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A theory has been constructed for the excitation of bulk and surface plasmons by a fast charged 
particle in the case in which it is moving parallel to the boundary between a medium and a 
vacuum, remaining at all times either above the surface in vacuum or below the surface in the 
medium. It is found that surface effects turn out to be important even when the fast particle is 
moving at a significant distance from the boundary of the order of the ratio of the fast-particle 
velocity to the plasma frequency. We consider the effect of coupling of the reaction cross sections 
in different inelastic channels, which appears in particular in a decrease of the cross section for 
excitation of bulk plasmons with increase of the cross section for excitation of surface plasmons. It 
is shown that the dependence of the bulk-plasmon excitation cross section on the velocity of a 
particle moving parallel to the surface of the medium differs from the corresponding dependence 
in the case of motion of the particle in an infinite medium and coincides with the same dependence 
for the surface-plasmon excitation intensity but at normal incidence of the particle onto the 
surface. In turn the dependence of the surface-plasmon excitation cross section on the particle 
energy in its motion along the surface turns out to be analogous to the same dependence for the 
case of excitation of bulk plasmons in an unbounded medium. In motion of the particle near the 
surface of a thin film the shape of the energy-loss spectrum, it turns out, depends substantially on 
the distance of the particle from the surface, so that on change of this distance, resonance peaks in 
the spectrum can be transformed to minima. Finally, it is shown that the existence of a spatial 
dispersion of the permittivity leads to the possibility of emission of bulk plasmons by a particle 
which does not penetrate inside the medium at all. 

1. INTRODUCTION 

The surface of the medium is responsible for a number 
of properties of the inelastic scattering of fast particles inter- 
acting with matter. In addition to the fact that surface states 
are excited in this case, the surface affects the excitation of 
bulk states. This appears in particular in the existence of 
coupling between the cross sections for excitation of bulk 
and surface plasmons. The corresponding phenomenon was 
observed experimentally by Allie et al.' and was interpreted 
in the manner described above in a previous article by the 
present authow2 Surface effects can appear also in wake 
phenomena.3*4 The transition radiation of bulk plasmons is 
due entirely to the ~u r f ace .~  

Recently published experiments have studied the ener- 
gy loss of fast nonrelativistic electrons moving in vacuum 
parallel to the surface of a medium at distances from it of the 
order of atomic distances, and also directly along a ~u r f ace .~  
In particular, Cowley5 observed a complicated dependence 
of the inelastic-scattering cross section on the value of the 
energy lost and on the degree of separation of the particle 
beam from the surface. In his opinion5 these dependences 
should be explained by the transition radiation of transverse 
electromagnetic quanta. We consider that experiments of 
this type must be interpreted first of all in the framework of 
the theory of excitation of surface and bulk plasmons with 
allowance for the coupling of the cross sections in these in- 
elastic scattering channels. Particularly complicated depen- 
dences can arise here in the case in which the particle beam 
moves above a thin film. However, the same type of coupling 

of reaction cross sections in different inelastic channels can 
occur already in a semi-infinite medium. Here new physical 
effects can arise. An interesting fact which develops is that 
the existence of a spatial dispersion of the permittivity of the 
medium makes possible the excitation of bulk plasmons by 
electrons which move only in the vacuum and which do not 
penetrate inside the medium at all. As far as we know this 
phenomenon in the theory has not been discussed up to this 
time. 

In addition to experiments of the type which has been 
described in Ref. 5, there is another reason to consider theor- 
etically the energy loss of a particle moving parallel to the 
surface of a medium. Ordinarily in intersection of the surface 
by the particle one calculates the scattering intensity, which 
is determined as the integral over all time of the interaction 
ofthe fast particle with the surface, taken from the transition 
probability per unit time. At normal incidence and at angles 
of incidence not too close to grazing, the intensity of scatter- 
ing of the particle by the surface can be sufficiently small that 
the scattering can be discussed on the basis of perturbation 
theory. At large angles of incidence the fast particle interacts 
with the surface for such a long time that the scattering in- 
tensity can become large and the condition of applicability of 
perturbation theory is destroyed. Discussion of the energy 
loss of fast particles moving parallel to a surface permits one 
to use as the main characteristic of the scattering process not 
the scattering intensity, but the scattering probability per 
unit time, in working with which one can use perturbation 
theory. This approach turns out to be useful not only in the 
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case of experiments of the type described in Ref. 5, but also at 
grazing angles of incidence in general. 

