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Quasiclassical equations describing nonstationary and nonequilibrium phenomena in structures 
containing boundaries between metals are derived, and the boundary conditions (at the metal 
interface) for these equations are found. The boundary conditions are derived for an arbitrary 
transparency (and arbitrary shape) of the potential barrier, whose appearance at the boundary 
may be due to a difference in the parameters of the contiguous metals, the presence of a dielectric 
layer between the metals, etc. In the case of tunnel junctions the obtained boundary conditions 
allow one to easily derive for the current an expression that coincides with those obtained on the 
basis of the method of tunneling Hamiltonians. The general results are used to study the proper- 
ties of different types of constrictions (NlcN2, ScN, SlcS2) with allowance for electron reflection at 
the metal interface. The case of "pure" constrictions (whose characteristic dimension ~ < l , , ~ ,  
where lj is the mean free path) is studied in greatest detail. Expressions are found for the resistance 
of the N,cN2 junction and the boundary resistance Rb (in this structure), which determines the 
potential jump Vb = R b I  at the boundary. A general expression is derived for the current in the 
ScNjunction, and the influence of the boundary transparency on the shape of the current-voltage 
characteristic I (V), the dependence a (V)  = dI/dV, and the magnitude of the excess current is 
analyzed. For the SlcS2 junctions, a general relation connecting the current with the phase differ- 
ence at zero voltage potential is found, and the excess current is compared with the critical current 
for different potential-barrier transparencies. The case of "dirty" constrictions (1, <a) is briefly 
discussed. 

It is well known that an effective method of solving the 
problems of the theory of superconductivity is provided by 
the quasiclassical equations for the Green Functions. These 
equations (based, naturally, on the more general Gor'kov 
equations1), which explicitly take account of the fact that the 
characteristic scale of the spatial variation of all the macro- 
scopic quantities substantially exceeds the interatomic dis- 
tance, were first derived for the stationary and equilibrium 
case by Eilenberger.2 The quasiclassical equations describ- 
ing the nonstationary and noneguilibrium processes in su- 
perconductors were derived by Eliashberg3 and Larkin and 
Ov~hinnikov.~ 

The equations obtained in Refs. 2-4 do not, as a rule, 
allow us to study structures containing boundaries between 
metals. The point is that, for a number of reasons (differences 
between the parameters of the contiguous metals, the pres- 
ence of a dielectric layer or of a gap between the metals, and 
other factors), the electrons can undergo reflection from the 
boundary. As a consequence,"at some distance from the 
boundary, the Green function G (r,rl) can no longer be con- 
sidered to be a slowly varying function of the resultant coor- 
dinate (r + rf)/2, as is done in Refs. 2-4. 

In the present paper we derive a set of quasiclassical 
equations that allow us to investigate the nonequilibrium 
and nonstationary phenomena that occur in structures con- 
taining one or several parallel metal interfaces. These equa- 
tions contain, besides the matrix function i ,  the equation for 
which is similar to the one obtained in Refs. 3 and 4, a matrix 
function 9 describing the waves reflected from the boundar- 
ies. The functionsi and 9 on the two sides of a boundary are 

matched with the aid of boundary conditions. The latter are 
derived for an arbitrary shape and arbitrary transparency of 
the potential barrier U (2, p)  (see (2)), which varies smoothly 
in the contact plane. A closed boundary condition contain- 
ing only the function 2 is found for the case in which the 
distance between neighboring boundaries is much greater 
than the mean free path. From this boundary condition it 
follows, in particular, that the quasiclassical functions i un- 
dergo a jump at the boundary if the coefficient of transmis- 
sion through the boundary D # 1. This result is valid also for 
a boundary at which metals with different parameters are in 
direct contact (with no dielectric layer or a gap between 
them). We note that the question of the boundary conditions 
for the Eliashberg equations has been analyzed for this parti- 
cular case by Ivanov et U Z . , ~  who arrive at the wrong conclu- 
sion that the quasiclassical functions are continuous at 
boundaries that, on the scale of interatomic distances, are 
sharp. 

The boundary condition obtained allows us to easily 
derive for the current in a tunnel junction a general expres- 
sion that, in the case of a junction formed by homogeneous 
metals, leads to the same results given by the tunneling-Ha- 
miltonian 

The theory constructed is used in $2 to study constrict- 
ed microcontacts. We know that of greatest interest are su- 
perconducting constrictions in which the Josephson effects 
are manife~ted.~ Their theoretical study, which was original- 
ly begun with the use of the Ginzburg-Landau equations by 
Aslamazov and Larkin," has in recent years been carried 
out with the aid of a more general method: the method of 
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quasiclassical equations for the Green functions. The sta- 
tionary properties of ScS junctions (where S is a supercon- 
ductor and c is a constriction) have been studied with the use 
of the Eilenberger equations by Kulik and ~mel'yanchuk," 
who have constructed a theory of the stationary Josephson 
effect in constrictions whose characteristic dimension a sat- 
isfies the conditions 

l<a< (DlA)'", ( la)  
a d ,  valA, (lb) 

where I is the mean free path. A theory of superconducting 
constrictions in the presence of voltage potentials at the 
junctions has been constructed (with the aid of the equations 
obtained in Refs. 3 and 4) by Artemenko, Volkov, and the 
present author', (the case (la)) and by the present author13 
(the case (lb)). Information about the earlier investigations, 
based mostly on the Ginzburg-Landau equations, can be 
found in Likharev's review articles9 

