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Ferron states in magnets with singlet ground state of the magnetic ions in the crystal field are 
investigated. It is shown that when the ferromagnetic ion-ion exchange is close to its critical value 
(i.e., to the value starting with which moments are induced by the ion-ion exchange), self-trapped 
ferron states are always stable. In the case of antiferromagnetic ion-ion exchange between nearest 
neighbors, the competition of this exchange with the s-fexchange cause the magnetic subsystem 
to break up in the general case into two regions: a ferromagnetic region with variable ion moments 
and a noncollinear two-sublattice region with constant length of the sublattice moments and with 
variable angle between their directions. The effect of donor (or acceptor) defects on the properties 
of the singlet ferromagnet is investigated. These impurities differ from the previously studied 
substitutional magnetic impurity in that they have one additional characteristic length, viz., the 
radius of the electron orbit. It is shown that the radius of the region in which an excess magnetiza- 
tion is induced by a donor defect diverges at the critical value of the ion-ion exchange. 

1. INTRODUCTION 

One of us has shown earlier' that electrons from the 
conduction band or from inpurity local levels can produce 
ferromagnetic microregions in antiferromagnetic semicon- 
ductors. Free carriers can produce them at any point of the 
crystal, becoming self-trapped in these microregions. The 
electrons trapped on the impurity levels produce, naturally, 
ferromagnetic regions around the impurity atoms. It was 
also indicated in Ref. 1 that a similar situation is possible in 
other types of magnetic semiconductors, in which the mag- 
netization limit is not reached, particularly in singlet mag- 
nets. 

By singlet magnets are meant magnetic materials in 
which the total moment J of the ions differs from zero, but 
since the crystal lifts the degeneracy in the moment direc- 
tion, all three projections of the moment vanish in the 
ground state, i.e., the ion behaves as if it were nonmagnetic. 
If the exchange interaction of the ion with the neighbors is 
strong enough, it causes magnetic polarization of the ions: 
mixing of excited states with the ground state of the ion can 
result in an average moment projection that is not zero, al- 
beit not reaching saturation. 

The excess mobile electron (free or trapped by the impu- 
rity center) also tends to increase the degree of magnetic po- 
larization of the ions and to establish a ferromagnetic order- 
ing of their moments, such that the exchange energy of the 
electron with the magnetic ions has a maximum gain. This is 
possible for a free electron if it is self-trapped in a region with 
increased magnetic polarization, and for an impurity elec- 
tron if it produces such a region where it becomes localized 
by the potential of the defect. By analogy with antiferromag- 
netic semiconductors, one can speak in the first case of a free 
ferron and in the second of a localized one. The main differ- 
ence between a ferron in an antiferromagnet and a ferron in a 
singlet magnet is that in the former case the electron changes 
the directions of the "ready-made" moments, whereas in the 
latter it changes their magnitude by magnetic polarization of 
the ions. 

The problem of ferrons in singlet magnets became par- 
ticularly pressing after experiment revealed that the phos- 
phorus vacancies in the singlet magnet PrP induce magnetic 

a fact naurally explainable in terms of ferrons. 
Our present task is an investigation of free and localized 
ferrons in nondegenerate magnetic semiconductors with 
ions in the singlet state, viz., find the conditions for their 
existence and estimate their parameters. 

2. FREE FERRON IN A SINGLET FERROMAGNET 

We consider a mode whose Hamiltonian is 

H=Hs+H,+Ha, (1) 

where a, are the operators of annihilation of a conduction 
electron with spin projection a at the site g; A is the vector 
joining a lattice site with its nearest neighbors; Jg is the ion 
moment operator; s,, are Pauli matrices, B < 0 is the Bloch 
integral, D > 0 is the crystal-field parameter, A > 0 is the s-f 
exchange integral, and K is the direct exchange integral. In 
the Hamiltonian (1) HB is the Hamiltonian of the conduction 
electrons with account of the field V(g) of the defect, if the 
latter is present in the crystal. HM stands for the Hamilton- 
ian of the magnetic subsystem, its first term describing the 
influence of the crystal field and the second the exchange 
between the magnetic ions. The Hamiltonian H, describes 
the s-f exchange between the conduction electron and the 
magnetic ions. 

