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The generation of oscillations is ascribed to the nonlinear periodic "phase-slipping" regime that 
obtains at the point near the boundary where the charge density wave stops. Equations describing 
this process are derived and qualitatively investigated within the framework of a simple micro- 
scopic model. It is shown that the corresponding distance to the boundary can be macroscopically 
large, which explains the almost coherent nature of the oscillation spectrum. 

1. INTRODUCTION 

Great interest continues to be aroused by the pheno- 
menon, discovered and first investigated in NbSe, (Refs. l 
and 2), of generation of narrow-band periodic oscillations 
(noise) by a running charge density wave (CDW). It turned 
out later on that this generation is a fairly general pheno- 
menon, and has thus far been observed in TaS, (Ref. 3), in the 
so-called blue bronze KO ,,MOO, and Rb, ,,Moo, (Ref. 4), 
and in Ta2Se81 (Ref. 5). The connection of the generation 
precisely with the motion of CDW is demonstrated by the 
entire set of facts connected with the Frohlich-conductivity 
mechanism: the appearance of noise upon the attainment of 
the nonlinear conduction regime (above the threshold field 
E,), the proportionality of the fundamental frequency and 
the harmonics to the excess ~ u r r e n t , ~  and, finally, the obser- 
vation by x-ray methods of the superstructure wave vector 
2k,. In the majority of cases the Peierls structural transition 
is clearly connected with the quasi-one-dimensional nature 
of the electronic spectrum (see, for example, Ref. 6), whereas 
in NbSe, the corresponding anisotropy is not too great (see 
Ref. 7). 

The theoretical interpretations of the generation pheno- 
menon are quite diverse. Suggestions have been made con- 
cerning the possible role of the quantum-mechanical tunnel- 
ing of the CDW,8 the soliton mechanism of conduction, 
which is in one way or other connected with the poor com- 
mensurability of the wave vector 2k, (Refs. 9-12), and the 
excitation by impurities of running-CDW oscillations. ',-I5 
All the enumerated physical mechanisms meet with difficul- 
ties when attempts are made to explain the small width of the 
spectral lines of the excited oscillations. The phenomenolo- 
gical description of the experimental data is usually based on 
the use of the model of a strongly damped simple pendulum 
with an electric field as the driving force.16," 

Common to all the existing theories is the attempt to 
relate the existence of a definite threshold electric field E,, 
above which motion of the superstructure (CDW) can occur, 
with the generation phenomenon. At the same time the pin- 
ning of the CDW in the incommensurate case is a volume 
effect, and is due to the impurities, which primarily fix the 
phase of the wave. '8-20 If the electric field is able to overcome 
the pinning forces, and the CDW moves, the random charac- 
ter of the disposition of the impurities leads to the excitation 
by them of incoherent broad-band noise. Convincing evi- 

dence for the local character of the mechanism underlying 
the generation of periodic oscillations in NbSe, was recently 
obtained in a number of experimental i n ~ e s t i ~ a t i o n s . ~ ' - ~ ~  In 
Ref. 22 a simple explanation is given for this which is based 
on the fact that, because of the higher effective conductivity 
and, consequently, weaker electric field near a measuring 
contact, the CDW moves in the region far from the contact, 
but is pinned in the region of the contact. The matching of 
the two regimes is realized as a result of "phase slipping." 

The concept of phase slipping centers (PSC) was recent- 
ly introduced independently by the present authorz4 into the 
problem under discussion in connection with the problem of 
the boundary conditions arising at a Frohlich conductor- 
ordinary metal interface, where the current transported by 
the CDW is convected into a current of ordinary charge car- 
riers. The present paper contains a more detailed discussion 
of this question. Our aim is to show that there inevitably 
arises at the indicated interface a periodic self-oscillation re- 
gime that gives rise under conditions of, say, a prescribed 
current to a periodic component of the measurable voltage 
potential whose magnitude does not depend on the overall 
sample length and the impurity concentration in the volume 
(as in Ref. 22). Below, on the basis of the simplest model, 
capable, however, of taking account of the nonlinear phe- 
nomena that occur during the motion of an incommensurate 
CDW, we obtain microscopic equations that describe the 
process itself. The generation phenomenon and the appear- 
ance of the PSC have, as we shall see, much in common with 
the analogous processes that determine the resistive cur- 
rent-voltage characteristics in thin superconducting chan- 
ne l~ . '~ - '~  At the end of the paper we shall discuss the possi- 
bility of deriving quantitative equations that describe the 
phenomena in question and certain difficulties that arise in 
an application to real quasi-one-dimensional compounds. 