In the present work we construct a theory of the excita- 
tion by a fast charged particle of bulk and surface plasmons 
which are responsible for the main contribution to the ener- 
gy loss of a particle moving in vacuum above the medium 
and a substantial contribution in motion of the particle in the 
medium. The particle is assumed to move parallel to the 
surface of the medium. We consider also the case of motion 
of a particle along the surface itself. It is found that surface 
effects turn out to be important even when the fast-particle 
beam is at a significant distance from the boundary, of the 
order of u/o,, where v is the fast-particle velocity and w, is 
the plasma frequency. At a fast-particle energy E z  50 keV 
this is a distance of the order of 100 A. 

2. EXCITATION PROBABILITY 

Electrons moving in a beam parallel to the surface of a 
medium can be described by the wave function 

y ,  (r) = ( 0 ~ 1 % )  -'" exp {ikr- ( ~ - z , ) ~ / 2 0 ~ ) .  (1) 

Here k is the wave vector corresponding to motion of the 
electron in the plane parallel to the boundary, z is the normal 
with respect to the surface coordinate, z, is the average dis- 
tance from the surface to the electrons in the beam, a is the 
dispersion of the distribution of the electrons in the beam 
along the normal to the surface coordinate, and S is the sur- 
face area. According to Refs. 6 and 7 the probability per unit 
time of transition of a fast charged particle from the initial 
state Pi (r) to the final state Pf = V - -"2exp(~lr'.r'), where Vis 
the normalization volume, can be written in the form 

Thus, from Eqs. (2) and (3)  it follows that 

The quantity q occurring in the argument of the Green's 
function D (w, q, - q, z, z') of the electric field created by the 
medium is the component parallel to the surface of the wave 
vector Q transferred to the medium. 

In the limiting case a 4  (a thin current layer) the tran- 
sition probability does not depend on k;, the component 
normal to the surface of the wave vector k' characterizing 
the final state of the fast particle. In this limiting case of an 
infinitely thin current layer the component normal to the 
surface of the wave vector of a fast particle which is in the 
initial state is not determined and in accordance with the 
uncertainty principle it can take on any value. 

In the upshot, we are interested in the total cross section 
for scattering of a fast particle and the energy spectrum of 
the scattered particles corresponding to integration of the 
differential scattering cross section over all momentum 
transfers (to find the total cross section for scattering it will 
be necessary to integrate also over all transferred energies). 
Having this in mind, it is convenient to carry out immediate- 
ly the integration over the z component of the momentum 
transfer. After this the transition probability per unit time 
takes the form 

( Y f I ~ ( r ) l Y i ) 1 r n ~ ( r , r ' , a ) ,  (2) W= (21s) Im D (q, o ,  ZO, zo). (5) 

where the energy transferred to >he medium is &I > 0. The The Green's function D (q, w, z,, z,) which enters into 
matrix elements of the operatorp(r) of the charge density of this equation contains information on the electronic excita- 
the fast particle have the form tions of the medium with allowance for the nature of the 

<Y,~^p( r )  1 Y i ) = ( o ~ ~ v ; ) - ' h  e~p{- iQr- - (z -z~)~ /20~} ,  scattering of the electrons of the medium by the surface. The 

(3)  Green's function D was found in Ref. 2 for an arbitrary de- 
(Yi(^p (r') 1 Y ( O S V ~ ~ )  -'" exp{iQrf- (z'-z,) '/202). gree of roughness of the surface. It has the form 