The Hamiltonian HM was chosen in a form correspond- 
ing to easy-plane anisotropy. At integer moment J, however, 
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it describes also singlet magnets. In fact, at K = 0 the ground 
state of the ion in the crystal field is the one with P = 0. 
Obviously, the mean values of J" and P are also zero in this 
state. It is important that this state is nondegenerate: it is 
separated from the higher states by an energy gap of size D. 
Thus, mixing of a state having P = 0 with lower states, 
which might yield a nonzero average moment projection, is 
impossible. Such a mixing can be made possible, however, by 
exchange of the magnetic ions with its neighbors, in which 
cause magnetic ordering appears in the crystal. 

Since the determination of the ground state of the Ha- 
miltonian ( 1 )  is esentially a nonlinar problem, it will be 
solved by a variational method. The trial function is sought 
in the form 

where 10) is the vacuum state for the electrons, and p,(g) 
and $, are the variational functions, normalized in unity, of 
the electron and of the ion g, respectively. 

Factorization of the functions of the electron and of the 
magnetic subsystem in (2) is equivalent to the adiabatic ap- 
proximation, while factorization of the functions of the indi- 
vidual ions is equivalent to the self-consistent-field approxi- 
mation for taking the direct exchange into account. 

We consider first the case of ferromagnetic ion-ion ex- 
change K>O. Obviously, then, all the average moments 
(& I J, I$, ) and the electron spin should be parallel to lie in 
the easy plane XY.  Choosing their direction to be the X axis 
and putting here and elsewhere for simplicity J = 1 ,  we write 
the trial function in the form 

P1e ( g )  =cp-a,, ( g )  =cp ( g )  11% 

where (m), is the wave function of the state in which the 
moment of the ion g has a projection m on the Z axis. In the 
state (2) and (3) the projection of the electron spin on the X 
axis is 1/2, and M (g), which assumes the role of the variation- 
al parameter, is the mean value of the projection of the angu- 
lar momentum of g in the same axis. 

The mean value of the Hamiltonian (2) in the state (2), 
(3) is given by 

Minimization of (4) with respect to M (g) leads to an equation 
for the stationary value of this parameter: 

AtA = 0 and M (g)=Mo, (5) is obviously the equation for the 
magnetization Mo of the crystal in the absence of a conduc- 
tion electron. It is easily seen that such an equation has a 
nonzero solution only starting with values ofK larger than a 
critical value Kc : 

Mo=[l- (K,/K).2]'",  Kc=D/2z, (6)  

where z is the coordination number. 
If the crystal contains a delocalized electron situated on 

the bottom of the conduction band, the system energy, accu- 
rate to asymptotically small terms, - 1/N where N is the 
number of sites, is equal to 

The energy of an electron that is self-trapped or located 
on an impurity level is calculated by minimizing (4) with 
respect to the function p(g). We choose as the trial function 

~ ( g )  =n-"'(Ba)" exp (-lplgl), (8) 

where the variational parameter p has the meaning of the 
reciprocal localization radius of the electron. We assume, in 
addition, the medium is continuous, meaning that pa( 1 (a is 
the lattice constant). This presupposes a small change of the 
magnetization M (g) over the length a .  The system energy 
reckoned from the energy (7) can then be written, in the prin- 
cipal order in pa, in the form 

where Vis the average potential energy in the state (8), and 
the following notation is used: 

6 = ~ D / A ( p a ) ~ ,  y=IBID"a/Ava, ?c=K/K,. ( 1 1 )  

A transformation to a new variable y = exp( - 2P Jgl) was 
made in (9) after replacing the summation over g by integra- 
tion. 

In the case of a free ferron ( V  = 0 )  it is convenient to 
transform from the variational parameterp to the parameter 
6 ( 1  1 )  which is proportional to the volume of the electron- 
localization region. Minimizing (9) with allowance for ( lo ) ,  
we obtain the following equation for the stationary value 
6=6,:  

A 8 Zh 

6 3  1 =-_; [71 (t) - 5 F , ( S ~ ,  x ;  ~ ) d ~ ]  =0, 
86 a-a,  o 

(12) 

The ferron state is energywise favored at E (6,  ) < 0. Inas- 
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FIG. 1. Plot of the function yc(x).  
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much as only the first term of (9) depends on y, this inequa- 
lity holds if y <y,, where y, is the value of y at which 
E (6, ) = 0. Equating the energy (9) to zero under the condi- 
tion (12), we obtain the criterion for the stability of the ferron 
state: 

FM 

where 6, = So(%) is the root of the equation 
1 1 

2 
- J ~ ~ ( 6 , . x ; y ) d y =  J F 2 ( 6 0 , ~ ;  Y ) ~ Y .  