Besides superconducting constrictions, junctions of the 
type ScN (where N is a normal metal) have in recent years 
been studied intensively both e~~e r imen ta l l y '~ - ' ~  and theor- 
e t i ~ a l l ~ . ' ~ ~ ' ~  It turns out that the current-voltage character- 
istic (CVC) of such structures, which is nonlinear in the re- 
gion V 5 A, has in the region of high voltage potentials V>A, 
as in the case of ScS junctions, an excess current, i.e., ap- 
proaches an asymptote that is shifted relative to the ohmic 
straight line I = V/RN by an amount that does not depend 
on V. Notice that S and N metals with different parameters 
were used in the experiments reported in Refs. 14-1 8. At the 
same time, the model considered in the theoretical investiga- 
tions~9,~3 is ' one in which the Fermi velocities in the conti- 
guous metals are assumed to be equal. 

In 82 we investigate the properties of different types of 
constrictions: NlcN2, ScN, and S,cS,. Here we take account 
of electron reflection at the metal interfaces, which, as has 
already been noted, may be due to the differences between 
the parameters of the contiguous metals, the presence of a 
dielectric layer or a gap between the metals, the presence of 
defects localized in the vicinity of the boundary, etc. General 
relations are obtained which are not connected with any as- 
sumptions about the shape and transparency of the potential 
barrier. The greatest attention is given to the case of "pure" 
(I,,, %a) contacts, the "dirty" limit being discussed briefly at 
the end of the section. 

Let us note that the properties of the ScNjunction have 
been analyzed with allowance for the potential barrier 
U = Uo S (z) at the metal interfaces by Blonder et aIs2O But 
these authors make a number of intuitive assumptions (e.g., 
the possibility of computing the coefficient of reflection in 
the model of a stepwise varying gap), and, moreover, use a 
one-dimensional contact model in which, in particular, the 
dependence of the excitation distribution function and the 
reflection coefficient on the direction of the momentum is 
neglected. 

51. QUASICLASSICAL EQUATIONS FOR CONTIGUOUS 
METALS AND THE BOUNDARY CONDITIONS FOR THEM. 
CONSEQUENCES FOR TUNNEL JUNCTIONS 

Our aim is to derive equations that describe nonstation- 
ary and nonequilibrium phenomena in structures containing 

one or several mutually parallel boundaries (such as the 
junctions SNS, SS,S, etc.) whose spacing is significantly 
greater than the interatomic distance. Let us consider one of 
such boundaries. We shall assume that the properties of the 
metals vary in a thin layer (of thickness 28 ) near the plane 
z = 0. We shall describe the boundary as sharp if S-p,(:, 
and as smooth in the case when 6sp,; , ,  ; and we shall label 
the quantities pertaining to the metal on the left (right) of the 
boundary in question by the subscript l(2). There will arise at 
the metal interface a potential barrier U (z, p )  @ is a vector in 
the z = 0 plane) that varies in the transition layer of thick- 
ness 26. The potential should, in the region lzl > 6, where it 
can be assumed to be constant, satisfy the following well- 
known condition, which guarantees the constancy of the 
electrochemical potential p in the system: 

eai+U(z<-6) =~p2+U(~>6) =y. 

The general expression for the potential satisfying this 
condition can be represented as follows: 

where Uo is an arbitrary delta function (Uo = 0 for Izl > S ), 
while the function u(z, p) ,  which can, without loss of genera- 
lity, be assumed to be a monotonic function of z (the non- 
monotonic part can always be included in U,), is equal to E,, 

for z < - S and E,, for z > S. The appearance of the potential 
barrier Uo is most often due to the presence of a dielectric 
layer or of a gap between the metals; it may also be due to the 
presence of defects or a thin impurity layer localized near the 
boundary. We shall say that the metals are in direct contact 
if a potential barrier of the form Uo does not occur at the 
boundary. Below we shall assume that the characteristic dis- 
tance a over which the potential U changes in the boundary 
plane satisfies the quasiclassicality condition a>pG '. We 
shall consider the transition-layer thickness 26 to be small 
compared to u F j / Z ,  Ij, and a ,  where .? = max(T, A, V, w )  and 
Vis the voltage potential at the junction. 

