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The magnetoresistance u (H ) of a thin film with diffuse electron scattering at the boundary and a 
low concentration of impurities is calculated for the case of a parallel magnetic field H.  It is shown 
that a study of u (H ) can be used to determine the mean free path I for scattering by impurities. 

1. INTRODUCTION 

Interest has recently heightened in the study of the mag- 
netoresistance of thin metal and semiconductor films.' This 
is due in large measure to the appearance of theoretical pa- 
p e r ~ ~ - ~  which explain the anomaly in the magnitude and sign 
of the magnetoresistance of semiconductors by an effect of 
the magnetic field on the quantum corrections to the con- 
ductivity. This effect is particularly pronounced in films. 

The anomalous magnetoresistance of films was calcu- 
lated in Refs. 2 and 4; Ref. 2 considered the case in which the 
magnetic field is perpendicular to the film, and Ref. 4 consid- 
ered the case of a parallel field. Both calculations apply un- 
der conditions in which the mean free path I is much shorter 
than the film thickness d, i.e., the film is considered "dirty." 

In many experiments amorphous metal films are used. 
In spite of the structural imperfections of these films, the 
mean free path in them is appreciable, and so the inequality 
ISd may be satisfied. This is due to the relatively small size of 
the pseudopotential of an individual atom. This pseudopo- 
tential plays the role of the scattering center for electrons in 
amorphous systems. Therefore, the only effective process is 
diffuse scattering at the film surface. 

Calculation of the anomalous magnetoresistance for 
ISd is thus a pressing problem. Here the diffusion approxi- 
mation, which has been used in the previous conductivity 
calculations, does not apply. Assuming the condition 
L, )A, whereL, = (eH)-'I2 is the magnetic length andR is 
the electron wavelength on the Fermi surface (fi = c = 1 
throughout), the problem at hand can be solved in the quasi- 
classical approximation. This yields equations of the kinetic 
type for the Green functions and cooperon, the latter being 
responsible for the leading quantum correction to the con- 
ductivity forp,lS 1. These equations and their solutions are 
given in Sec. 3. 

The formula for the correction to the conductivity in a 
magnetic field for d<l  can also be obtained (up to numerical 
coefficients) from simple qualitative considerations. 

2. QUALITATIVE PICTURE 

The main complication which arises in considering the 
magnetoresistance in a pure film in a parallel magnetic field 
is that the additional phase advance e$A.dr arises not along 

the entire electron trajectory but only on individual seg- 
ments on which the electron undergoes scattering by impuri- 
ties. In fact, on a segment of the trajectory which crosses the 
film without collisions with impurities (see Fig. la) we have,' 
in the gauge A = (Hy,O,O), 

y dx=eH ctg cz (1) 
-'/ad ctg a - d / 2  

Therefore, in a film without impurities the phase advance on 
a closed trajectory, the quantity which determines the mag- 
netoresistance, is independent of the length of a typical tra- 
jectory. If scattering by impurities occurs in the film, then 
even rare scattering events lead to growth of the phase ad- 
vance as the length of the trajectory increases. Thus, if the 
time of motion along a trajectory is equal to t, while the time 
between collisions with impurities is T, then the phase ad- 
vance is made up from the contributions of the individual 
scattering events, the number of which is t /T. This phase 
advance is given by 

The phases advance pi depends on H and the angle a (see 
Fig. lb) between the velocity direction and the x axis. For 
small angles a we have pi -eHd 2/a, and the average in for- 
mula (2) means an average over angles. '' The minimum value 
of a is equal to d /I, where I = VT is the mean free path for 
scattering by impurities. Therefore, the maximum value of 
pi is of order eHdl. For eHdlg 1 we find 

FIG. 1. 
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= exp ( - t / ~ ~ ) ,  (3) 

The coefficient 79 is obtained as a result of a systematic eva- 
luation [see formula (29)l. It is seen from (4) that in the weak- 
field region l/rH does not depend on T. In the case when 
eHdl) 1, for angles not too close to grazing (aseHd 2, the 
phase increment is small, pi (1, while for a 5 eHd we have 
pi 2 1. For the trajectories closest to grazing, on which 
pi 2 1, each collision event, independent of a, leads to phase 
relaxation. Therefore 