0 

- 7  , -A 0 I K 

The function y, (x), obtained numerically, is shown in Fig. 1 
(positive x correspond to ferromagnetic ion-ion exhange). Its 
asymptotic values near x = 1, where it becomes infinite, and 
as x-+ w , are given by 

As a result of this behavior of y, (x) there always exists, at all 
values of the remaining parameters of the system, a region of 
values of x, in the vicinity of x = 1, in which the ferron state 
is stable. The reason is that at x=: 1, according to ( 5 ) ,  a no- 
ticeable polarization of the singlet ions takes place at a small 
degree of localization of the electron, so that a noticeable 
gain in the s-fexchange energy is obtained with a small loss 
of the electron kinetic energy. Figure 2 shows plots, vs x, of 
the quantity 6, which is proportional to the ferron volume, 
and of its nondimensional energy E = 4E/A, for different 
values of the system parameters. 

Let us discuss the physical meaning of the foregoing 
results. We assume that only the ion-ion exchange integral K 
is variable, and the remaining parameters are fixed. The ion- 
ion ferromagnetic exchange enhances the ion magnetic po- 
larization due to the self-trapped electron, so that the energy 
is lowered. At x < 1, at the same time, the presence of ion-ion 
exchange does not lower the free-electron minimum energy 
(7). As a result, the enhancement of the ion-ion exchange, 
i.e., the growth of ?t in the region x < 1, makes the production 
of a ferron easier (the monotonic increase of y, with increas- 
ing x in Fig. 1) and lowers the energy of the produced ferron 
(see Fig. 2). At x > 1 the enhancement of the ion-ion ex- 
change polarizes the magnetic ion almost to saturation even 
without the help of the electron, so that it increases the mag- 
netization little in the localization region and acquires a very 
small gain of the s-f exhange energy upon localization. 
Therefore the conditions for realization of a ferron upon en- 

FIG. 2. The parameters of the E and 6 ferron states at the following values 
of y: 1) - 0.24, 2) - 0.16, 3) - 0.08. 

hancement of the ion-ion exchange in the region x > 1 be- 
come more stringent (monotonic decrease of y, with increas- 
ing x in Fig. I), and the energy of the realized ferron is 
decreased, so that starting with a certain value ofx the ferron 
state becomes unstable (see Fig. 2). 

3. FREE FERRON IN A SINGLET ANTIFERROMAGNET 

In the case of antiferromagnetic ion-ion exchange 
(K < 0) the spin of the electron and the moments of the ions 
lie as before in the easy plane. We shall assume the electron- 
spin direction fixed along the X axis. The assumption that 
the electron spin is immobile is justified under the condition 
AJ( W, which is assumed satisfied ( W  is the width of the 
conduction band). This inequality makes it more difficult for 
the electron spin to become aligned with the angular mo- 
mentum of the ion on which the electron is located than with 
the average magnetization (see, e.g., Ref. 1). 

We shall assume for simplicity that the crystal is simple 
cubic. Accordingly, the magnetic subsystem will be of the 
NCel two-sublattice checkerboard type. In continuous-medi- 
um approximation we take the variational parameters to be 
the angles 2a(g) between the directions of the angular mo- 
menta of ions belonging to different sublattices at the pointg, 
and the values M (g) of these moments. The angles 2a(g) are 
generally speaking different from a ,  and the total moment of 
the sublattices is obviously also directed along the Xaxis. We 
can then write 

1 + - { I +  1 1-M2 ( g )  ] ' i a ) ' h I  O)g, vg=exp (ing) , 
v2 

(14) 

where a is a vector with components (n-/a;rr/a,a/a), so that 
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Y, is equal to + 1 or - 1, depending on the sublattice to 
which the ion g belongs. The partition function of the ions 
(14) can be obtained in the following manner. For each lattice 
site we introduce a local coordinate system X,  Y g Z g  such 
that Z ,  axis coincides with the Z axis of the common coordi- 
nate frame, while Xg is directed along the moment of the ion 
g. The local systems are then obtained from the common one 
by rotation through an angle + a(g) about the Z axis (the 
sign of the angle depends on the sublattice to which theg ion 
belongs). The state of the ion g in the local coordinate frame 
will obviously be described by the function (3). The transi- 
tion from the local system to the common one leads, using 
the known rules for the transformation of wave functions 
upon rotation of the coordinate frame, to the result (14). 