We shall, in constructing the theory, proceed from a 
general equation that, in the Keldysh pr~cedure,~ '  can be 
written as follows (Ref. 4)": 

= i6  (r-r') 6 (t-tf) . (3) 

Here the Green function 5 and the self-energy part 5 are 
matrices having the form 

where 2 R ( A  ) and 2 are 2~ 2 matrices formed from the ordi- 
nary Green functions and the Gor'kov functions (see Ref. 4). 
Furthermore, 

5E= j dt i i  (t, ti) 6 (ti, t o ,  
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whered is the order parameter and .i, is the Pauli matrix. In 
(3) Q, is the electric potential that arises upon the passage of 
current, and U is the "equilibrium" electric potential given 
by the expression (2); we set the electron charge to be equal to 
unity. Going over to the Fourier representation in terms of 
the coordinate p - p', and taking acccunt of the quasiclassi- 
cal nature of the variation ovf G asva function of 
pc = (p + pf)/2, we obtain for G (z,zl)=G (z,z', p, ,pll ;t,t '), 
where p,, is the momentum in the contact plane, the equation 
(we shall henceforth drop the subscript c on p,) 

" 
=I6 (2-2') 6 (t-t') . (4) 

v 
Let us represent G (z,zl) in the form of a sum of terms in which 
the rapidly oscillating parts have been explicitly separated. 
From (4), as well from the equation conjugate to it, it is clear 
that there will be four such terms. For example, for z, 
z '< - 6  

6 =6,, exp rip,, (z-z') j +EZ2 exp [-ip,, (z-zf)] 

+Glz exp[ip,,(zf d ) l  
+Gzi exp [-ipZi (z+zr) I ,  (5) 

wherep,, = (p;, -p~)'12;p,, in (5) should be replaced byp, 
when z, z' > S. Substituting (5) into (4), and neglecting the 
seconc derivatives, we obtain for the smoothly varying func- 
tions G,, (z,zl) the equations 

Similarly, from the equation that is conjugate to (4), we shall 
have 

Whenz,zl > S, we should rylace v,, by v, in (6) and (6'). The 
values of the functions Gkn (z,zt) for z < zf and z > z' are 
matched with the aid of conditions that follow from (4): 

E(z4-0, z) =G(z-0, z), 1z1>86. 

Substituting (5) into them, we obtain 

It can be seen from (6) and (6') that it makes sense to reduce 
the number of symbols by introducing functions 8 and 9 
that depend on a variable pzj that can assume both positive 

and negative values: 

z, 2')-sign(z-zf), pzj>O, 
2 1 vZj I i&zz (z, z') +sign (z-z') , pzj<O, 

As follows from (7), the thus defined functions are contin- 
uous at the point z = z'. From (6) and (6') we obtain for 

;(R, PF~)  =g(z, 2, P,  PZ~,  pill, 

9 (R, PFJ =g (2, 2, 9, PZI, PII), 

equations having the form 

a "  
ve -9+[k, 9]+=6, 

dz 
where 

- ii (t) +i@ (t) I5 (t-t') +i2 (t, tr)  , I 
[a, b] ,=ab*ba. 

The first of the equations of the system has, as it should, the 
same form as the equations obtained in Refs. 3 and 4. The 
appearance of the second function, which does not occur in 
the equations derived in Refs. 3 and 4, is due to electron 
reflection from the metal interfaces. The system (9) is valid 
for (z/  > S; therefore, to match the functions in the regions 
z < - S andz > 6, we must have boundary conditions, which 
we now proceed to obtain. 

LeJ us take into account the fact that dg /d t -dg /  
at1-ZG, where Z-max (T,A,V,w). For z(z*=min(lj, 
uFi/F,  a), Eq. (4) and its conjugate reduce to 

where z#zl. In the region lzl, (z'l > S we can write the solu- 
tions to (10) in the form 

g = ~ , j  exp [ipZj(z-a')] +-A,' exp [-ip,j(z-z')] 

+B5 exp [ipZj(z+zr)] +Ej exp [-ipZj(z+z')], zz'>O, 

G=A* exp [i (pzjz-p,zf) ] +Ajk exp [-i (P~~Z-P~S')]  (11) 
+Bjk exp [i (p,jz+pazr)] +Bjk exp [-i (pZjz+pfizf) 1, zzr<O,' 

where we should set the subscripts j, k = l(2) in the region 
z <  - S(z>S), and the index + ( - ) corresponds to 
z>z'(z<zl).  As follows from (5) and (1 I), the matrices 
A I ,  Jj* ,BJ, and BJ, which do not depend on z and z' (but, 
generally speaking, depend on p), give the values of the func- 
tions H and 9 in the immediate neighborhood of the bound- 
ary. On the other hand, we can write down the solutions to 
(lo), using the two linearly independent solutions to the 
Schrodinger equation H (z)$,,, (2) = 0, which have, in the re- 
gion lzl > S, the following form: 

101 7 Sov. Phys. JETP 59 (5), May 1984 A. V. Zaltsev 101 7 



Here, as in (1 l),pzj = (p$ -pi)112 is assumed to be a positive 
quantity. Using the properties of the solutions to the equa- 
tion HI/ = 0, we easily obtain the relations2' 

The transmission and reflection coefficients D and R are giv- 
en by the following relations: 

D=l d lZ(p1zIpZi )  =D=lJI2(pz i lpzz ) ,  

R=lrlZ=l-D=R=lr"12. (14) 

It follows from (10) that the solution for Izi, lz'I (z* can 
be represented in the form 

e i ~ z , z ' ~ i  ( z )  +e-i~zlz'F, ( z ) ,  z'<-6, z>z', 
e l ~ z 2 z ' ~  , ( 2 )  + ~ - ' P Z ~ ~ ' F ~  ( z ) ,  z1>6, z<z', 

G ( z ,  z ' )  = e ' ~ z ~ z p ,  ( z ' )  +e-i~zlzP, (z') , z<-6, z<z', 
e i ~ z ~ z p 2 ( z f )  +e-i~~2zP2 ( z ' ) ,  z>6, z'<z. 

