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A diagram technique for spin operators is developed as applied to magnets with one-ion anisotro- 
py. The technique permits an exact treatment of one-ion anisotropy of arbitrary symmetry in the 
presence of a magnetic field of arbitrary direction. The system ground state, whose type depends 
on the magnitude and direction of the external field, is investigated, as is also the spectrum of the 
collective excitations in each of the possible phases. 

1. INTRODUCTION larger than the exchange integrals. The existence of a large 

This paper is devoted to the development of a systema- 
tic method for microscopic investigation of one-ion anisot- 
ropy (OA) at arbitrary symmetry and arbitrary value of the 
OA, and at arbitrary direction and magnitude of the external 
magnetic field. Also investigated are the ground state and 
the spectrum of the collective oscillations. 

What distinguishes this problem? 
The uniaxial problem-uniaxial OA and longitudinal 

field-has been quite thoroughly investigated (e.g., Refs. 1- 
8): the main properties of such magnets are close to the prop- 
erties of an isotropic ferromagnet (FM) or of a ferromagnet 
with exchange anisotropy, although certain quantitative dif- 
ferences are present. Radical changes occur when a definite 
noncollinearity is present, viz., a field directed at an angle to 
the OA axis or a more complicated symmetry of the OA. In 
this case various types of ground state are possible- non- 
magnetic, collinear ferromagnetic, and canted ferromagne- 
tic; these are realized in different field intervals that depend 
on the ratio of the OA and exchange constants (see Ref. 9 and 
Sec. 4 of the present paper). Entirely unusual properties 
compared with FM without OA are possessed in this case 
not only by the nonmagnetic phase, but also by ferromagne- 
tic structures, since a quadrupole order is imposed in them 
(in the presence of a second-order OA). The latter, e.g., pre- 
vents magnetic saturation from being reached at T = 0 (Sec. 
4) and leads also to other singularities. The collective-oscilla- 
tion spectrum also changes. Not only the number of 
branches and the dispersion law, but also the character of the 
oscillations becomes different. These oscillations are in gen- 
eral not spin waves but superpositions of oscillations of spin 
operators and operators that are nonlinear in the spin varia- 
bles (see Sec. 4). 

The microscopic description of such a noncollinear case 
encounters a number difficulties, which were noted, for ex- 
ample, in Refs. 9-15. These can be avoided if there exists 
some small parameter, say a small transverse component of 
the magnetic field,'' a weak deviation of the OA symmetry 
from uniaxial,'' or (according to chronologically the latest 
study") an arbitrary magnetic field but a small uniaxial an- 
isotropy. 

At arbitrary values of the parameters, particularly arbi- 
trary OA constants, the problems remains unsolved." Yet 
many known magnetic compounds, based in particular on 
rare-earth ions, have OA constants comparable with or even 

group of substances whose diverse properties cannot be de- 
scribed by the existing theories was in fact the stimulus for 
the present study. 

The approach developed is a generalization of the Vaks- 
Larkin-Pikin diagram technique" as applied to magnets 
with OA. This technique permits accurate treatment of OA 
of arbitrary symmetry and magnitude in the presence of a 
field of arbitrary direction and magnitude. This is accom- 
plished by expanding the basis of the operators that describe 
the state of an individual site, viz., by transforming from spin 
operators comprising the Lie SU(2) algebra to an assembly of 
spin, quadrupole, ..., 2s-pole operators that make up a Lie 
SU(2S + 1) algebra14 (Sis the value of the spin in the site). In 
Sec. 2 is constructed for the uniaxial case a diagram tech- 
nique that is convenient for further generalization, given in 
Sec. 3, to an arbitrary case. 

In Sec. 4 are investigated all types of ground state and 
the spectra of the collective excitations for the case S = 1 at 
arbitrary temperatures, in the lowest approximation for the 
irreducible part. 

