) describes the relaxation of any physical 
quantity that is a tensor of rank x via intraband as well as 
interband transitions. It is important that momenta with dif- 
ferent x and q relax independently. 

Additional simplifications occur when the symmetry 
properties of the coefficients Ware used. To determine these 
properties we consider first the properties of the kernel K. 
From the definition of this quantity [see (19)] it follows that 

MM' 
( K M ~ M ~ I  (mpp,) ) ' = K ~ , ) M M (  (mpp,). (244 

Invariance to time reversal (the reciprocity theorem7) leads 
to the condition 

where ma is the mass in the state M, and m, the mass in the 
state Mlpl. In addition, if the crystal has an inversion center 
we have3' 

M' -M-M' 
&,M,' (mpp,) =K-M,-M,, (m-p-pi). (244 

An additional symmetry property appears in the Born 
approximatior Inasmuch as in this approximation7 

F::,= (F&p ' ) ' 7  

it follows that 
% MM' Yr MIMI '  

ma KM,.wIr (~pp,)  =mb (KMM' (OP~P) ) '. (244 

Using Eq. (21) and the properties of D-matrices, we ob- 
tain from Eqs. (24) the following relations for the coefficients 
W: 

M M '  
WM,M,,= (-1) M-M'+M,-M,' 

We emphasize that Eq. (25d), just as (24d), is valid only 
in the Born approximation. 

4. DENSITY-MATRIX RELAXATION 

In this section we consider for simplicity the case of a 
zero-gap semiconductor, when there are no interband transi- 
tions. The relaxation in each band is then described at arbi- 
trary x by a system of four equations. 

where 

zi-' (x)  =W++++ (0) + W--++ (0) - W++++ (x) - W--++ (x) , 
az-'(X) =W++++ (0) + W--++ (0) - W-++- ( x )  -W+-+- (x) ,  

ia ( x )  =W+-++ (x )  + W-+++ (x)  , 
(28) 

The symbols ( + ) and ( - ) denote here ( + IM 1 )  and 
( - IM I), respectively, where IM 1 = 1/2 for band 1 and 
1M / = 3/2 for band 2. Thus, f ",g and W ' (x) should be 
understood as f y:, - ,,, and w 1 / 2 1 ~ ~ 2 -  ,,, (x) (for band 1) or 
as f ;:, - ,,, and W3i2,?/,2- 3/2 (x) (for band 2). We note that 
the quantities T, a ,  and f l  defined by (28) and (29) are real. 

The system (23) was thus broken up into two indepen- 
dent systems (26) and (27) of two equations each. These equa- 
tions make it easy to determine the character of the relaxa- 
tion of an arbitrary physical quantity. 

00 A t x = O w e h a v e f y -  =f - +  =O,a(O)=B(O)=O, 
and in addition l/r,(O) = 0. The first equation of (26) de- 
scribes the particle-number conservation. The first equation 
of (27) describes at x = 0 the relaxation of the helicity [see 
Eqs. (10) and (14)l. The quantity ~ ~ ( 0 )  is thus the helicity 
relaxation time 

a,-' (0) =2 W--++ (0).  (30) 

For band 2()M 1 = 3/2) the off-diagonal components of 
the momenta are equal to zero, a (x)  = B (x) = 0, not only at 
x = 0 but also at x = 1 and 2. At x(2 Eqs. (26) and (27) 
reduce therefore for this band to two independent equations 
that describe the relaxation of the quantities f ",p + f f - 
and f ",9 - f "4 - . The relaxation of these quantities is 
characterized respectively by the times r,(x) and ~ , ( x ) .  Ac- 
cording to (15) and (16) the quantities ~ ~ ( 1 )  and ~ ~ ( 1 )  are re- 
spectively the momentum and spin relaxation times in band 
2. 

In the Born approximation, as follows from (25a), (25b), 
and (25d), we have a (x)  = 0 at all x. The system (26) breaks 
up then into two independent equations that describe the 
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relaxation of the quantities f ",9 + f"2 - and 
f ",4 + f X4 + , with relaxation times r,(x) and r2(x), respec- 
tively. The time r2(1) characterizes, according to (13), the - 
relaxation of the vector J X v  (in band 1). 

In the Born approximation, the kernel K takes the form 

K,",Z,~=DZ~, (aPP,) ~ $ 7 2 : ~  (wPPI)  w (o), (31) 

where w(B ) is a function of the scattering angle and is given, 
e.g., in the case of scattering by impurities, by 

where U(p - p , )  is the Fourier component of the impurity 
potential andpf(&) is the density of the final states. 