(15) 

The matrices Fi,Pi, etc. satisfy the equation H (z)4(z) = 0, 
where 4 = Fi or Pi, etc.; therefore, they can be expressed in 
terms of I/,(,, : 

Fi ( z )  = f l i ' $ i  ( z )  +fi(2'Qz ( 2 )  pi ( z )  =pJi'Qi ( z )  + ~ 1 ~ ) $ 2  ( 2 )  

- - (16) 
and similarly for Fi ,Pi; here f i113i21,pi132) are constants. By sub- 
stituting the expressions (16) into (15), and taking (12) into 
account, we can, after comparing the resulting expressions 
with (1 I), arrive at the following set of relations: 

U , ~ A , ~ + U , ~ A + ~ = U , ~ A ~ ~ + V ~ ~ A ~ ~ = -  I r I -' (uz2B2eiu2-vZ1Bieiol) 

=- I r  I -' ( ~ , ~ B ~ e - ' ~ ~ - u , ~ B ~ e - ~ ~ ) ,  f + l ( 2 ) = f + r - f + d + ~ d ,  

(17) 
which furnish the sought boundary equations. Before writ- 
ing these conditions down, it is expedient, as can be seen 
from (17), to introduce the following notation: 

9k??exp ( ~ I Y ~ ( , ,  sign p z l ( z , ) ,  z c - 6  ( z>6) .  

Notice that the function 9 also satisfies Eq. (9). Let us also 
introduce the symmetric (s) and antisymmetric (a)-in the 
variable pzj-matrices 

where j =_1(2) for z < - S (z > 6); similarly, we define the 
functions 9,,,, . Then the boundary conditions, which follow 
from (17) with allowance made for (8), (1 l), and (5), assume 
the following form: 

- 
where g( + )=g(z = k 6, p ) , 9 (  + ) = Y(z = k S, p). Let 
us recall that, in deriving (19), we assumed that p, ,  <pFl,, . If 
we assume, for definiteness, that pFl  <pF2, then we should, 
in the case when z > 6, derive some more boundary condi- 
tions that encompass the interval pFl  <pi ,  <PF2. They are 
derived in much the same way as the preceding ones. It 
should only be takzn into account here that the expression 
for the function G (z,zl) in the region z < .- S (z' < - S) 
should be determined by that function in (12) which falls off 
with distance from the boundary into the interior of the first 
metal. This condition leads automatically to a situation in 
which the reflection coefficient R for electrons incident on 
the boundary from the right is equal to unity. As a result, we 
obtain the following boundary conditions: 

9 (+) exp ( i v ,  sign p,,) =i(+) +; sign p,,6 (t-t ') . 
(20) 

Similar relations will be satisfied for z = - S in the case in 
whichp,, >pF2. 

To the system of equations and boundary conditions 
obtained must be added expressions for the macroscopic 
quantities. These expressions should, gener~lly speaking, be 
found with the aid of the Green function G (zJ'). In doing 
this, however, it should be bzrne in mind that, after the eval- 
uation oftke integraJJd 'pi, G (z,zl), the contribution from the 
functions GI, and G,, will, because of the presence of the 
rapidly oscillating factors exp [ + ipzj(z + z')], be small in 
the case when /z + z ' l ) p ~  ', at least to the extent that the 
parameter l/p, lz + zlI is small. For this reason, it turns out 
that at distances from the boundary much greater than the 
atomic distances all the macroscopic quantities will be ex- 
pressed by the usual relations3s4 in terms of the quasiclassical 
function g. In particular, for the electric potential and the 
current density we have the expressions 

V 

For the above-indicated reason, the matrix 2 will also be 
V 

determined by the function 2 only. The expressions f o r 2  can 
be found in Refs. 3 and 4. Thus, the first of the equations of 
the system (9) does not explicitly depend on the function 9. 
We shall now show that if the eterferenvce between the waves 
(described by the functions G12 and G,,) emanating from 
neighboring boundaries can be neglected (the distance 
between the boundaries is large compared to the mean free 
path), then we can derive a boundary condition that contains 
only the function 2. Let us, for the purpose of deriving it, 
show that the following relation obtains in the indicated 
case: 
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" - - 
,. g 3 =  ( - l ) j  sign p Z j 3 .  (221 