The wave function of the ground state of the system (2), 
(14) contains complex coefficients. It is easily seen, however, 
that complex conjugation does not change the form of the 
function (2), (14), since this operation is equivalent to permu- 
tation of the sublattice. Such a permutation transforms the 
system into itself, i.e., the ground state of the system is non- 
degenerate, as it should be. 

The mean value of the Hamiltonian (1) in the state (2), 
(14) is written in the form 

The energy of the crystal in the absence of an electron is 
described by the last two terms in (15). It is easily seen that in 
this case the moment Mo of the sublattices in the ground 
state differs from zero if the absolute value of K exceeds the 
critical value Kc. Then 2a(g)=a (i.e., a checkerboard anti- 
ferromagnetic ordering is realized), and relations (6) are val- 
id for M, and Kc. 

Minimization of (1 5) with respect to M (g) and a(g) leads 
to the following stationary values of these parameters: 

D A 
a ( g )  =O and - M ( g )  = - l g ( g ) 1 2 + K e M ( g )  

2 [ l - M z ( g ) ] " 2  2 
(16) 

A l q ( g )  ILnd cos a ( g )  = 
2 [4K2z2-D2]111 

It follows from (16) and (17) that in the case of weak 
exchange lK I < K c  there is realized in the entire crystal a 
collinear ferromagnetic order of the moments that are pro- 
duced as a result of the polarization of the magnetic ions by 

the electron. The moment of the iong is larger the higher the 
effective field h, = A Iq, (g) 12/2 acting on it. As the exchange 
IK I increases in intensity to Kc, the situation becomes more 
complicated. Wherever the probability of the sojourn of the 
electron is large enough, the angular momenta are parallel to 
one another and can greatly exceed the moment Mo in the 
absence of an electron. On the other hand wherever the prob- 
ability of finding the electron is low, a region with a noncol- 
linear antiferromagnetic structure is produced. The situa- 
tion in this region is the same as in a Heisenberg magnet: the 
sublattice moments have a constant value Mo, and the angle 
between them at the point g is smaller the larger h, . 

From (15)-(17) we can obtain the value of the lowest 
energy of the system when the electron is delocalized: 

N D K ,  
E,=Bz-B(IKI-Kc) 

Using the trial function (8) and relations (15)-(17), we can 
express the energy of the localized state, reckoned from the 
energy (18), in the form 

All the symbols have here the same meaning as in Sec. 2, and 
R = 0 at 1x1 < 1 and R = min[l.2S(x3 - 1)'12] at 1x1 > 1. 

In the case of a free ferron (V = 0) we can again go over 
to the parameter S and, following the reasoning of Sec. 2, 
obtain from the conditions E = dE /dS = 0 a criterion for 
the stability of the ferron state: 

l y < r c  ( x )  - (20) 

The function yc (x) obtained numerically is shown in Fig. 1 
(the region of negative values of x). The essential difference 
between the stability criteria of self-trapped ferron states in 
singlet ferro- and antiferromagnets (13) and (20) is that in the 
antiferromagnetic ion-ion exchange the function yc (x) has 
no singularities. The reason is that even though the point 
x = - 1 is the threshold for the appearance of moments in a 
singlet antiferromagnet, these moments are antiferromagne- 
tically ordered. To increase the s-f exchange energy, a ferro- 
magnetic order must be established, and this entails addi- 
tional loss of the ion-ion energy. 

As 1x1-rn we have y,-1.33.10-~1x1-~~~. Starting 
from this asymptotic value and taking (1 1) and (20) into ac- 
count, we can write down the criterion for ferron stability in 
the Heisenberg limit ( D  = 0): 

IBI I Kz1"3/A"3<8.4~10-3. (21) 

The numerical coefficient in (21) is about 7% smaller in 
an antiferromagnet than that obtained in Ref. 1, where a 
different trial function was used. 
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The monotonic decrease of y, with increasing 1x1 at 
x < 0 indicates that the enhancement of the antiferromagnet- 
ic ion-ion exchange always leads to a narrowing of the range 
of system parameters at which the ferron state is realized. 
While the ferron is stable at K = 0, it becomes unstable start- 
ing with a certain exchange intensity, just as in the case of a 
singlet ferromagnet. 