In this formula 0 is a step function and proximation can be written in the form 

a-iv a-iv & ( a ) -  2 )  [ I - ( ) ]  QV, (7) 
a-zv 0-LV 

Here P is the coefficient of mirror reflection of electrons of In Eq. (7) &(a) = 1 - wi/(w - iv)*, v is the effective collision 
the medium from its surface and b is a coefficient character- frequency of the electrons of the medium and u, is the veloc- 
izing the spatial dispersion of the longitudinal permittivity ity ofelectrons at the Fermi surface. Regions occupied by the 
of an unbounded medium, which in the hydrodynamic ap- medium correspond to z > 0. In Eq. (6) 
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iqv,b (1-P) [ 1-e ( a )  1 
1+9, (q, o )  = I+& ( 0 )  - 

2 o { I  + [ l - b B ( q v P I o ) 2 ] 1 ~ )  

- 4 ( l + P )  [ I - E ( o )  I (q+ir) 
(14-P) (1'-iqr) + i  ( I -P )  1 (q-ir) ' 

(8) 

The Green's function is particularly simple in the case 
in which the fast particle moves only in the vacuum, not 
penetrating into the medium. In this case 

4ne2 exp (-2q lzol ) 
D ( q ,  0 ,  Zor 20 )  I ia<o = 

fiq[ l+E,(q, 0 )  I . 
For P = 1 (the case of pure mirror reflection of the electrons 
of the medium from the boundary) Eq. (9) is simplified. The 
function Zs ((q w) is given by Eq. (8) in the form of an algebra- 
ic function. However, to understand its meaning better, it is 
useful also to write this function in the form of an integral 
over the wave vectors u that the boundary exchanges with 
the system of electrons of the medium. For P = 1 we have 

3. EXCITATION OF BULK AND SURFACE PLASMONS BY A 
CHARGED PARTICLE MOVING IN VACUUM PARALLEL TO 
THE INTERFACE 

It is well known that if we do not take into account the 
spatial dispersion of the permittivity, the electric field due to 
the existence of bulk plasmons is nonvanishing only inside 
the material. This means that a fast particle moving in vacu- 
um parallel to a sharp medium-vacuum interface cannot ex- 
cite bulk plasmons. Of course, a real interface is not com- 
pletely abrupt, even if the medium is a solid. The potential 
barrier which simulates the potential acting on the electrons 
of the medium from the direction of the surface has a finite 
width and height. This leads to the existence of tails of the 
density of the electrons of the medium near the surface. At 
the present time it is considered that a fast particle moving in 
vacuum along a surface can excite bulk plasmons only as the 
result of interaction with these tails. In the present section 
we shall show that even if such tails of the electron density 
did not exist at all and the fast particle were moving in a 
vacuum in the complete sense of this word, nevertheless ex- 
citation of bulk plasmons would be possible as a result of a 
new mechanism of generation, in description of which it is 
necessary to take into account spatial-dispersion effects 
which lead to extension of the electric field of bulk plasmons 
beyond the material. In this section we shall also find the 
dependence of the probability of emission of surface plas- 
mons on the value of /z,/ and the other parameters of the 
problem. 

In the previous section it was shown that if a fast parti- 
cle is moving in vacuum at a distance Izol from the medium- 
vacuum interface, the Green's function D (q, w, z,, z,) is de- 
scribed by Eq. (9). This formula can be further simplified if 
we write it in the approximation linear in the vector q. In this 
approximation 

€"'(a) ( l + P )  
4 I+P+ ( I - P )  8'" ( 0 )  

The first term in this formula describes first of all the excita- 
tion of a surface plasmon. The appearance of this term in D is 
quite natural. It is known that the electric field associated 
with a surface plasmon is present both in the medium and in 
the vacuum, and that the potential of the plasmon field falls 
off exponentially with distance from the surface. Therefore a 
fast particle moving in vacuum has the possibility of inter- 
acting directly with this field. This is true even in the case 
when one does not take into account the spatial dispersion of 
the permittivity. 