2. PHENOMENOLOGICAL ARGUMENTS 

The lattice superstructure or charge density wave that 
arises below the Peierls transition temperature T, is usually 
described as a deformation u(x) = uocos(2k,x + p) that de- 
velops during the transition on account of the Kohn anoma- 
ly, i.e., the vanishing of the frequency of some phonon mode. 
In principle, the transition may be due to an electronic mech- 
anism (electron-hole pairing); therefore it is convenient to 

1057 Sov. Phys. JETP 59 (5), May 1984 0038-5646/84/051057-08$04.00 @ 1985 American Institute of Physics 1057 



choose as the order parameter of the new phase the "gap" in 
the electron spectrum: 

In the case of a structural transition the magnitude /A / of the 
gap is proportional to the amplitude of the structural distor- 
tion: /A 1' = gihu; (the electron-phonon coupling constant 
figures below in the dimensionless form). The arbitrary 
phase in (1) is sometimes written as p = - 2k,x0, which 
reflects the possibility of motion of the CDW as a whole in 
the absence of pinning forces. The charge of the CDW is 
connected precisely with the phase, while the charge density 
is connected with its gradient. In a weak, slowly varying 
electric field E  the equation for the phase, which describes 
the linear response of the system to the field, has the form 

where f l ,  -fiv,/T,, and the transverse correlation length 6, 
is determined by the interactions (by just the interaction or 
the tunneling overlap) between neighboring chains. In (2) we 
have omitted the lattice kinetic term @, and the change that 
occurs in the modulus of the order parameter in a weak field 
is assumed to be negligibly small. As to the friction coeffi- 
cient r and the charge density, which is proportional to a- ', 
they are known in simple models. Thus, near T, (but for 
AT) l!) we have 

while at lower temperature (T< T,) 

The expressions (3) and (3') are derived in Ref. 29 in a 
model in which there remains below the transition tempera- 
ture in the electronic spectrum electron-hole "pockets" with 
normal carriers. Estimates similar to (3') are valid at T- T, 
-A and for the case in which there are no pockets and the 
normal carriers correspond to electrons and holes thermally 
activated across the gap.30 In (3) and (3') the relaxation is 
assumed to be due to either elastic scattering by phonons (I /  
T- T,), or scattering by the static defects. For the results of 
this section, the anisotropy (f, (f l l  )is unimportant, since it is 
assumed that the field E  is oriented along the conducting 
chains. In this case instead of (2) we have 

I'@=aE+~l12d2cp/dx2. (2') 

One of the solutions to (2') is p = f2, where 
Q=ar-'E-eEl. (4) 

The static solution (6 = 0) is possible in the interior provided 
the body force exerted by the field is compensated by the 
pinning forces. A static solution of the form 

Q= VIIrp=-aE~ll-2z ( 5 )  

would imply the violation of the "superposition" condition, 
i.e., the variation of the superstructure vector with the coor- 
dinate. Thus, when the electric field in the interior exceeds 
the threshold field, i.e., when E > E , ,  the order parameter 
"vector" (1) rotates uniformly with angular frequency f2 giv- 
en by (4), or, which is the same thing, the superstructure 
moves as a whole with velocity 

Naturally, there arises the question how the solution (4) 
can be matched to the boundary conditions that arise either 
at a boundary with an ordinary conductor, in which the 
Peierls distortion does not occur at all, or at a boundary with 
a region where the local fields do not exceed the threshold 
values, as was the case in the experiments Ong et a1.22,23 The 
formulation of the problem in the latter case can be simpli- 
fied if we assume, for example, that there occurs an elevated 
pinning-center concentration near the contact (x = 0), an as- 
sumption which fixes the phase of the order parameter (1) at 
the interface. 

Physical phenomena, when they occur at the interface 
between two different metals, are more complicated in the 
sense that the boundary introduces by itself distortions of 
atomic order of magnitude that die down as we go from the 
boundary into the interior. In this case the structural distor- 
tions occur even above the Peierls transition point T,, and 
are, in the vicinity of the boundary, little affected by the low- 
temperature ( -  100 K) structural transformation. There- 
fore, below T, the structural distortion (1) in the interior 
should be matched with the distortion already existing near 
the boundary. But, phenomenologically, this fact can be for- 
mulated in the form of the requirement that the parameter 
(1) have a given value (p, = 0) at x = 0: 

Equation (2') admits of the convenient mechanical ana- 
logy shown in Fig. l in Ref. 24. A long elastic spring secured 
at x = 0 rotates in a viscous medium, the term with the elec- 
tric field being the applied body torque. A steady-state be- 
havior is possible only if at some section, say, at x = x,, be- 
cause of the accumulating stresses, the coupling between the 
two parts of the spring periodically breaks, so that slippage 
(by, for example, [p] = 2 4  of the phase occurs. From the 
mathematical point of view, Eq. (2') is a parabolic equation 
ofthe heat-equation type, in which the term with the field is a 
spatially homogeneous source. The above-introduced phase- 
slipping process provides a "sink," which can be described 
by including in (2') the additional terms 

-2nr6 (2-so) 6 (t-t,) , t,=2nQ-'n. 