Rendering the integral in formula (5) dimensionless, we ob- 
tain for eHdl) 1 [see also (3 I)] 

I / ~ ~ = e H d ' / 3 t .  (6) 

The quantum correction to the conductivity can be evaluat- 
ed with the formula4 

where D is the diffusion coefficient, T, is the electron phase 
relaxation time, and the magnetoresistance is given by 

AG(H)  =GG ( H )  -GG(O) = ( e z / 2 n 2 ) l n ( 1 + ~ / ~ H ) .  (8) 
In principle, TH depends on q, and formulas (4) and (6) corre- 
spond to q = 0. These formulas can be used if the longitudi- 
nal length scale b, which governs the dependence of rH on q, 
is greater than l/q., where q? = (TG ' + T; ')/D. In the case 
dHdl4 1 this length scale is b = I, and the function (4) is valid 
for L, = ( ~ , ~ ) ' ' ~ > 1 .  If eHdl) 1, the corresponding scale is 
b - d /eHd 2, and formula (6) is valid for L, > l/eHd. 

The dependence of TH on q is important for 

Under condition (9) the minimum grazing angle is amin -qd, 
and pi 4 1 for all pi. As a result, by analogy with (3) we have 

For typical values q-q., under condition (9) we have 
r, (rH (q. )=rH. Here the magnetoresistance is given by 

AG ( H )  = (e2/2n2) ( ~ q / t H ) ,  (11) 

where 

To determine the numerical coefficients in formulas (4), 
(6), and (12) we.must carry out a systematic calculation, 
which is done in the next section. 

3. EQUATION FOR THE COOPERON AND ITS SOLUTION 

In the quasiclassical approximation and under the con- 
dition I)d, the diffusion equation2 for the cooperon C, (rr't ) 
can be replaced by an equation of the kinetic type: 

-J do.,C,, (rr't) wvv,=6 (r-rf) 8 (1-t') . 

For the vector potential A we choose the Landau gauge 
A = (Hy,O,O). To evaluate the correction to the conductivity 
we need the quantity C, (rr), which is gauge invariant. They 
axis is taken perpendicular to the film, and v is the electron 
velocity on the Fermi surface. As usual, we assume the con- 
ditionp,I) 1, which enables us to treat the quantum correc- 
tions in low orders of perturbation theory. 

At the film boundaries y = d /2 we apply the condi- 
tions of diffuse electron reflection: 

uC. (rr't) I v.,. = J do., 1 nvf l C,,, (rr't) . 
n (14) 

n v r < 0  

These conditions were introduced by Ovchinnikovs in a qua- 
siclassical treatment of the problem of the critical point for 
superconducting thin films. In equation (14) n is the inward 
normal to the film surface. Equations (13) and (14) imply that 
C, (rr't ) depends importantly only on y and y'. After Fourier 
transformation on the variables x ,  z, t ,  we find 

For the case of point scatterers, the quantity w = 1/4m can 
be taken out from under the integral sign for the integration 
over the Fermi surface. 

In solving equation (15) we shall follow the method of 
Ov~hinnikov.~ Let us rewrite (1 5) in the form 

where C :  satisfies equation (15) with w = 0  and with the 
same boundary condition (14). The solution of this equation 
is of the form 

where 
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D ( d / 2 + y r )  + r ( d )  D (d /2 -y ' )  
a ( y ' )  = B ( -Y ' )  = v [ I-rya) I , (19) 

(21) 
t = cos 9,9 is the angle between the direction of v and they 
axis, and q, is the angle in the plane of the film. 

If (q, ,q, )d / i g  1 ,  where i is the characteristic value of 
cos 9 ,  then after integration over q, we have 

2 112 

where P = - ' eH (c - y'2), q; = q: + q:, and 
t 4 

J,,(p) and J 1 ( p )  are Bessel functions. Since d<l, we have for 
WT( 1 

2 ( i o ~ - 1 ) d  ql12d2 1 
r ( d ) =  I +  -- 

1 
ln-. 

2 d  

In the last terms the logarithmic part is due to grazing trajec- 
tories with cos 9 2 d /I. 