The total probability of excitation ofall electronic states 
in the medium is related to the Green's function 
D (q, w, z,, z,) by the expression 

Calculating the contribution to W, from the right-hand side 
of the function (1 I), we must integrate over w from 0 to w, . 
From the structure of the denominator of the first term in 
(1 1) it follows that even if we neglect the imaginary part of 
the denominator, the pole of this denominator turns out to 
be on the integration path. Therefore the contribution of 
surface plasmons (more precisely, of excitations whose ener- 
gies lie in the interval 0 < fiw < fiw, ) in (12) is finite even for 
an infinitely small imaginary part of the denominator of the 
first term in (1 1). Thus, the total probability of excitation of a 
surface plasmon takes the form 

This formula is obtained from (1 1) and (12) after integration 
over w and over the angle between the vectors v and q. This 
expression does not contain v,, which means that the spatial 
dispersion of the permittivity makes only a small contribu- 
tion to W, in the nature of a correction. The integral in (13) 
is equal to the Macdonald function KO. Thus, 

"'a' ( 1/50;lzol ) 
W,, = T KO 

1/2 fiv 
As we have already mentioned, this formula was ob- 

tained with neglect of the spatial dispersion. The smallness 
of the latter means that qv,/w < 1. The field of a surface 
plasmon falls off exponentially with distance from the sur- 
face into the vacuum, and the characteristic length has a 
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value q-'. Therefore a fast particle interacts with surface the scattering cross section, as can be seen from (15), in- 
plasmons whose wave vectors are q 5 l/lz,j. Thus, smallness creases. For P # 1 the conservation of energy and momen- 
of the spatial dispersion corresponds to the inequality tum takes the form 
/z,/ > v,/w,. It is just for S U C ~ Z ,  values that Eq. (14) is valid. 
One can see from (14) that a surface plasmon is rather inten- 
sively excited when the argument of the Macdonald function 
is of the order of or less than unity. In the argument of the 
function KO we have the ratio of the lengths Izol/(v/wp), and 
therefore a fast particle can excite surface plasmons in mov- 
ing from the surface of the medium to a distance which con- 
siderably exceeds atomic dimensions. Equation (14) agrees 
with the results obtained for the specific energy loss by a fast 
particle to surface plasmons by another method in Ref. 4. 

The second term in (1 1) describes a less obvious effect- 
the excitation of plasma waves whose frequencies corre- 
spond to bulk plasmons by a particle which does not pene- 
trate into the medium at all. From (1 1) and (12) it is evident 
that a finite integral over w with the second term of Eq. (1 1) 
under the integral cannot be provided by an infinitely small 
imaginary addition to ~ ( w ) ,  since the pole of the integrand 
turns out to be outside the integration contour. Consequent- 
ly the total probability of excitation of bulk plasmons W,, 
will be due to the imaginary part of the denominator of the 
second term in (1 I), which is related to the frequency v of 
collision of the electrons of the medium and to the imaginary 
part of the above-mentioned denominator, which is propor- 
tional to v,. This latter imaginary part will be most impor- 
tant and most interesting if qv, > v. The minimum value ofq 
is due to the conservation laws (which correspond to the S 
function in Eq. (12)) and is equal to w/v. Consequently Im D 
will be due to the spatial dispersion if w/v > v/v,. In what 
follows we shall assume that this condition is satisfied. Then 
the effect of excitation of bulk plasmons by a fast particle 
moving outside the medium can be considered as the effect of 
spatial dispersion of the permittivity. In this case 

The first term in (1 5) is due to the imaginary part of the 
integral in (10). It can be seen from (10) that it is determined 
by the contribution from the poles at the points u2 = 3. The 
wave vector u which follows from this equation corresponds 
to the momentum transferred to the boundary (in a direction 
normal to it) by the electrons of the medium. Here the possi- 
bility arises of removal of the plasma wave from the bound- 
ary into the bulk. In this case the total momentum trans- 
ferred to the electrons of the medium is greater than w/u. 
This is evident directly from conservation of energy-momen- 
tum in such a process, from which it follows that w = Q-v. 
Therefore the minimum momentum transferred to the elec- 
trons of the medium is tangential with respect to the surface 
and is equal to o / u .  Consequently this process of emission of 
a bulk plasmon for P = 1 is a Cerenkov process, but the sur- 
face takes part in this process. 