To prove (22), let us consider the function 

where 

6..Enk= Id.. ( t ,  t i )  6 . k ( t i ,  t f ) d t i -  

It is easy to verify, using (6) and (6'), that for z#zf 

from which it follows $at this function does not depend3 on 
R. Since the function Y,, is equal to zero at infinity (i.e., for 
121 Bl,), we arrive at the result that for z > 6 (z < - 6) 

and this, with allowance for (8), leads to (22) in the case when 
n $ k and to the following well-known normalization rela- 
tion4 in the case when n = k: 

"" " " " 
gg-g2=18 ( t - t ' )  -1. (23) 

From (22) and (23) we obtain 

here and below we assume that p,. > 0. With allowance for 
(19), we find from (24) that 

where we have introduced the matrices 

Substituting (27) into (26), and taking into consideration the 
relations 

fg,' (o), i; (0) I+=@ [i,'(0), d o )  1+=a 
which follow from (25) and (19), we easily obtain the sought 
boundary condition: 

Forp,, <p,, <p,, the boundary condition for 2 is given by 
the relation (20).~' Notice that the coefficients R and D in (29) 
are functions ofp,, and p. As a result of our assumption that 
the potential varies smoothly in the contact plane, we have 
figuring in the boundary conditions (19), (20), and (29) func- 
tions with the same values o f p i .  As is well known, a bound- 
ary that is such that the component pi,  is preserved in reflec- 
tions from it is commonly called a specularly reflecting 
plane. 

For R = 0 it follows from (29), as it should, that 
2; (0) = 6, which, together with (19a), implies continuity of 
the function 2, while in the case D-0 we again arrive at the 
result that at an impenetrable boundary 2,(0) = 6 (this case 
has been considered before by Kulik and Omel'yanchukl'). 
For R $0 we find from (29) that 2, (0)#6, i.e., that the func- 
tion 2 experiences at the boundary a jump, which will also 
occur when we have metals with different parameters in di- 
rect contact. As has already been noted, as a result of the 
unjustified neglect of part of the waves reflected from the 
boundary, the opposite conclusion is arrived at in Ref. 5, in 
which the boundary conditions for the Eilenberger equa- 
tions are analyzed. 

In the case of a junction made up of normal metals the 
boundary conditions (29) are significantly simpler. Indeed, 
as is easy to verify, the solutions to the equations for p'A' 
that satisfy (29), (20), and the boundary conditions at infinity 
are the constants p(A1 (E, E') = + 2 ~ ! ? ~ 6 ( &  - E'). Taking ac- 
count of the foregoing, as well as the fact that jj can be ex- 
pressed in terms of the distribution function8 

we easily obtain the boundary conditions, which reduce to 
the following form: 

f ( p z z ,  p,l; +) =Df ( p z i ,  PII;  -1 +Rf ( - p z z ,  P I I ;  +), P I I < P F I ,  23 

It is precisely such relations that are usually written down 
for the distribution function on the basis of nonrigorous, but 
obvious arguments. 

Notice that the continuity of the current automatically 
follows, on the basis of (21), from the continuity of the func- 
tiong, at the boundary. At the same time, such quantities as 
@ and A (determined by the function H,) will, generally 
speaking, undergo a jump at the boundary. 

Let us now consider the consequences that follow from 
(29) and (20) for tunnel junctions (D( 1). It can be seen from 
(29) that 2, -D; therefore, if we limit ourselves in the deter- 
mination of 2, and the current to terms of the order of D, 
then we should substitute into (29) expressions for 22 and 
2; in zeroth order in D, in which approximation we have 

As a result, we findg, from (29) and (20), and, using (21), we 
arrive at the following expression for the current: 

In (30) and in what follows we shall, for definiteness, assume 
that p,, <p, , ,  and angle brackets denote integration over 
a ,  = cos 8, =p,, /p,, : 
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The index zero on the brackets indicates, firstly, that all the 
matrices should be evaluated in the immediate neighbor- 
hood of the boundary. For example, 

Furthermore, the index zero indicates that all the functions 
should be taken in the zeroth order in D; consequently, we 
should, in findin6 them from Eq. (9a), use the boundary con- 
dition ga ( + ) = 0. In the case when the junction is made up 
of homogeneous metals, such solutions are obvious: 
2 = gl(*, , z < - S (Z > S), where the g, are the equilibrium 
values corresponding to their values of the phase xj (which 
we shall assume to be independent of p, assuming that the 
area of the contact is sufficiently small): 

where the subscript j has been dropped and 

In this case we find from (30) and (3 1) that 

where the resistance (in the normal state) R, is given by the 
relation 

Notice that the tunneling-Hamiltonian method leads to the 
same expression for the current in tunnel  junction^."^ The 
formula (30) is not based on any assumptions about the shape 
of the potential barrier, nor does its validity depend on what 
metals form the junction, or what voltage potential is applied 
across the junction (in deriving it we only assumed that V ( t  ), 
WE,,.). 