Using (22) and (3 1) we then obtain the following expres- 
sions for the coefficients Win the Born approximation: 

" )  X( t M-M' MI-M 

where 
1 "  

w, = -5 w (0) Pi (oos 0) sin 0 do, 
2 

and PI is a Legendre polynomial. 
We present expressions for certain relaxation times in 

terms of the coefficients w, in the Born approximation. The 
momentum-relaxation time (in bands 1 and 2): 

1/Ti (1) =(Waf wz) / ~ - ' / ~ o w ~ - ~ / ~ o w s .  (35) - 
The relaxation time of the vector J X v  (in band 1): 

I/% (1) = (WO+WZ) / 2 - Z / g ~ ~ - 3 / s ~ ~ .  (36) 

The helicity relaxation time: 

The spin relaxation time (in band 2): 

1/-~3(1) =1/5~O-~I,~Z-Z/35~(. (38) 

We note that the coefficients w, are different for bands 1 and 
2 (owing to the difference of the effective masses). Calcula- 
tion of the momentum relaxation times using Eq. (35), in 
scattering by charged impurities and acoustic phonons, 
leads to the results obtained by Bir, Normantas, and P i k u ~ . ~  
It is interesting that in scattering by charged impurities the 
spin relaxation time in band 2 is equal to the momentum- 
relaxation time: r3(1) = r l ( l ) .  

Thus, in the Born approximation the quantities 
f ",4 + f x4 - relax independently with relaxation times 
rl(x). This means that in this approximation there exists a 
closed equation for the particle-momentum distribution 
function in a given band (with both helicities). The quantities 

f ",4 + f Y - are the moments of the distribution function, 
viz., the coefficients of its expansion in spherical functions. 
Therefore under conditions when the Born approximation is 
valid all the kinetic phenomena that are not connected with 
spin proceed as if there exist two particle species with masses 
m, and m,. It will be shown in Sec. 5 that this statement 
remains valid also in the presence of a magnetic field. (The 
spinor character of the wave functions of the particles in- 
fluences only the numerical values of the relaxation time 
r,(x) and of the interband-transition probabilities.) Thus, the 
analysis of the kinetic phenomena in Refs. 1 and 2, in which 
no account was taken of the density-matrix elements that are 
not diagonal in the helicity, is perfectly valid under condi- 
tions when the Born approximation is applicable. 

Generally speaking (not in the Born approximation), 
there is no closed equation for the momentum-distribution 
function. The relaxation of this function is described by the 
system (26). Let us explain the physical meaning of the ef- 
fects that occur outside the range of the Born approxima- 
tion. Consider the system (26) at x = 1 for band 1. Using (1 1) 
and (13), we represent this system in the form 

The coefficient a establishes the connection between 
the flux of the particles (of given energy) and their spin flux. 
Indeed, the spin flux of particles with a given energy is pro- 
portional to 

qjk='/z (JiVkf iikJi), 

where is the velocity operator (17). It is easy to show the 
existence of the relation E~~ gjk = m, ' [ -1 where E ~ ,  

is a unit antisymmetric tensor. Equations (39) describe thus 
the mutual transformations of the particle flux and their spin 
flux, and the relaxation of these quantities in scattering. The 
terms containing the coefficient a lead to the anomalous 
Hall effect (see, e.g., Ref. 8) and to the onset of a spin flux 
when electric current flows9 It is known that these effects 
are due to spin-orbit interaction and occur only in the ap- 
proximation higher than the Born approximation. In the 
case of electrons in a simple band, the corresponding coeffi- 
cient has an additional smallness connected with the weak- 
ness of the spin-orbit coupling.1° In the situation considered 
here the coupling between the spin of the particles and their 
momentum is strong. We note that in band 2 there is no 
mutual transformation of the fluxes since, as indicated - 
above, J  X p  = 0. 