The second term in the square brackets in (15) exists 
only for P # 1, i.e., in the case of a rough surface. For P # 1 

U= ( Q e + Q s u r i ) ~ .  

Here Q, is the tangential component of the momentum 
transferred to the electron subsystem and Q,,, is the tangen- 
tial component of the momentum transferred to the surface. 
The sum /Q, + Q,,, I coincides with the quantity w/v, and 
the electrons of the medium can receive also a smaller mo- 
mentum. Consequently roughness of the surface leads to 
transition radiation of bulk plasmons. 

The total probability of radiation of bulk plasmons is 

In the region (w, /v) lzo 1 < 1 

This formula can be compared with Wts taken for the same 
values of z,. For these z, values the probability Wts can be 
represented in the form 

- 

where C is Euler's constant. 
The ratio of the probabilities is given by 

For v,/w, ~ ~ ~ ( v / ~ ~  this ratio can be the order of one tenth 
ifz,, as is reported in the experimental study of Ref. 5, is of 
the order of one angstrom or smaller. It is evident from this 
that the energy-loss spectrum of particles moving just above 
the surface of a semi-infinite medium can have a rather com- 
plicated form. 

In concluding this section we note that in motion of a 
fast particle in the immediate vicinity of the surface of a 
medium when the fast particle feels the tails of the electron 
density, both mechanisms of bulk plasmon generation (that 
proposed by us and that due to the tails) can contribute com- 
parably to the total cross section for scattering of a fast parti- 
cle (integrated over frequency). We can suppose, however, 
that these two mechanisms determine different parts of the 
bulk-plasmon energy spectrum. The new mechanism found 
by us is responsible for the generation of waves whose fre- 
quencies are greater than a,, as follows directly from the 
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form of the second part of Eq. (1 1). This follows even more 
clearly from Eq. (16). The integration in (16) is over the vari- 
able x = 1 - wi/w2, so that in essence this corresponds to 
integration over the frequencies of the generated excitations. 
The integral in (16) is determined substantially by the value 
of the integrand for all x ,  and not only for x = 0. 

In regard to the contribution of the tails of the electron 
density, this problem is most simply solved in the case in 
which the electron concentration in the medium at the 
boundary changes so slowly that one can make use of the 
concept of a local bulk-plasmon frequency (this situation is 
realized, for example, in the region of ap-n junction in semi- 
conductors). In this case there will be generated plasmons 
whose frequency w is less than the frequency wp characteris- 
tic of the main bulk of the material. In the case of a sharply 
inhomogeneous boundary this question is not so simple and 
presents independent interest. However, even in this case 
apparently as the result of the tails of the electron density 
there are generated plasmons with frequencies less than 
those which are due to the new mechanism. The wavelength 
of a plasmon is usually significantly greater than the atomic 
length in which the tails of the electron density die out. 
Therefore an excess of the frequency w of the generated bulk 
excitations over wp can be due most likely to the usual de- 
pendence of w on the wave vector q. This correction is qua- 
dratic in the spatial-dispersion parameter qv,/w. However, 
the correction to Im D due to the new mechanism, as follows 
from (1 1) and (16), is linear in this parameter. If this is the 
case, then the new mechanism and the more trivial mecha- 
nism of bulk-plasmon production are not so much competi- 
tive as they are complementary. 