Let us note that, in Ref. 22, boundary conditions are 
given without derivation for the interface between metals 
with identical parameters, at which there exists a potential 
barrier U,,S(z). In our notation these boundary conditions 
have the form 

It is clear that (32) differs from (29); thus, for example, for 
D(l  it follows from (32) that 2, -D 'I2, whereas we have 
from (29) that 8, -D.  

52. PROPERTIES OF CONSTRICTED MICROCONTACTS 

Let us now use the results obtained to study the proper- 
ties of constricted microcontacts. As a model for the con- 
strictions, we shall consider an aperture of radius a in a thin 
impenetrable ~creen,",'~ assuming that, for p < a  (the point 
p = z = 0 corresponds to the center of the aperture), the re- 
flection coefficient does not depend on p (for p > a we have 
R = 1). We shall first investigate in detail the case of pure 
constrictions, whose dimension satisfies the condition 

The Green function g in the problem under consideration 
can be found by two methods, one ofwhich (using the bound- 
ary conditions (29)) we shall now consider. Let us, as in Ref. 
13, take account of thezact th$ the condition (33) allows us 
to set the quantities @,A, and 2 in (9) equal to their values at 
infinity (this fact was first used by Kulik and Omel'yan- 
chukl' in their solution of the stationary problem). The solu- 
tion to the resulting equation can be represented in the 
formI3 

" " 
g=exp ( - K , T ~ )  C j ( R ,  pFj)  exp (k,tj) +&, 

V 

where T, = v,,..R/u&, the function 8, is g i ~ e n  by (31), Kj is 
given by the formvula (1 1) in Ref. 13, and C,(R,p,,.) satisfies 
the equation vWaCj/aR = 6, from which it follows that, for 
R belonging to the trajectories crossing the aperture, i.e., for 
straight lines parallel to the vector v,,., 

C(R, pFj) =ej (pFj) = z j  (R=o, p R j )  -2j. 

For R lying on the trajectories crossing the screen, follows 
from the boundary condition 2, ( ) 0, we have C, = 0. It 
is shown in Ref. 13 that the matrices Cj satisfy the relations 

""  "" " 
gjC1=-Cjgj=sign pZj ( - l ) 'Cj ,  

V V V 

Using these relations and the equalities Cal = Ca,=Ca, 
which follow from (19), we obtain 

where we further assume that pzj > 0. Finding 2: from (34), 
and substituting them into (29), we obtain, after simple trans- 
formations, the expression5' 

where g * = (g2 + 8,)/2. In the absence of reflections at the 
boundary (i.e., for D = I), the expression (35) coincides with 
the one found in Ref. 13. From (35) we obtain 
- - - A  C, = ~ z n +  - n+C, 

+ [ID-1 - (g-R)y-l {RD-l [(i-R)~r;.- - i-Rn-̂ g-A 
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The expression for the current has the form 

- 
where we have introduced the quantity R, 
= (p,, ZS/27~2)-1 (S = .rra2), which, as we shall see later, has 
the meaning of the resistance of the constriction in the nor- 
mal state in the case of a smooth boundary and direct contact 
between the metals. 

Specific expressions for the transmission coefficient 
and, hence, the current can be found only for certain models 
for the potential barrier. In particular, the model 

for which 

is a useful one. Using (37), we can make a qualitative judg- 
ment about the dependence of the CVC on the parameters of 
the metals (and about the height of the potential barrier) in 
contacts with sharp boundaries. As a more general param- 
eter for the CVC, we can choose the quantity D, (or R, ), the 
transmission coefficient for electrons incident normally on 
the surface. Since the coefficients D = D,F(a,) for different 
boundaries with the same D, value differ from each other 
only in the form of the function F,< 1, it is clear that the 
dependence I(V,D,) obtained with the use of (37) will qual- 
itatively describe the shape of the CVC of contacts with 
boundaries of arbitrary shape. 

Let us now proceed to study the properties of specific 
types of contacts. 

1. The N,cN, junction 

Let us note that the resistance of the NcNjunction in the 
pure limit being considered by us now has been computed 
before by Omel'yanchuk etal.23 For the N,cN2 junction with 
a boundary of arbitrary transmissivity we find from (36) and 
(36') that 

Notice that, formally, the expression (38) for R, coincides in 

FIG. 1 

form with the expression obtained for tunnel junctions (see 
(30i)), whose dimensions were not assumed to be small com- 
pared to the mean free path. For the case in which the metals 
are in direct contact we have 

The second of the relations (38') is a model relation, since, in 
deriving it, we used the expression (37); as to the first rela- 
tion, which does not depend (in the leading approximation in 
R,) on the shape of the potential barrier, it corresponds to 
the case of a smooth boundary. The formula (38') illustrates 
the fact that the resistance of metals connected in series is, 
even when there is direct contact between the metals, not 
equal to the sum of their resistances (if p,, fp,,). This cir- 
cumstance, which is obvious in the case when there is an 
insulating layer between the metals, stems from the fact that 
a boundary that reflects electrons has a resistance R,: there 
occurs when current flows across it in electric-potential 
jump6' V, = IR,  (see Fig. I), for which, using (35), (34), and 
(21), we obtain 

It can be seen from (39) that the quantity q, which is equal, as 
it should, to zero for R = 0 and b = 1, is close to unity in the 
case of strong reflection from the boundary. In particular, 
for direct contact in the case of a sharp boundary we find 
from (37) and (39) that q = 1 - b /4, b(1; if, on the other 
hand, the boundary is a smooth one, then, irrespective of the 
shape of the potential barrier, we have for q in the leading 
approximation in R, the expression 

Let us now proceed to analyze a more complicated sys- 
tem. 