Each time there is slippage the phase relaxes over dis- 
tances 

I X-so I -El (I'Q) -"-Ell (Tp/eEEll) '". (7) 

In weak fields the distances (7) are macroscopically 
large. So, taking T, z 50 K, v, - lo7 cm/sec (fII - lop6 cm), 
and E z  10 mV/cm, we find from (7) that 
Ix - xol - - lop4 cm. The slipping process leads to 
greater or smaller oscillations of the phase in the vicinity of 
the boundary, depending on the relation between (7) and the 
quantity x,. Finally, the slipping process itself occurs over 
some time period o; ' = to, which must be compared with 
the characteristic frequency f2 given by (4). 

In the literature the various properties of CDW (pin- 
ning, motion in weak field) are customarily described in 
terms of the variation of the phase p in (1). This is not ade- 
quate for the description of the phase slipping process pro- 
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posed by us: this process is due to a periodic process during 
which the amplitude / A  I in (1) vanishes, which breaks the 
coupling between the two parts of the spring (see Fig. 1 in 
Ref. 24). 

3. MICROSCOPIC MODEL 

In real quasi-one-dimensional conductors the compli- 
cated character of their energy spectrum, the characteristics 
of the one-dimensional problem that make the fluctuations 
play a greater role in the transition, the fact that the elec- 
tronic states tend to be localized in the presence of impuri- 
ties, etc.-all this makes the microscopic description of the 
phenomena that occur during the transition into the state 
with CDW extremely difficult. At the same time, as ex- 
plained above, we are primarily interested in those qualita- 
tive characteristics of the mechanism underlying the so- 
called Frohlich conduction which are due to the motion of 
an incommensurate CDW. In order to discard the nonfun- 
damental features of the phenomenon, we select for investi- 
gation a three-dimensional model with an electronic spec- 
trum possessing the superposition property: 
~ ( p  + Q) = - ~ ( p ) ,  a model investigated in detail by Kel- 
dysh and K ~ p a e v . ~ '  The one-dimensional characteristic 
finds its reflection in the assumption that the electronic sur- 
faces, though three-dimensional, are open, and consist of 
two separate sections located on the right and left in the 
Brillouin zone near thepI  = f k, planes. The two sections 
get superimposed on each other upon translation by the vec- 
tor Q (such a property is possessed, for example, by the qua- 
si-one-dimensional electron spectrum in the tight-binding 
model for simple structures, as ascertained in Ref. 32. 

The superposition of the Fermi surfaces leads to the 
formation of a low-temperature dielectric phase, and, if the 
longitudinal component of the vector Q, Q,, = 2kF, is in- 
commensurate with the crystal-lattice constant, then the 
system evidently exhibits the principal features of the Froh- 
lich-conduction phenomenon, i.e., motion of the CDW. Ex- 
perience gained in investigations of the kinetic phenomena 
occurring in superconductors suggests that, even in this ap- 
proximation, the problem is still very complicated, since the 
relaxation of the excitations and its connection with the 
CDW motion play an important role in the nonlinear regime 
in an electric field. But the model becomes much simpler if 
we take into account the fact that ordinary impurities have a 
destructive effect on the structural transition, depressing the 
transition temperature T,, as in superconductors with para- 
magnetic impurities. 

Below we shall derive dynamical microscopic equations 
describing the nonlinear regime, and valid in the region of 
defect concentrations close to the critical concentration, 
where the dielectric phase is strongly suppressed and exists 
only in the region of low temperatures T( Tp&Tpo, where 
T,, is the critical temperature of the dielectric transition 

mates, as a result of the pinning by the impurities, that con- 
tain a small parameter, which allows us to study the CDW 
motion in both weak and strong electric fields. 

In the mathematical respect the dielectric-transition 
model3' in close to the theory of superconductivity. Conse- 
quently, the derivation of the nonlinear dynamical equations 
in the indicated region is in many respects similar to the 
derivation of the dynamical equations for superconductors 
with paramagnetic i m p ~ r i t i e s , ~ ~  and even turns to be simpler 
in some respects. We shall refer the reader to Ref. 33 for a 
brief account of the derivation of the equations of interest to 
us. 