2. DIAGRAM TECHNIQUE FOR THE UNIAXIAL CASE 

Consider a ferromagnet with isotropic exchange and 
uniaxial OA, which is described in the presence of a longitu- 
dinal field by the Hamiltonian 

Since the purpose of the formalism developed is an ex- 
act treatment of the OA, we include the one-ion Hamilto- 
nians H0 and Hh in the zeroth Hamiltonian 

We introduce the temperature Green's functions of the spin 
operators S" ( r )  in the Heisenberg representation with imagi- 
nary time. These operators determine, as usual, the thermo- 
dynamic and kinetic characteristics of the system at finite T. 
We express them in the interaction representation with the 
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zeroth Hamiltonian (2) in terms of the temperature scatter- 
ing matrix, in analogy with Ref. 18. The problem of calculat- 
ing the contribution of n-th order in H '"' reduces then to the 
calculation of the mean values, with the zeroth Hamiltonian, 
of the T-product of a certain number of spin operators in the 
interaction representation. The calculation of mean values 
containing only the operators SZ(r) is not a complicated 
task, since the latter do not depend on the time: S ' (T) = S ' . 
Calculation of mean values containing the off-diagonal oper- 
ators S F  (7) entails difficulties due to noncompliance with 
the Wick theorem for spin  operator^"^'^ in the presence of 
OA in Ho, owing to the peculiar time dependence of S 7 (r) 
(Ref. 7): 

The reason for this situation is that in the presence of 
OA the basis of the operators that determine the state of an 
individual site becomes larger: it includes not only the spin 
operators, but also the tensor operators 0 ;" of the quadru- 
pole (I = 2), octupole (I = 3), . . . . .2S-pole moments (of sec- 
ond, third, . . . . 2 S  th power in the spin operators). This cor- 
responds to a transformation from the Lie SU(2) algebra in 
the isotroopic case to the Lie SU(2S + 1) algebra in the pres- 
ence of OA.I3-l5 

It is found in this approach that in the case of the zeroth 
Hamiltonian (2) Wick's theorem is satisfied for certain oper- 
ators that make up another complete set of generators of the 
SU(2S + 1) algebra and are linearly connected with the oper- 
ators 0 ;", viz., Hubbard's operators Pq, which are repre- 
sented by matrices containing zeros everywhere except for a 
single unity element at the intersection of the 9th column 
and thepth row, and describe the transition, at the site, from 
the state q to the statep (in our case, when the states of the 
site are characterized by the projection of the spin on the z 
axis, the parameters p and q take on the values p, q = - S, 
- S + 1, . . . . S. For details on the operators 0 ;" and the 
Hubbard operators see, e.g., Refs. 15, 19, and 20): 

where 

The Wick theorem holds for the Hubbard operators be- 
cause they have a non-operator dependence on the time if H,  
is of the form (2): 

XPq  ( T )  = {exp [ (Ep-E,) T ]  ) XPq ,  (6) 

where Ep and Eq are the eigenenergies of the Hamiltonian 
Ho and correspond to states with spin projections m = p and 
m = q. 

Wick's theorem was used in Ref. 4, where a diagram 

technique was developed for Hubbard operators as applied 
to a uniaxial ferromagnet in a longitudinal field. We regard 
this technique as too detailed for the case when the ion-ion 
interaction has, as usual, a spin-spin character, i.e., there are 
no interactions of higher order in the spin operators. In this 
case the interactions couple only three vertices, correspond- 
ing to the operators S +, S -, andS ' out ofthe (2 s  + - 1 
vertices connected with all the operators of the correspond- 
ing Lie algebra and contained in the approach of Ref. 4. 
Furthermore, all the physical characteristics are determined 
as a rule by means of spin operators. 

It is therefore expedient, in our opinion, to project the 
total [(2S + - I]-dimensional space on the three-dimen- 
sional subspace of the spin operators and reformulate for the 
latter the VLP diagram technique with account taken of the 
properties of the complete Lie algebra. This idea is imple- 
mented below for the simplest nontrivial case S = 1. 