2. The ScN junction 

Let us, in computing the current, choose as the zero 
potential the potential of the superconductor at points far 
from the constriction; then in the normal metal @ ( w ) = V. 
We find from (35) and (36) after simple computations that 

where 
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In the case of a direct contact with a smooth boundary, we 
obtain from (40) results that, in the leading approximation in 
R ,  ( 1 ,  differ (for b # 1) from those obtained in Ref. 13 only 
by a change in the quantity R,. At T = 0 the differential 
conductivity is given by the expression 

o ( V )  = d I / d V = B ( V )  /RN, (41) 

from which it follows, in particular, that 

Thus, for contacts with boundaries of low transmissivity we 
find that at low temperatures 

o ( 0 )  -DnoN-Dn20 ( A ) .  

Notice that the last relation in (41') allows us to estimate the 
boundary transmissivity with the aid of experimental data. 

In the region of high voltage potentials V>A, we obtain 
from (40) for arbitrary temperatures the well-known rela- 
tion:12.13.19 

in which the excess current I,  is equal to 

= { " 3 ,  R n K 1 ,  
(a,D2>/2(alD>, D n K 1 .  

(42') 

It can be seen that the product Vo = IoR, decreases with 
decreasing boundary transmissivity; for D(1 we obtain 
Vo-AD,; thus, for example, in the case of a direct contact, 
we find, using (37) for Uo = 0, that Vo=: 3/2bA, b( 1 .  

To illustrate the dependence of the CVC on the param- 
eters of the metals in the case of a direct contact with a sharp 
boundary, we use the model expression (37) with Uo = 0.  
Substituting it into (40), we find that 

lel lel 1  ( E ~ - A ~ ) ' "  
x ~ ( A - I & I ) + ~ -  --- 

A [ A  b A 

eZ-A2 I-bZ 
f-- 

A2 bZ 
arth bA ] I ~ ( I & I - A ) .  (43) 

(eZ-A') '"+ b I e  I 

Figure 2a shows the dependence a(V, T = 0 )  following from 
(41) and (43) for three values of the parameter b, while Fig. 2b 
shows the CVC; in this model R ,  = ( 1  - b )2/(1 + b )2, and 
therefore the chosen b values correspond to R ,  = 0; 0.05; 4/  
9 .  It can be seen that, as b and, hence, D, decrease, the CVC 
and a( V )  approach the dependences that are characteristic of 
tunnel junctions. A similar change in the shape of a ( V )  and 
I ( V )  will, as has already been noted, occur as D decreases in 
the case of an arbitrary potential barrier and, in particular, in 
the case of the barrier U = UoS(z), which is considered with- 
in the framework of the one-dimensional contact model in 

FIG. 2. a) The dependence ojV, T = 0) constructed with the 
use of D given in the form (37) with U, = 0 for: 1) b = 1, 
R, = 0; 2) b = 2/3, R, = 0.05; 3) b = 11'5, R, = 4/9 
= 0.44 ... . b) The CVC for the same parameters. 

Ref. 20. Thus, reflection from the boundary leads at low 
temperatures to a qualitative change in the shape of the func- 
tion a ( V ) ,  which becomes nonmonotonic. The dependence 
a o ( T )  = (dI / d V )  ,=, also becomes nonmonotonic in the 
case when R, # O .  Let us give the expressions for a o ( T )  in 
some limiting cases. From the general formula 

1 a 8 
RNoO ( T )  = p J B ( & )  % t h ~ d a  

2(alD> 

we obtain 

OI E d &  
RNoo ( T )  = J ( - th - de ,  Dn<e-'IT, 

&'-AZ)'" d e  2T 

A 
RNoo(T)= l+- I ,  T W A .  

2Te 

It follows from (44), as well as from an analysis of the depen- 
dence a O ( T )  for arbitrary transmissivity, that the maximum 
of this function is attained at some point T * = cT, c - 1 ,  with 
the quantity uo(T*) /a ,  - 1 - 1 if R ,  - 1 .  Let us note that 
the shape of the dependences I ( V ) ,  a ( V ) ,  and a o ( T )  has been 
experimentally found to be similar to the shape considered 
above (see, for example, Refs. 16 and 18). 

When current flows through the contact, there occurs a 
voltage-potential jump Vb at the boundary. We shall not 
analyze the dependence V b ( V )  in detail. Let us only note that 
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at high voltage potentials V>A this functions, which is non- 
linear in the region V-A, is given by the relation 

where q (given by (39)) and ij are V-independent quantities. 
Let us, in conclusion, consider the case of supercon- 

ducting constrictions. 