The total reciprocal lifetime of the electrons with re- 
spect to scattering by the defects is denoted below by 1/r. 
The superposable parts of the Fermi surface are located on 
the right ( + k,) and left ( - k,) in the unit cell. We assume, 
for simplicity, that the electron scattering is "isotropic:" 1/ 
T + +  = 1 / ~ - -  = 1 / ~ + -  = 1/2r. The defects play in our 
problem the same role played by paramagnetic impurities in 
a superconductor, smearing out the square-root singularity 
in the density of electron states. Therefore, in the vicinity of 
the critical concentrations (i.e., for l / r )  T,) the right-hand 
side of the relation which expresses the balance of forces 

Ca ( 2 h )  uzkF(r,  t )  =diZG+- ( r ,  t ;  r ,  t )  , 

acting on the superstructure, can be expanded in powers of 
the magnitude of the distortion (or the gap (I)), and also in 
terms of the slowness of the variation of the latter with the 
coordinate and the time. The inertial terms u,,~ are assumed 
to be small. In (8) d ,  is the deformation potential, while 
CO(2k,) is the bare (lattice) elastic constant of the phonon 
branch of interest to us. The dependence on time of all the 
quantities in the expansion of the right-hand side of (8) 
makes the use of the time-dependent diagrammatic tech- 
nique, expressed by formulas of the type (4) and Fig. 2 in Ref. 
33, necessary. Two kinds of terms, called in Ref. 33 regular 
and anomalous, must be computed separately: in terms of 
the first type the summation in the diagrammatic expansion 
of (8) in terms of the "carrier" frequency can, when T 4  1/r, 
be replaced by integration: 

2 n ~  = J d e ,  en= (2n+I) nT.  
en 

The anomalous terms always contain the factor t anh(~/  
2T)  - tanh[(s - w)/2T], which allows us to ignore the de- 
pendence on E in the expressions for the Green functions 
figuring in these terms. 

After these general remarks, let us give the result of the 
computation (8), and then make few additional comments. 
The result for (8) can be written out in the form of a time- 
dependent generalization of the Ginzburg-Landau equation 
for the parameter A = A + - = d Z k F :  

A - 
occurring in the chosen model in the absence of defects. The 8/27n2~02 ( T 2 - T p 2 )  A+ Z [ 3 ~ c ~ + 1 e / 8 ~ e 2 2 ) i e ~ z ~  
three-dimensional character of the model guarantees the ex- 
istence of long-range order in the structural dielectric transi- - 4 ~ ;  ( X  V )  2A+20/gl~e2 I A 1 (9)  

tion even in this defect-concentration region. And it leads Here r, = 4y/3rTp0 (where y is the Euler constant) in the 
(we shall dwell on this below) to threshold-field (E,) esti- case of isotropic scattering; T, is the structural transition 
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temperature (T, (T,, in the concentration region being in- 
vestigated). The Eq. (9) contains ;, which is nonzero only for 
the longitudinal component of the electron velocity (the 
averaging is performed over one section of the Fermi sur- 
face, say, the section with + k,). Finally, the term with the 
space derivatives reflects an anisotropy in the longitudinal 
and transverse directions: 

The determination of all the coefficients in Eqs. (9) and 
(10) requires specific computational work quite close to the 
analogous computations carried out in Ref. 33. The latter 
computations pertain to the first, second, and last terms in 
(9). The term with space gradients requires greater attention 
because of the disconnected topology of the Fermi surface. 
The third term in (9) introduces the main difference between 
the two problems. It contains only the longitudinal compo- 
nent of the electric field, which reflects the fact that the 
CDW can move only along the incommensurate direction. It 
is important for the obtaining of a gauge-invariant definition 
of E that we take the diagrams of Fig. 3 in Ref. 33 into ac- 
count. (In Ref. 33 they lead to the appearance of a function $ 
that is found on the basis of the electrical-neutrality condi- 
tion to be equilivalent to an electrostatic potential. A similar 
fact obtains in the problem under consideration, and is im- 
portant in the derivation of (9) and the expression for the 
current below.) 

The simplicity of the chosen model is reflected first and 
foremost in the form of the expression for the current. In 
fact, because of the small number of collective electrons, the 
dominant contribution to the current is made by the normal 
carriers. The presence of the CDW gives rise to only correc- 
tion terms of two types: the first is due to the decrease in the 
number of normal carriers, while the second gives the small 
increase in the current resulting from the CDW motion: 

The transverse component of the current does not contain a 
third term, and is obtained by means of the substitution 
Ull -'Ul. 

The smallness of both corrections makes Eqs. (9) and 
(1 1) linearly independent of each other: the electric field in 
the first approximation is prescribed, and the behavior of A 
is, according to (9), determined by the constant field Ex. The 
time dependence of A (if there is such a dependence) gives 
rise to small corrections to the current (1 1) (or the field E in 
the case of a prescribed current). 