4. EXCITATION OF PLASMONS BY A CHARGED PARTICLE 
MOVING IN A MEDIUM PARALLEL TO THE SURFACE 

If a charged particle is moving in a medium below the 
surface, the Green's function D (q, w, z,, z,) corresponding to 
this case has the form 

This Green's function is written with neglect of the spatial 
dispersion of the permittivity. If the fast particle is moving in 
the medium, then in contrast to the case which was discussed 
in the previous section, for coupling of a bulk plasmon and a 
fast particle there is no need of taking into account the spa- 
tial dispersion of the permittivity. The total probability of 
scattering of a fast particle by plasmons, obtained by means 
of Eq. (19), has the form 

rn 

1-8 (o) 
- 1m (@) ((,,)j- [ K O ( + )  - ~i (%)I} . 

The function E, is the integral .. 
E~ (3) = J dt t-l e-&. 

The formula (20) describes the excitation of both bulk and 
surface plasmons. From (20) it follows that the probability of 
excitation of bulk plasmons is 

Let's analyze this formula. As z,-+w, which corresponds to 
motion of a particle in an unbounded medium, we obtain the 
well known result: 

As z-0 we obtain at We -0. This means that in motion of a 
fast particle immediately along the surface, bulk plasmons 
can be radiated only as the result of spatial dispersion of the 
permittivity. From (20) it can be seen that an increase of the 
probability of excitation of a surface plasmon leads to a de- 
crease of the probability of excitation of a bulk plasmon. This 
effect is especially important for z, < v/wp. Here the argu- 
ment of the function KO in (20) is small in comparison with 
unity, and the value ofK, is relatively large. The argument of 
the function E, in this case will depend on the Fermi velocity 
u,. If V/W, >zO%uF/wp, then 

Now, in contrast to (22), the velocity of the fast particle does 
not appear in the argument of the logarithm. This means 
that the dependence of the probability of excitation of bulk 
plasmons by a particle moving parallel to the surface on the 
energy has the same form as the analogous dependence of the 
intensity P, of excitation of a surface plasmon, but at normal 
incidence of the particle onto the surface. The decrease of the 
value of We with increase of the angle of incidence of the 
electrons on the surface of aluminum observed experimen- 
tally in Ref. 1, we assume, can be explained mainly by the 
mutual influence of the bulk and surface channels of the 
reactions. Since in experiments of this type the electron tra- 
verses some path in the medium below the surface at an ef- 
fective distance z, from the boundary, and the quantity z, 
will depend on the angle of incidence of the electron onto the 
surface, then the observed angular dependence of the cross 
section for excitation of a bulk plasmon is due to the second 
term and partly to the third term in Eq. (21). 

From Eq. (20) we obtain also the total probability for 
excitation of surface plasmons 

For u,/wp <zo < v/wp this probability is 

In other words, the dependence of W, on the energy turns 
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out to be the same as the dependence of We on E in an un- 
bounded medium. Thus, in motion of a fast particle below 
the surface of the medium and parallel to it, the dependence 
of the total probability for excitation of bulk plasmons on the 
particle energy turns out to be that which exists in the case of 
excitation of surface plasmons in normal incidence of a par- 
ticle onto the surface. And on the other hand the total prob- 
ability of excitation of surface plasmons turns out to depend 
on the energy of a particle moving parallel to the surface in 
the same way as occurs in excitation of bulk plasmons by 
particles without taking into account the boundary. 

Let us consider now the motion of fast particles near a 
thin (in the electrodynamic sense) film. The special feature of 
this problem is that in this case there are, not two main chan- 
nels, but a number of channels of inelastic scattering, so that 
all reaction channels can influence each other. Consider a 
film of thickness d with permittivity ~ ( w ) ,  with interfaces 
with vacuum on both sides. We shall take the origin of co- 
ordinates at the surface above which the fast particle is mov- 
ing. The Green's function D for z, < 0 has in this case the 
form 