The Born approximation is certainly valid for the analy- 
sis of kinetic phenomena in a zero-gap semiconductor under 
conditions when a substantial role is played by resonant scat- 
tering of the electrons by charged acceptors that lead to qua- 
sidiscrete energy levels in the conduction band." Bearing 
this in mind, we present the results of a calculation of the 
conductivity of electrons in a zero-gap semiconductor in an 
alternating electric field. 
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In the approximation linear in the electric field, it is 
necessary, at x = 1, to add to the left-hand side of the first 
equation of (26) the term 2/3eEqdfJdp, where f, is the Fer- 
mi function. Obtaining from (26) the value of 
f :y2 + f '4 - and calculating the current density 
with the aid of (6), (7), (1 I), and (17), we obtain the following 
expression for the electric conductivity: 

where n is the electron density, and the quantities T,, T,, and 
a must be calculated at an energy equal to the Fermi energy. 
In the static limit the effective relaxation time is rl/  
(1 + a2r1~,). In the most interesting case of resonant scatter- 
ing the problem of calculating the scattering amplitudes has 
not been solved to this day. We cannot therefore obtain ex- 
plicit expressions for T,, T,, and a. In the Born approxima- 
tion, when a = 0, Eq. (40) reduces to the Drude equation. 

We do not consider in this section interband transitions, 
which play a substantial role in semiconductors with a com- 
plicated valence band, such asp-Ge. When account is taken 
of the interband transitions, Eq. (23) together with the sym- 
metry properties (25a)-(2%) yields in lieu of Eqs. (26) and 
(27) two systems of four equations each. In this case the den- 
sity matrices of the light and heavy holes are interrelated. 
The corresponding equations are similar to (26) and (27), but 
are more cumbersome and will not be given here. In the Born 
approximation, calculation of the hole conductivity with 
allowance for the interband transitions leads to the results of 
Ref. 2. 

5. FIELD TERMS IN THE KINETIC EQUATION 

Let us establish the form of the field term in the kinetic 
equation for the density matrix fMM. . We shall assume in this 
case that the quasiclassical conditions are satisfied, viz., the 
magnetic field is assumed nonquantizing and the character- 
istic scales of the spatial inhomogeneities are assumed large 
compared with the de Broglie wavelength. The collision 
terms of the kinetic equations are not considered in this sec- 
tion. 

We start from the equation for the density operatorp: 

where 

E and H are the respective electric and magnetic field 
strengths, and R is the Luttinger Hamiltonian4 in the pres- 
ence of a magnetic field. It differs from the Hamiltonian (1) 
by the substitution p-p - (e/2c)HXr, by the symmetriza- 
tion of the term (p.J)', and by the addition of a term (efi/ 
m,c)k J -H (k is the Luttinger constant). The matrix elements 
of the operator p in the momentum representation will be 
denoted by p,,.. These quantities are 4 x 4  matrices in the 
spin indices. 

As usual, in the quasiclassical !mit it is convenient to 
introduce the Wigner density matrix f (p,r), which is connect- 
ed with the quantities p,,, as follows: 

where P = p + (e/2c)Hxr. The quantities P and p are re- 
spectively the generalized and kinematic momenta. 

From (41) we get the following equation for the matrix? 

where Q = - ifi(V + (e[c)HXd/dp is a differential opera- 
tor acting on the matrix f (p,r). 

Equation (44) is exact. When the quasiclassics condi- 
tions are satisfied we can expand the right-hand side of this 
equation in powers of the operator Q and confi~e ourselves 
to A the linear terms. WeA haxe R ( p  + Q/2) 
= R ( p )  + (GQ + Q?)/4, where V = dR(p)/dp is the ve- 

locity operator whose explicit form is given by Eq. (17). With 
the aid of this formula we can readily verify that ?Q = Q?. 
Taking this into account, we obtain an equation for the den- 
sity matrixf: 

Here (A,B ) = (AB + BA )/2. 
Equation (45) is a direct generalization of the usual clas- 

sical kinetic equation for the distribution function to include 
the case when the Hamiltonian and the distribution function 
itself are matrices in the spin variables. It differs from the 
usual kinetic equa;ion by the presence of a term with the 
commutator [ R ,  f ]  and also in that the field and gradient 
terms are symmetrized, since the velocity vector is a matrix. 

We proceed now to the equation for the density matrix 
fMM, considered in the preceding sections. To this end we 
must rewrite Eq. (45) in the basis of the functions (2), in 
which the Hamiltonian (1) is diagonal. It must be borne in 
mind here that the function (2) depends on the direction of 
tke vector p, therefore the matrix elements of the derivative 
df /dp in the new basis do not coincide with the quantities 
dfMMf lap: 

M M '  dp 

The matrix elements of the operator P are determined here 
by the formula aMMz = ifiX Zp (dx,., /dp). 