As usual, it is convenient to simplify the equations ob- 
tained by going over to dimensionless quantities. To do this, 
let us set'' 

I Am2 1 =6/5n2Tpz ( 1 - T Z / T p )  =6/5n2Tpz6, 

A 1 A 1 A', o , = 4 / e n z T p 2 ~ , 6 ,  

(Notice that, according to (9), 6 -  1 .) 
The set of equations (9) and (1 I), as rewritten for the 

dimensionless quantities, has the following simple form: 

(the primes on the dimensionless variables have been 
dropped so as not to encumber the subsequent formulas. The 
inverse transition to the notation in (9) and (1 1) will be stipu- 
lated as the need arises). 

Let us conclude this section with an assessment of the 
role of the random disposition of the impurities, since all the 
preceding equations were derived for the averaged quanti- 
ties. For the CDW-motion problem ofinterest to us the ques- 
tion of pinning forces is the most important question. We 
shall, proceeding in the spirit of Refs. 19 and 20, i.e., asum- 
ing the pinning action of the individual impurities to be 
weak, estimate the threshold-field values E, at which the 
CDW breaks away. In this situation the CDW is locked in 
some volume with longitudinal dimension L as a result of the 
Gaussian fluctuations of the total energy of the interaction 
with the impurities: 

U(2kF) A E L  n - (LSni)  '" - , 
gph2 E F  E I I  

where U (2kF) is the Fourier transform of the potential de- 
scribing the scattering by the impurities. The pinning of the 
wave leads to a situation in which the phase of the wave has 
nonzero gradients. Estimating from (9) the density of the 
energy connected with the appearance of the gradients (Eq. 
(9) is the result of the variation of the corresponding free 
energy, which, in atomic units, has a scale of A '/E :), we 
obtain for the loss in energy resulting from the appearance of 
gradients in a volume of the order of L 3({ :/{ ) the expres- 
sion 

EFn (Ar'EF) 'EL2L 

(above, n is the volume concentration of the electrons; 
nA /E,, the amplitude of the charge density in the CDW). 
Equating the two contributions, and minimizing with re- 
spect to L, we find that 

L-Elg~h4 ( A/EP)  ( ~ E F )  ( E L ~ F )  ( E ~ I / ~ L ) ~ .  (I  3, 

The energy of interaction of the CDW in the volume L with . 
the electric field can be determined in similar fashion. Its 
order of magnitude is, as follows from (9), given by 

nL3 ( E , / E l , )  'eE1 (TEF) ( A / E p )  z .  

Equating the last expression to the pinning energy, and using 
(13), we obtain for the threshold field E, (assuming A - T,) 
an estimate that it is convenient to write in the form 

eEtF/Tp2-gph-"tcTP) ( g l . k ~ )  -'. (14) 
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The factor (g,k,)-4 in (14) determines the necessary condi- 
tion for the model to be three-dimensional, to the extent of 
which the dimensionless field E ' in (12) may satisfy the con- 
dition E '(1. 

4. DISCUSSION OF THE POSSIBLE STRUCTURE OF THE 
PHASE-SLIPPING CENTERS 

As has already been noted, in our model the field (or 
current) oscillation problem can be considered separately, 
after the corresponding solution to Eq. (9') for the gap in the 
presence of an electrostatic field has been found. In this re- 
spect the problem is significantly simpler than the PSC prob- 
lem for, say, superconducting  channel^,'^.^^ where the sys- 
tem of equations equivalent to (9') contains another equation 
determining the electric field. Unfortunately, the nonlinear 
equation for the complex parameter A in (9') nevertheless 
requires numerical integration, which has so far not been 
carried out. In this paper we shall only analyze the various 
possibilities and some qualitative features of the problem, 
first having in mind, for simplicity, the plane solutions (from 
the standpoint of the spatial dependence). Strictly speaking, 
such solutions probably bear a quantitative relation to only 
thin samples with a transverse dimension smaller than, or of 
the order of, [, . 

It is expedient for what follows to also write Eq. (9') in 
the form of two equations determining the modulus and 
phase of the order parameter (1): 

where Q = Vp. 
a. The boundary conditions. Above in Sec. 2 we noted 

that the presence of a boundary with another metal imposes 
severe limitations on the behavior of the superstructure in 
the vicinity of the boundary, which can be phenomenologi- 
cally described by requiring a fixed phase at x = 0. 

To any boundary corresponds a certain surface energy. 
The fact that the boundary between the two media is tied 
with atomic rearrangements little affected by the low-tem- 
perature structural transition is an indication, at any rate for 
the temperature region where the Ginzburg-Landau theory 
is valid, of an "infinite" surface energy. The effective bound- 
ary condition at x = 0 arises from the following quite trivial 
arguments, which, however, have, as far as the present au- 
thor knows, not been adduced in any published paper.' As 
we approach the boundary, A increases, and begins to exceed 
its values in the interior, though in some region is still re- 
mains small compared to the quantity T,, (in dimensional 
units). In this region we can discard in (15) the terms of the 
order of the normal terms in the Ginzburg-Landau theory, 
and write down the first integral of these equations (for a 
plane boundary): 