For S = 1, the frequencies Ep - Eq in (6) are given by 

(7) 
Accordingly, there are three independent off-diagonal Hub- 
bard operators X -I0(r), XO'(r), X -"(T) and three different 
Green's functions 

Besides the aforementioned operators, the complete set of 
the generators of the SU(3) algebra include also the Hermi- 
tian-adjoint operators X O-'(r), X "(T), X '-'(r) and two diag- 
onal operators X " and X -'-I, which are independent of 
time according to (6). These eight Hubbard operators are 
linearly connected with the eight tensor operators 0 ;" (spin 
0 y=S " at I = 1 and quadrupole 0 ,"=O " at I = 2, Ref. 
1 5)2' by the formulas 

s- ( 7 )  =X-I0 ( t )  +xol ( 7 )  , 

0-' ( 7 )  -- (S2S-+S-SZ) ( t )  =X-lo ( 7 )  -xoi ( 7 )  , 

o-2 ( t )  = ( S - )  ( T )  =X-l1 ( 7 )  , 

Let us return to the sought mean values. Expressing 
S, (T) in terms of the Hubbard operators and using (4) as 
applied to the case S = 1, we get 

( T S l a ~ ( a l ) .  . . So-  ( 7 ) .  . . Snan(7,) ) ,  

We shall need later on the explicit form the commutation 
relations for the two Hubbard operators X and X -I0, and 
for the third off-diagonal Hubbard operator X - I 1  with the 
spin operators 

987 Sov. Phys. JETP 59 (5), May 1984 F. P. Onufrieva 987 



[X-lo, (S-30°), -'I2 [2Ki; (71-72) -Klz1 (TI-72) ]KaZ2 ( T ~ - T ~ ) K ~ ~ ~  (72-74) 

[Xal, S+] (S+30°),  [X-li, S f ]  =XOi-X-ia, (11) X(S"30°),, 

The described scheme for calculating the mean values 
of the spin operators is equivalent to carrying out all the 
possible pairings of the spin operators in accordance with 
new rules that can be deduced from the general rule 

In particular, one can realize the following normal pairings 
n si- (.ti)Sj+ ( T ~ )  =-i/2Ktjl (ai-tj) (Sj'f30j0) 

and the anomalous pairing 

which follow from the equations (12) for pairing the Hub- 
bard operators and from the commutation relations (1 1). 

In the calculation of the corrections to the paired 
Green's functions, there can be encountered the simplest 
vertex blocks shown in Fig. 1. In these blocks an empty circle 
and a circle with a point in it correspond to the diagonal 
operators Sz and 0°, while circles with + and - signs 
correspond to the operators S + andS -. Each type of vertex 
block is a graphic representation of the mean value, with 
zeroth Hamiltonian, of a T-product of the corresponding 
operators in the coordinate representation, among which are 
paired those operators that correspond to vertices joined by 
lines; the arrow indicates the direction of the time. Just as in 
the VLP technique, the only nonzero blocks are those con- 
taining the equal number of operators S - and S +. Corre- 
sponding to these diagrams are the analytic expressions 

It can be seen from them that a solid line on a diagram does 
not stand for a single zeroth Green's function, as in the VLP 
technique, but to a definite linear combination of three ze- 
roth Green's functions. We note also the appearance of new 
vertex blocks compared with the VLP technique. These are, 
in particular, the block e), which corresponds to pairing of 
the operators S , (rl) and S ; (T,), and the blocks c), h), and 
f ) ,  which contain the quadrupole diagonal operator 0 O. In 
the calculation of the corrections to the series for the Green's 
functions, the latter appear only as intermediate elements for 
the construction of more complicated blocks, each of which 
can be obtained by combination of the simplest blocks shown 
in Fig. 1. 