Let us now consider two different cases: 
a) The region L,  , L &/d>l .  In this case we find to lead- 

ing order in the parameter Id / L  & with the aid of (19), (23), 
and (24) 

Since it is assumed that L, )d, equation (16) can be averaged 

over y and y'. In addition, let us average C, over the direc- 
tions of the velocity vector. Introducing the notation 

and analogous notation for c, we obtain from equation 
(16) 

c, ( n o )  = [ [C,O (qo)  1-'-d/T] - I .  (27) 
Using (17) and (25) and interating over y, y', and the 

velocity directions in accordance with (26), we find 

where 

Angles 7 - d / l  were important in obtaining this for- 
mula. The characteristic values q -ij are found from the rela- 
tion Dij2 - 1 / ~ ,  + l / r H .  These conditions determine the va- 
lidity region of our assumption ijd/?<l. This region is 
bounded by the inequality L ,  )I .  Formula (25) is thus valid 
when the conditions L ,  , L $/d>l  hold simultaneousIy. 

b) The region L ,  , I>L & / d .  Discarding terms of order 
eHd ' ( L  &/Id)', or smaller in evaluating integrals (19) and 
(20), we obtain 

To the same accuracy we have 

Estimating the characteristic values i and i j ,  we find 
that formula (3 1 )  is valid under the condition L, ,  I>L & / d .  

c) The region I ,  L &/d>L, .  In accordance with the 
qualitative picture in this region the characteristic values i j  
andtsatisfy the inequalities qd / i>  1 and eHd ' / ? ( l .  The lat- 
ter inequality permits an expansion in the magnetic field. 
Evaluation of the integrals (20), (21), and (26) gives 

i.e., rH turns out to be a function of the momentum q with a 
sharp dependence on the angle between the directions of q 
and H. The characteristic quantities for this case are the 
angle?- d / L ,  and q - l / L , .  Formula (32) is therefore valid 
for I ,  L &/d>L, .  

4. QUANTUM CORRECTION TO THE CONDUCTIVITY 

The formula for the correction in the case of a pure film 
has the same form as for the case Igd considered in Refs. 1 
and 4: 

Ao=- ( 2 0 0 / n v )  C ( r r )  , (33) 
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AGO (H) = -- In ( If- :::I ) .  
2n2h 

FIG. 2. 

where 

is the cooperon for coincident arguments. In (33) the quanti- 
ty u, is the conductivity without the corrections and v is the 
density of states at the Fermi level. 

Now using formula (28) and the expressions found for 
r, in the various cases, we find that the magnetic-field de- 
pendent correction to the conductance of a square film is of 
the form 

LH" L,, 1 >> - 
d '  

LHZ 
I ,  -j- >> L,. 

5. DISCUSSION OF RESULTS 

Let us compare the resulting formulas (35)-(37) with the 
expression4 for the correction to the conductance for a dirty 
film, d ~ l :  

For L,, L ;/d%l formulas (35) and (38) differ only by a 
numerical coefficient within the logarithm. Furthermore, 
since the diffusion coefficient in the film is smaller than in 
the bulk by a factor of d /I, the magnetoresistance in a thin 
film turns out to be smaller. 

For L, , I%L &/d the difference between (36) and (38) is 
more substantial, since the magnetic field enters the loga- 
rithm with a different power. Depending on the relationship 
between L, and I, two different behaviors of AG, (H) are 
possible. If L, )I, then A G (H )becomes logarithmic at larger 
H, with the coefficient in front of the logarithm decreasing 
by a factor of two at L & -Id (Fig. 2a). In the case L, ( 1  the 
quadratic dependence of AG on H goes over to a linear de- 
pendence at L & -L,d (Fig. 2b). The size of the magnetore- 
sistance depends on the mean free time T for scattering by 
impurities. 

Thus, by studying the behavior ofAG (H) one can deter- 
mine T in films with a low concentration of impurities. 

We are grateful to B. L. Al'tshuler and A. G. Aronov 
for pointing out the special characteristics of pure films in a 
parallel field and to A. I. Larkin for a discussion. 

"As is usual in discussions of the magnetoresistance of thin films, we 
assume that eHd '<I. 
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