On going to the basisx,, , the equations for the density 
matrix elements that are not diagonal in the bands 1 and 2 (at 
IM ( # IM ' 1 )  acquire terms of the form IE,(P) - E ~ ( P ) ~ ~ ~ , ,  
which stem from the commutator [ R ,  f ] in Eq. (45). In the 
absence of an alternating field that causes interband transi- 
tions, these terms make the elements that are not diagonal in 
the bands small (see the discussion of this question in Sec. 2). 
Therefore the off-diagonal elements can be discarded and we 
can write down uncoupled equations (disregarding the inter- 
band transitions due to collisions) for the density matrices in 
each band. Using the relation (46) as well as the property 
E~~~ ahk /dpl = 0, we can rewrite Eq. (45) in the basis of the 
functions (2) as follows: 
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where the subscripts M and M'  pertain to one band 
(IM I = IM'I), v = p/m, withm theeffectivemassin thecor- 
responding bandn 

The matrix h can be represented in the form 

The matrix f is the effective "spin" Hamiltonian that 
determines the change of the helicities of the particles in each 
band under the action of external field. Expressions (48) co- 
incide with the results obtained by Gorbovitskii and Perel"' 
in an investigation of quasiclassical quantization for matrix 
~amiltonians.~'  In the presence of a magnetic field, the Ha- 
miltonian h determines the energy distance between the de- 
generate (in the absence of a field) subbands of a given band, 
and by the same token the value of the effective g-factor in 
the quasiclassical limit. l 2  

Equation (47) differs from the usual equation for the 
distribution function only in the presence of a term with a 
commutator [f 31. We note that this term drops out when an 
equation is set up for the summary distribution function 
f+ + + f- -. As shown in Sec. 4, in the Born approximation 
this quantity relaxes independently. Therefore when using 
the Born approximation, in all the phenomena that are not 
connected with the spin, the difference between the field 
terms in (47) and the usual ones does not manifest itself. 
Outside the framework of the Born approximation, the spin 
fluxes and the particle fluxes are coupled, therefore the term 
with the commutator [h f] can play a substantial role for 
phenomena such as electric conductivity in a magnetic field. 

The complete equation for the density matrix is ob- 
tained by adding to the right-hand side of (47) the collision 
integral (18). As shown in Sec. 3, the collision integral be- 
comes much simpler when the density matrix element is ex- 
panded in terms of the angular momenta in accord with Eq. 
(3), since momenta with different x and q relax independent- 
ly. The field terms in (47) lead to a connection between the 
momenta and the values of x that differ by unity. The com- 
plete equations for the f zM. are too long to be presented 
here. We confine ourselves to some of the results. 

1) In the approximation linear in E and Vf, the corre- 
sponding terms in (47) acquire, after expansion in the mo- 
menta, the form f eEqSXlSFM.dfddp and 
f S,, SMMC (p/m)Vq f,. The quantity ED in (48) should be 
neglected here. 

2) For band 2 at ~ ( 2  the off-diagonal elements of the 
momenta are zero. The equationsJofo!: the corresponding mo- 
menta do not contain the term [h, f] and the action of the 
magnetic field reduces only to the Lorentz force. The term 
containing the Lorentz force takes the form 

e 
i - m2c {H-I [ ( x - q )  ( ~ + ~ + i )  /2]'"f:: +qHofMMXq 

3) With the aid of expression (49) at x = 1 and Eq. (16) 
we can find the equation of motion for the average spin vec- 
tor in band 2 (given the energy E )  

where r,(l) is the spin relaxation time determined by Eq. 
(38). It is interesting that no direct interaction of the spin 
with the magnetic field (efi/m,c)k J*H manifests itself. The 
only cause of the spin precession in band 2 is the Lorentz 
force. The particle rotation caused by it leads to spin preces- 
sion because of the rigid coupling between the particle spin 
and its momentum. 

Equation (47), supplemented by the collision integral 
(18), makes it possible, by expanding the density matrix in 
terms of the momenta, to investigate arbitrary (not quantum) 
kinetic phenomena due to carriers in a complicated band. 

"We follow Edmonds5 in the definition of these matrices. 
''The translational motion of the particles is assumed classical. The quan- 

tity f,,, considered by us is in fact the Wigner density matrix (seeSec. 5). 
"In semiconductors such as GaAs and HgTe there is no inversion center. 
The resultant additional terms in the Hamiltonian are, however, small 
and we neglect them. 

4'We thank V. I. Perel' and B. M. Gorbovitskii for a helpful discussion of 
this question. 
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