The pairings leave us with mean values containing only 
the time-independent diagonal operators Sz and 0 O. The 
prescription for their calculation is similar to that in the VLP 
technique for mean values containing only the operators S ' . 
Namely, differentiating the expression for the zeroth parti- 
tion function 

Zo=Sp exp (yS+I'. 30°), y=@, I'=-bd/3, fi=l/kT, 

(16) 
with respect to the parameters y and r we obtain 

Further differentiation yields equations analogous to those 
of Ref. 18: 

(S?,,=a, 3(O0),=h, 

Explicit formulas for the parameters a and A, the first de- 
rivatives al,, A k, a> = A l,, and the higher-order derivatives 
can be easily from (16) and (17) (the former coincide with 
Eqs. (1 1) of Ref. 9). 

We retain for the mean values (1 8) the graphic represen- 
tation used in the VLP technique, i.e., we assign to the terms 

FIG. 1. 
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containing a definite number of 8 symbols and connect indi- 
vidual vertices into definite combinations an oval (block) 
that encloses these vertices and their connecting lines. The 
only difference is that in the VLP technique a block that 
contains not even one broken-up element corresponds to a 
factor a (or b in the notation of Refs. 17 and 18), a block 
containing one broken-up element corresponds to - a; (b '), 
one containing two elements to - a;'(b "), ..., whereas in our 
case these factors are certain linear combinations of a and il 
if there are no broken-up elements in the block, linear combi- 
nations of the first derivatives a;, i l k ,  uk = il I, if there is 
one such element, and so forth. The form of the linear combi- 
nation corresponding to a block depends on the vertices that 
it combines. For example, the diagrams of Fig. 1, in which 
there are no broken-up elements, correspond in Eqs. (1 5) to 
the linear combinations (S + 3 0  O),-u + A. 

3. DIAGRAM TECHNIQUE FOR THE CASE OF AN OA OF 
ARBITRARY SYMMETRY AND OF AN ARBITRARILY 
DIRECTED EXTERNAL FIELD 

We consider a situation in which the OA has arbitrary 
symmetry and the external field has arbitrary direction. In 
this case the eigenstates of the zeroth Hamiltonian do not 
coincide with the eigenstates of the operator S " and there- 
fore cannot be numbered in accord with the projection of the 
angular momentum on thez axis. The Hubbard operators (6) 
have accordingly no longer the simple operator representa- 
tion on which the generalized Wick theorem (4) was based. 

It is easy to perceive that the Wick theorem can be for- 
mulated in a form similar to (4) in the general case of an 
arbitrary S and an arbitrary form ofHo for those SU(2S + 1) 
algebra operators which describe transitions between differ- 
ent eigenstates of the Hamiltonian Ho. The only difficulty 
lies in identifying the quantum number that labels the eigen- 
states of Ho in the case when they do not coincide with the 
eigenstates of any of the three angular-momentum opera- 
tors. 

This difficulty can be circumvented by transforming, 
through rotations in [(2S + 1)' - I]-dimensional space, to 
those coordinates in which Ho is diagonal14: 

R . = - I ~  s , ' + L ~  02Yi)  )+ . . . + d2.z 0 2 , 0  (i) , 
1 I 

where 6:, ..., a:, are the quadrupole and . . . the 2s-pole 
diagonal operators in the rotated space, the latter marked 
with a superior tilde. The eigenstates of the zeroth Hamil- 
tonian Ho in terms of these coordinates is characterized, just 
as in the uniaxial case, by the projection of the spin on the z 
axis, so that Wick's theorem can be formulated in terms of 
these coordinates for the same Hubbard operators as in the 
preceding section. 