Concluding the consideration of the free ferron states, 
we note that an external magnetic field hinders the localiza- 
tion of a carrier in a singlet magnet at any sign of the ion-ion 
exchange (see the Appendix). 

4. LOCALIZED FERRONS AND THEIR INFLUENCE ON THE 
CRYSTAL STATE 

We discuss now the influence of the charged impurities 
on the crystal state. In the determination of the parameters 
of such localized ferrons we confine ourselves to the most 
interesting case of ferromagnetic ion-ion exhange. In this 
case V(g) in (1) and v in (9) are respectively equal to - e2/ 
~ ~ l g (  and - (e2/&@)(77~ / ~ 6 ) ' / ~  (e is the electron charge and 
co is the static dielectric constant of the crystal). The equa- 
tion for 6, will differ from (12) in that a term (e2/3&@)(7iD / 
~ 6 ) ' ~ ~  is added to the right hand side. Figure 3 shows the 
dependence of the energy and of the radius of the localized 
ferron on the direct exchange for typical values of the param- 
eters A J =  0.5 eV, IB I = 0.4 eV, E, = 15, a = 3.10-8 cm, 
D = eV. The same figure shows the energy and radius 
of the electron in the absence of s-fexchange and of a free 
ferron at the same remaining system parameters. 

The characteristics of a localized ferron are determined 
by the simultaneous interaction of an electron with an impu- 
rity center and with the lattice ions. Each of these interac- 
tions tends to localize the electron and to lower its energy. 
Therefore the energy and radius of the localized ferron are 
smaller than those for either an impurity state in a nonmag- 
netic crystal or a free ferron in the region of its existence. 

FIG. 3. Energy and radius: 1) of a localized ferron, 2) of an electron on an 
impurity in a nonmagnetic crystal, 3) of a free ferron. 

Enhancement of the exchange at x)  1, as already indicated, 
leads to a decrease of the influence of the s-fexchange on the 
carrier state, as a result of which the parameters of the local- 
ized ferron tend as X-co to the parameters of the impurity 
state in a nonmagnetic crystal. 

In nondegenerate semiconductors the density of the lo- 
calized ferrons is high compared with that of the free ones. 
The localized ferrons can influence the magnetic properties 
of the crystal as a whole. We investigated earlier the effect 
exerted on the properties of singlet magnets of only effects 
such that one of the regular magnetic ions is replaced by an 
impurity ion with a moment that does not vanish in a crystal 
field.4 We shall discuss here a similar problem for more com- 
plicated defects, viz., localized ferrons. 

According to Ref. 4, exchange interaction of an impuri- 
ty with nearby singlet ions induces in them an excessive mag- 
netic moment compared with an ideal crystal. The direct 
exchange between the singlet ions causes this excess moment 
to spill over outside the effective range of the exchange of the 
magnetic impurity with the singlet ions. The radius of the 
region perturbed by the magnetic defect diverges like 
11 - xi -'I2 as the critical point x = 1 is approached. The 
total excess moment of the crystal, diverges accordingly, i.e., 
the effective magnetic moment of the impurity becomes infi- 
nite. The reason is that near the critical point the singlet 
ferromagnet has a diverging magnetic susceptibility - / 1 - x /  - '. The strong influence of a magnetic impurity on 
the properties of singlet magnets was proved also by an ex- 
perimental ~ t u d y . ~  

It is natural to assume that a similar situation holds also 
when a singlet magnet contains a localized ferron, since the 
distortion of the magnetic subsystem in the far zone is deter- 
mined by the ratio of the crystal-field energy and the ex- 
change energy of the singlet ions, and not by the factor that 
led to the onset of the initial excess moment. To verify this, 
we consider in greater detail Eq. (5) for the case K > 0. Re- 
taining the first two terms in the expansion of the sum over 
the nearest neighbors, 

we rewrite it with allowance for (8) in the form 

At large distances from the ferron center, the excess magne- 
tization m = M - Mo(Mo = 0 (x - 1)(1 - 1/x2)'I2 is the 
magnetization of an ideal crystal) is a small parameter, and 
the right-hand side of (22) can be expanded in terms of this 
parameter. Retaining the first nonvanishing term, we obtain 