The constants q and c, have the usual order of the Ginzburg- 
Landau theory, i.e., they are determined by the solutions at 
points far from x = 0. The expected increase of the deforma- 

tion amplitude as we approach the boundary are given by the 
function 

A (x) =l/yz(x-x*), (16') 

where the effective boundary displacement x* can be of ei- 
ther sign. The location of the "boundary" is fixed by the 
structure of the interface to within the coherence length: 
lx* 1 -l,, -fivF/Tpo (in dimensional units). In the Ginz- 
burg-Landau theory, adjoining the asymptotic form (16') is 
a broad transition region, over the length of which /A I at- 
tains the usual values of the quantities. The first of the inte- 
grals in (16) yields in the range of (16') the relation Q = dp/ 
Jx-tO. Thus, the phenomenological specification (6) of the 
fixed phase at the boundary between the two media only 
slightly oversimplifies the situation, since it neglects the law 
(16') of increase of the magnitude of the deformation, but 
correctly reflects the physical essence of the matter: the exis- 
tence of a large surface energy connected with the presence 
of the boundary. 

The relations (16) and (16') furnish a rigorous formula- 
tion of the boundary conditions of interest to us, but un- 
doubtedly introduce certain complications into the math- 
ematical procedure for solving the equations (9'). 

In the experiments of Ong et al.22~23 it was assumed that 
a CDW moving in the interior stops near the measuring con- 
tacts. The latter possess a high conductivity, and shunt the 
current in the contact region, thereby lowering the electric 
field to values lower than the threshold value. In such a for- 
mulation the surface energy for the boundary separating the 
region where the CDW moves and the region where it is 
fixed depends on the local phase difference at a point on the 
interface, which, incidentally, has an uncontrollable shape. 
The arguments adduced below in Subsec. c elucidate the rea- 
sons why in this case the effective boundary condition (6) 
remains applicable and the phase-slipping process is insensi- 
tive to the above-mentioned inhomogeneity. But if the mate- 
rial is sufficiently pure, then the formulation of the problem 
does not depend on the proximity to the threshold field. 

6. The dynamical character of the PSC. The contribu- 
tion made by the CDW motion to the longitudinal current 
(the third term in (1 1)) can vanish continuously ifA (x,,t )=O 
at some point x = x,. This static solution is well known: 

A (x) =th [ ( x - r o ) l l ~ l .  (17) 

But the formation of such a stationary soliton wall gives rise 
to an additional surface energy, which, in any case, is disad- 
vantageous in weak fields. As to the symmetric solution, 
which reduces in the vicinity ofx, at the moment t = 0 to the 
form 

A(x)--alx-sol, (18) 

Linearizing Eq. (9'): 

we find 
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Thus, the solution (18) vanishes, and A (x,,t ) increases 
with the time. Therefore, as in  superconductor^,^^ a phase- 
slipping center turns out to be a dynamical object: A (x,t ) can 
vanish only at specific moments of time, and describes a non- 
linear periodic regime. 

c. Location of the PSC. In the phenomenological de- 
scription presented in Sec. 2 there is nothing to fix the loca- 
tion of the PSC (the point x,). The numerical solution to the 
equations (9') with the boundary condition (6) determines 
this position, selecting the most stable regime out of all the 
conceivable regimes. Of course it may turn out that, even in 
weak fields (i.e., for E '(I), the quantity x, is of the order of 
the coherence length (in dimensionless units x,- 1). But the 
fact that, in weak fields, the experimentally generated noise 
has the character of discrete and the spectrum con- 
sists of a large number of narrow lines indicates that x,  can 
be fairly large. We shall now discuss the qualitative features 
of the nonlinear periodic regime, assuming x,) 1, which will, 
in particular, allow us to elucidate the physical mechanism 
producing the oscillations themselves. 

Whenx,) 1, there exists, according to (6), a region in the 
vicinity of the boundary where the temporal oscillations of 
the phase, as well as of lA 1 and Q, are small. In this region the 
time-averaged equations (15) assume the form 
(g=: Q, 12 1 z lA / : two-dimensional problem) 

If Ex (1, the term with the second derivative in the first of 
the equations (15') can be neglected, since lA / varies slowly: 

Substituting this into the second of the equations (15'), and 
integrating we obtain 

The left-hand side of (19) has the form of a function with a 
maximum at IQ,,, / = l / O ,  i.e., the solution (19) is two- 
valued. To the stable branch correspond the solutions with 

I Q I < l / O  (in formal analogy with the well-known result for 
the problem of critical currents in the theory of supercon- 
ductivity). When IQ,,, I ,-- 1 / 0 ,  the adiabaticity condition 
for the lA / variation is violated (6'Q /ax = w ), while in the 
case when lQ / > 1 / O  the solutions (19) turn out to be local- 
ly unstable against perturbations with characteristic vari- 
ation scales k -'(l/E, for which it can be assumed in the 
equations (15') that lA 21Q = const. 