3. The S,cS, junction 

It follows from (35) and (36) that, in the case of zero 
voltage potential, the current flowing through the contact is 
connected with the phase difference p by the following rela- 
tion: 

where 

QR=ifiRfzR(al (2D-i-1+giRgZR-fiRfaR cos ( P ) - ~ )  sin cp. 

For R = 0 and b = 1 we have from (45) the expression ob- 
tained earlier by Kulik and Omel'yanchuk." For b # 1, in 
the case of a direct contact and a smooth boundary, the dif- 
ference between our results and the results obtained by Ku- 
lik and Omel'yanchukll consists only in a change in the for- 
mula for the normal resistance: R, = g,. For constrictions 
of the type ScS we obtain the relation 

which was obtained earlier by Haberkorn et ~ 1 . ' ~  for the case 
of the model potential barrier U = UoS(z). 

For D( 1 we obtain from (35) and (36) for constrictions 
with boundaries of low transmissivity the well-known ex- 
pressions obtained for tunnel junctions (see Refs. 6-8), in 
which R, is given by the formula (38). For an arbitrary 
boundary transmissivity in the region of high voltage poten- 
tials we arrive at a relation of the type (42) in which 

where J i s  given by the expression (42'). Sometimes in experi- 
ments the excess current I, is compared with the critical 
current I,. For their ratio we have (V, = I,R,) 

where K ( x )  is the complete elliptic integral of the first kind. 
Thus, the ratio IdI, decreases with decreasing boundary 
transmissivity. Notice that, even in the case when D( 1, the 
excess current, which is determined by a higher (second) 

power of the transmission coefficient than the critical cur- 
rent, is not necessarily small in comparison with I,. 

Thus far, we have studied pure constrictions. Let us 
now briefly discuss the case corresponding to the dirty limit 
Ij (a. It turns out that, when a certain condition (see (47)) is 
fulfilled, the Green functions can be approximately consid- 
ered to be continuous at the boundary. In this case the com- 
putations will be similar to those carried out in Refs. 12 and 
19, and we obtain as a result in the leading approximation in 
the parameter x the formulas obtained in the indicated pa- 
pers, in which we should change only the expression for R,: 

For x( l the discrepancy between our results and those of 
Refs. 12 and 19 and the departure of the expressions for RN 
from (46) will manifest themselves in the next orders in the 
parameter x. 

We can, by comparing the results obtained for constric- 
tions with direct contact between the metals in the pure and 
dirty limits, see that in the first case, in contrast to the latter: 
1) the resistance in the normal state cannot be represented in 
the form of the sum R,, + RN2,  where R,,. is determined by 
the parameters of thej-th metal; 2) in ScNjunctions the CVC 
can lie either above or below the ohmic curve; 3) the quantity 
Vo = IoRN can be significantly smaller than max A ,, A, 
(when b( 1). 

We obtain the condition upon the fulfillment of which 
the function i: can be considered to be continuous at the 
boundary from (29) by taking account of the estimate 
Ha -min(l,/a), g,i- - ( H ) .  As a result we come to the conclu- 
sion that 2; ( 2  if 

For X (  1 the reflection of the electrons from the boundary is 
barely noticeable in the background of the more intense im- 
purity scattering. We shall not consider in detail constric- 
tions in which the parameter x is not small: We only note 
that in the x) 1 case the well-known expressions obtained for 
tunnel  junction^"^ will again be valid if for R, we use the 
formula (38). 

In conclusion, I wish to express my gratitude to K. K. 
Likharev and M. Yu. Kupriyanov for a useful discussion. 

"We use the model of isotropic metals (we neglect the difference in their 
effective electronic masses). The vector potential is included in the phase 
oQhe order parameter with the aid of the change of variablesx-q + X, 
VX = A (we neglect the effects connected with the magnetic field). 

2'We easily arrive at (13) by taking the nondependence on z of the quanti- 
ties ($ld$:/dz - $:d$,/dz) and ($2d$:/dz - *:d$,/dz) into consider- 
atiorj. 

3'If J G / J ~ # ~ ) ,  then we must, more accurately, speak of the nondepen- 
dence on R lying on the straight lines parallel to the vector (u,,v /2). 

4'Relations similar to (19), (20),2nd (29) will be satisfied for the tempera- 
ture Green functions 2, and X, . 

5 ' ~ e  could also have proceeded in a second manner, taking into account 
the fact that the solution (9b) has the form - 

@=em (-kjz /vzj )~j  exr, (-Kjz/vZj), C2(i,-B(z=*O, p),  

where the maffices e, should satisfy the relations kc, = eli, 
= signp,( - IYC,. Taking these relations, as well as (19), into account, 

we again arrive, after simple computations, at (35). 
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6'More precisely, we should speak of an electrochemical-potential jump, 
since the electric-potential jump (which cannot be measured by a volt- 
meter), equal to &,, - &,, , occurs even in the absence of a current. 
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