4ne2 e - z q ~ ~ o ~  
l + e  (w) -[ l-E (w) ]e-2qa 

D (9,0,zol 20)  = - 
f ig  [ I + &  ( a ) I 2  - [ I -&(a)  l 2  e-"* ' 

(26) 
The transition probability obtained by means of (26) for a 
fixed value of energy transfer h ,  and integrated over all 
momentum transfers is 

e - 2 q ~ ~ a ~  l + e  ( a )  - [1-e ( o )  ]e-'qd 
nfiv 

el" 
(qz-o2/u2)t"Im [ i + E  6) 1 2 - [ i - ~  ( a )  ~ ~ e - ~ "  

1-8 ( a )  

21201 1 I - & ( a )  1 )  x "p{-dln I+& ( a )  

In this case we intentionally did not integrate the transition 
probability over the energy transfer h ,  since the presence of 
several inelastic channels is manifested primarily in the ener- 
gy spectra of the scattered particles. The scattered-particle 
spectrum will depend substantially on the ratio Iz,l/d. From 
Eq. (27) it is evident that when 2/zol/d> 1, the exponential 
contained in w, is not small only when lnl(1 - ~ ( w ) ) /  
(1 + E ( w ) ) I  is small. The minimum possible value of this loga- 
rithm is determined by the fact that the following condition 
must be satisfied: 

If (28) is considered as an equation, this expression will coin- 
cide with the well known equation which determines the fre- 
quencies of plasmons which are called normal and tangential 

w,, rel.un. 

FIG. 1. Energy spectrum w, (w) of the scattered particles. The abscissa is 
x = (W/O,)~, and the ordinate is the probability of scattering with energy 
loss \/;;. The region 0 < x  <0.5 corresponds to excitation of tangential 
plasmons, and the region 0.5 < x  < 1 is due to excitation of normal plas- 
mons. Curve 1 corresponds to z,l/d = 0.1, curve 2 corresponds to 0.25, 
curve 3 corresponds to 0.45, curve 4 to 0.55, curve 5 to 0.75, and curve 6 to 
1.0. The curves have been plotted for the case E = 100 keV, d = lo-' cm, 
and w, = 15 eV. The nature of the curves is retained as long as the film can 
be considered thin, i.e., as long as o,d / u  < 1. 

surface plasm on^.^,^ The right hand side of Eq. (28) is always 
small by definition. Indeed, up /v is, as follows directly from 
theconservation laws, the minimum wave vector which the 
produced plasmon can have. Therefore w, d /v = d /Ama, , 
where&,, = v/wp is the maximum wavelength of the plas- 
mon. Since we are considering films which are thin in the 
electrodynamic sense, this means that d /Ama, < 1. Thus, for 
21zoI/d > 1 from the condition of smallness of the logarithm 
mentioned above we obtain the estimate 

from which it follows that plasmons with frequencies close 
to w, /fi are excited only weakly in this case. 

When the particle moves comparatively close to the 
film surface so that 2)z01/d < 1, then a rise of the part of the 
spectrum in the frequency region close to w,/fi occurs. 
This means that the shape of the scattered-particle energy 
spectrum can change very substantially on change of the 
distance Izol AS can be seen from Fig. 1, in which we have 
shown the function W, (w) plotted on the basis of Eq. (27), for 
a comparatively small change of lzol the spectrum changes 
from the usual spectrum in which a resonance at the frequen- 
cy w,/fi, is distinctly expressed to a spectrum in which 
there is a clearly expressed minimum in the region of the 
frequency w, /fl of the surface plasmon. This change in the 
nature of the spectrum w, at frequencies w close to w, /$Ton 
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variation of the parameter Jzol/d recalls the nature of vari- 
ation of the function 

as a function of the value of /zo I/d. The appearance of two 
peaks in the scattered-particle spectrum at small and large 
(-a,) frequencies is apparently in qualitative correspon- 
dence with the results of the experiment of Ref. 5. The pres- 
ence of a substrate on which the film is deposited can of 
course lead to still greater complication of the energy spec- 
trum. 
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