The foregoing elucidates the physical mechanism gov- 
erning the appearance of the PSC. In the region where the 
phase is fixed in a wall, the electric field produces a phase 
gradient, which, according to (I), is equivalent to the vari- 
ation of the vector Q (more exactly, of its longitudinal com- 
ponent), and therefore violates the condition for the two sec- 
tions of the Fermi surface to be superposable. Setting 

/ Q,,, I = l / O  in (19), we obtain 

E X ~ = $ - I ~  (13+1)/13-1). 

In (19) the solution has been chosen such that Q (x = 0) = 0. 

Generally speaking, there is no such boundary condition. 
(This circumstance has already been pointed out above in 
Subsec. a of the present section.) But if the numerical solu- 
tion to the equations (9') does not provide a special compen- 
sation, and Q (x = 0) 5 1 / 0 ,  we obtain from (19), as before, 
the estimate 

xo-E-'. (20) 

Using the same parameter values with which the estimates in 
Sec. 2 were carried out, we obtain in dimensional units the 
estimate 

so-T,/eE-1 mm. 

But although the expression (20) depends on the field 
strength, it probably overestimates x, (Gill2' and Ong et 
~ 1 . ~ ~ 9 ~ ~  have given as estimates for the effective distance over 
which the role of the contacts is important values of the or- 
der of fractions of a millimeter). Although above we have 
repeatedly stated that the final answer in respect of the posi- 
tion of the PSC will be given by the numerical solution to the 
equations (97, we can indicate a mechanism capable, in prin- 
ciple, of fixing the value of x,: the interaction with the 
boundary. Indeed, A (x,t ) vanishes with the frequency R giv- 
en by (4), or, in dimensionless units, 

According to (15), the nonlinear /A ]-variation process is it- 
self characterized by a unit time scale. The time necessary 
for lA 1 -  and phase-variation bursts to reach the boundary 
through diffusion and be reflected back is of the order of x i .  
Requiring that the interaction with the wall be able to influ- 
ence the nonlinear /A /-variation regime, we obtain 

x,,-E-112 (21) 
i.e., we return to the estimate (7), which gives the diffusion 
width of the PSC. (In such a regime the large phase gradients 
are concentrated near the PSC.) This yields x,- lop3 cm at 
frequencies f = R /2a- 10 MHz, which is not bad, consider- 
ing the simplified character of our model equations (see Sec. 
5). But the most important fact that can be extracted from 
the estimates (20) and (21) is the fact that the distances from 
the PSC to a real interface or the region of a measuring con- 
tact could be macroscopically large, which smooths out in 
every possible way the inhomogeneities capable of bringing 
about the broadening of the spectrum of the generated oscil- 
lations. From this it also follows that the oscillations cannot 
occur in a very short sample, since there is not region where 
steady-state CDW motion can occur. 

An experimentally important question concerns the 
signal amplitude (of the potential oscillations; normally, the 
current is fixed). According to the expression for the current 
given in (97, the change that occurs in the electric field as a 
result of the presence of the CDW is 

From this we can easily estimate the PSC-induced additional 
variable voltage S V(t ) in the regime characterized by the x, 
value given by (20) or (21). The contribution from the first 
term (in the integration over the coordinate) is due to the 
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rapid )A / variation, which occurs over unit distances (-g,, ), 
and is therefore proportional to E. In the second term the 
change [p] = 277 initially occurs just as rapidly and over the 
same distances. This stage would produce a potential spike 
with amplitude that does not depend on the field. Next fol- 
lows the stage at which the phase jump undergoes diffusional 
smearing over distances equal to (7) or (2 I), which furnishes 
the value of the amplitude of the variable potential: 
S V ( ~  ) - E 'I2. In the regime (2 1) the bursts overlap, and 
SV (t ) -E 'I2. O n g e t ~ l . ~ ~  have experimentally observed that, 
as the current increases, there initially occur (at field values 
not too much higher than the threshold value) periodic po- 
tential bursts that go over, as the field strength increases, 
into the nonlinear periodic regime. The field dependence of 
the signal amplitude found by Ong et al.23 does not contra- 
dict the above-stated ideas, if we leave out the fact that in our 
model the existence of the threshold field is neglected every- 
where 

d. Strongfields E ') 1. In this case it is possible to obtain 
closed formulas for the PSC,3 although, experimentally, this 
field region is evidently not of current interest. In the region 
x< 1 (x - 1 /JE';) the equations (9') for the complex A can be 
simplified: 

The exact solution, satisfying the condition (6) at x = 0, to 
this equation is the superposition: 

A =A (0) exp [-x (iE,')Ih] + ( x / l s )  exp (-iE,'t) . (23) 

The term linear in x has been chosen such that (23) can be 
matched with that solution to the nonlinear equation (9') 
which has the form 

A (5, t )  =th ( x @ )  exp (-iE.'t) 

in the region x> l/JE'. Let us choose the simplest example 
in (6): A (0) = 1. (The thermodynamic value of the gap is pre- 
served near the boundary.) Using the conditiond (x,t ) = 0 in 
the expression (23), we easily find that 

xO= (2E;)-lh In E,', 3,-E,'tn=2nn. 