The solutions of the first two equations in (23) are combina- 
tions of terms proportional to exp( - 2Bg) and exp( - g/R ), 
where R is equal to a[x/z( 1 - x ) ] " ~  and a[l/z(x2 - 1)]'12 for 
the cases x < 1 and x > 1, respectively. The radius of the re- 
gion with increased magnetization is thus determined by the 
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larger of two quantities, the electron radius P -' and the 
"magnetic" radius R. It is interesting to note that near the 
point x = 1 the multiplier of the diverging term ( 1 - tc / -'I2 

in R is larger by a factor d2 at x < 1 than at x > 1. In Ref. 4, 
where a different model and another calculation procedure 
were used, R diverges in like fashion on the right and left of 
the critical point. 

If x = 1, it is natural to assume that m decreases with 
distance more slowly than exp( - 2pg) (this assumption will 
be confirmed by the result that follows), and to neglect this 
term in the last equation of (23). The asymptotic solution of 
the resultant equation is, according to Ref. 6, 

Thus, near the point of transition into the ordered state 
there are anomalies in the behavior of the singlet magnets if 
they contain not only magnetic impurities but also localized 
ferrons. A similar anomalously strong influence of defects 
on the properties of matter were investigated in systems 
close to the phase-transition temperature,'s8 and in almost- 
magnetic  metal^,^ where the exchange interaction of the con- 
duction electrons is not much less than that required to pro- 
duce a phase transition. 

APPENDIX 
Influence of external magnetic field on the ferron state in a 
singlet magnet 

Assume the presence of an external magnetic field of 
strength 2V in energy units, directed along the X axis. Con- 
sider first the case of ferromagnetic ion-ion exchange. In the 
principal order of the continuous-medium approximation 
we can write for the energy of the localized state, reckoned 
from the energy of a system with delocalized electron situat- 
ed on the bottom of the conduction band 

-'l,Kz C ( M 2 ( g )  --no2) - C ( w + h g )  (M(g)-Mo) , (A. 1) 

Equations (A. 1)-(A.3) were derived in analogy with Eqs. (4) 
and (5), with allowance for the fact that the "electron"fie1d 
h, = A Ig, (g)I2/2 acting on the iong is now supplemented by 
the external field A?. We calculate the value of aE /a%: 

- 2 ~  [ 2 M ( g )  M' ( g )  -2MoMof  1 
2 

where the prime denotes differentiation with respect to R. 
Substituting (A.2) and (A.3) in (A.4) we obtain 

From (A.3) we have 

We estimate the last term in (A.5) with account taken of 
(A.2) and (A.3) 

h,+%+KzM ( g )  Z ( M ( g ) - M O ) =  C [ [~,,DZ+ ( i , + z + ~ ~ ~  ( g )  

In the derivation of (A.7) we used the inequality 

Equations (A.5)-(A.7) yield readily the inequality a E /  
d X > O .  

We consider now the case of anitferromagnetic ion-ion 
exchange. Generalizing Eqs. (15)-(17) we see readily that at 
2 1 K I Z  < (D + *)I1' ferromagnetic order is realized in the 
system and all the equations are of the same form as in the 
case of ferromagnetic exchange. We apply therefore the deri- 
vation given above for the inequality dE  /8A? > 0. For the 
case 2 /K /z > (D + 2?)'12, however, the expression for the 
energy is written in the form 

- (%+h,) M ( g )  at IKI <Kt, 

where Kg = [D + (X + hg )2]112/2z, and M (g) satisfies 
(A.2). With (A.2) taken into account, we obtain an expression 
for a E  / d Z :  

(A. 10) 
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Using the inequality (A.8), we estimate M (g) under the condi- 
tion IK / <Kg: 
M ( g )  = (%+h,-IKl~M(g))['l,D~+(%+h~-IKlzM(g))~]-~ 

(8+h,-21 K lzM (g) ) (D21 K 1/4K:z2+1) >0. 

It follows from this that the last expression in (A. 10) is posi- 
tive. 

We have thus shown that the inequality d E / d Z > O  
holds at any sign of the exchange. This means that with in- 
creasing field the energy of the delocalized state decreases 

more rapidly than the energy of the localization state, and 
the localization of the carrier is by the same token made 
more difficult. A sufficiently strong external field trans- 
forms a singlet magnet into an almost saturated ferromag- 
net, in which no ferron states are realized. 
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