Integrating the oscillating component of the field in (22) over 
the coordinate, we obtain (in dimensionless units) 

6 V f ( t )  (1-'/,E) sin ELt. 

The amplitude of the potential oscillations does not depend 
on the electric field, and the position of the PSC is clamped to 
the boundary at distances smaller than the coherence length. 

e.  Thicksamples. Thus far we have investigated only the 
plane regime, in which the order parameter vanishes in the 
entire x = x, plane at the moments of time t, . In a sufficient- 
ly thick sample a more stable system may be the periodic 
system of "vortices"-dislocations in the periodic superstruc- 
ture that move in some plane x = x, in a direction perpendic- 
ular to the current with velocity u, connected with the dis- 
tance D between the dislocations by the trivial relation 

2nu,=QD. 
The above-presented arguments concerning the position of 

the x = x, plane in weak fields remain, it seems to us, valid. 
In its turn, the distance between the dislocations is large in 
weak fields, i.e., the system of vortices corresponds to wide- 
ly-spaced, almost isolated dislocations. The analysis carried 
out in Subsec. c of the present section shows, however, that 
there occur in the x = x, plane large drops in the phase gra- 
dient, Q- 1, which plays the role of a "superconducting ve- 
locity" in Eq. (9'). The solution to Eq. (9') for a moving dislo- 
cation is highly deformed in comparison with the solution 
for the case of a stationary dislocation (the latter solution in 
no way differs from the vortex solution to the Ginzburg- 
Landau equations), and requires special numerical computa- 
tions. Assuming the form of the solution A (x,y - u, t ), we 
can only estimate from (9') the order of magnitude of the 
transverse velocity with the aid of (12): 

u L - t L ~ o - ( Z )  I h  ( T ~ T ~ ) .  

On applying our model to the relatively isotropic crystal 
NbSe,, we obtain overestimated values for the velocity u,. 
Besides, this answer also may depend on the actual location 
of the x = x, plane. We shall not investigate this question 
here, since it is not clear at what sample thicknesses the plane 
regime is replaced by the "dislocation-trail" regime: the 
sample inhomogeneities and the surface barrier for the entry 
of the dislocation inevitably play an important role in this 
case. Another point is the observation in NbSe, single crys- 
tals of a longitudinal CDW domain structure,34 whose origin 
and role remain obscure.35 

5. CONCLUSION 

The model proposed above naturally does not lay claim 
to more than a qualiative description of the phenomenon, 
not only because of its three-dimensional character, but also 
because it describes the so-called gapless case, in which 
many important aspects of the excitation kinetics are lost. 
But in the opposite limiting case of sufficiently pure samples, 
i.e., for T,,T) 1, such a three-dimensional model is probably 
closer to reality,29 and will in turn be investigated. The quasi- 
one-dimensional character should affect the characteristics 
of the elementary-excitation kinetics as well. In particular, 
above we said nothing about the interaction of the PSC with 
the variable field, since, evidently, it is precisely here that the 
excitation relaxation processes are important, especially in 
the region of the spatially inhomogeneous gap. Thus, these 
processes could introduce different time scales of the vari- 
ation of the modulus and the phase of A. The hindered pro- 
cess of momentum transfer to the lattice (see Refs. 36 and 37) 
is also a characteristic, due to the topology of the Fermi 
surfaces in the incommensurate case, of a quasi-one-dimen- 
sional conductor, the energy relaxation being relatively easi- 
ly ensured by the electron-electron interactions. Finally, let 
us note that, to obtain a unique physical picture, not related 
to pinning by impurities, we need experiments performed 
on, wherever possible, purer materials and in strong fields (as 
compared with the strength of the threshold field). 

In conclusion the author expresses his gratitude to B. I. 
Ivlev and N. B. Kopnin for useful discussions. 
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"In comparison with Ref. 24, the expressions (9) and (12) contain unim- 
portant corrections to the numerical coefficients. 

"We have in mind the obvious analogy with the derivation of the bound- 
ary conditions for two superconductors with sharply differing T,'s on 
the side of the superconductor with the low transition temperature. 

3'The author is grateful to B. I. Ivelev for drawing his attention to this 
limiting case. 
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