We implement the described program for the simplest 
nontrivial case S = 1, when the OA of the most general form 
is described by the Hamiltonian 

Let the exchange be isotropic as before, and let the external 
field direction be arbitrary: 

Ho takes accordingly the form 

The unitary transformations (rotations in (8-dimensional 
space) that diagonalize it were obtained in Ref. 14: 

xexp [K(O1+O-I) /fa exp [L (02-0-2)]  

The sought diagonal form of the zeroth Hamiltonian 

is realized in 8-dimensional-space coordinates characterized 
by the angles p,  K, and L and satisfying Eqs. (8) of Ref. 9 
(whereh anddarereplaced by h (p,K, L ) andd (p,K ), andEis 
replaced by E) .  The same reference contains explicit equa- 
tions [(7)] that relate h and d with the angles p,  K, and L with 
the only nonzero mean values a = (SZ),, A = 3 ( 6  O),, in 
terms of these coordinates, as well as transcendental equa- 
tions [(I l)] for them. 

We proceed to find the mean values of the spin opera- 
tors Sa(r) in the initial space. We use the equalities of these 
mean values, defined with the Hamiltonian (21), to the mean 
values S" (r), in rotated space, of the same operators defined 
with the uniaxial Ho from (22). We express next the spin 
operators S* in terms of the spin and quadrupole operators 
in the initial space 

(Explicit equations for the coefficients A >nd B ",an be 
easily obtained from the equations of Ref. 14 and are cited in 
the Appendix). The sought mean values of the operators in 
rotated space and specified with nondiagonal Ho are ex- 
pressed in terms of mean values determined with diagonal 
g o ,  from the spin and quadrupole operators Sm (3, Om (?) in 
the initial space, which have a time dependence that is now 
determined by the uniaxial go from (22). This connection 
can be represented as the existence of a relation (defined only 
under the mean-value sign) between the operator Sa (7) and 
the operators S (?), Om (?), defined with uniaxial &: 

Since the latter operators are defined in the initial space, in 
which the interaction is of the spin-spin type, the interaction 
lines connect, just as in the uniaxial case, only three types of 
vertices corresponding to the spin operators. 

The problem of determining the mean values of spin 
operators with arbitrary zeroth Hamiltonian has thus been 
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reduced to a determination of the mean values of spin and 
quadrupole operators with uniaxial & for ITnt correspond- 
ing to the initial isotropic exchange, i.e., to the problem 
solved in Sec. 2. 

It is useful to formulate the obtained rules for calculat- 
ing mean values of spin operators in the language of pairing 
of these operators. It follows from (24) that such pairings can 
be represented as a sum of all possible pairings of the opera- 
tors S (?), Om (?), defined in uniaxial &. They are given 
[Eqs. (13) and (14)] in Sec. 2. We present below the pairings 
similarly obtained for quadrupole operators: 

v. o m 0 ;  ( T j )  =st- ( T i )  s,+ (7,) , 

n n 
Oi-i ( T i )  0,-l (T , )  =si- ( T i )  sj- (7,). 

-. n 
0i-l ( T i )  0; (T , )  =-si- (Ti)Sf (7,) , 

- 1  - ,-. 
St- ( T i )  0, ( T , )  =(Ii-' ( T i )  Sj' ( T j )  

Using the representation (24), the explicit expressions 
given for the coefficients A g and B in the Appendix, and 
the pairing equations (25), (13), and (14), we can easily obtain 
explicitly the sought formulas for pairings of spin operators 
in the interaction representation with arbitrary Ho, and cal- 
culate on their basis the various vertex-block types. 

In particular, the simplest paired vertex blocks shown 
in Fig. 2 correspond to the analytic expressions 

where 

FIG. 2. 

A,laB=AoaAoB, Alzag=AoaB~, 

AzIaB=Bo"AoB, A22a'=BOaBOB. 
A characteristic feature of these blocks is that they differ 
from zero for an arbitrary pair of operators S" and SP, in 
contrast to the cases of an isotropic FM and an FM with 
uniaxial anisotropy in a longitudinal field, where only the 
blocks with a = - , ,B = + differ from zero. Analogously, 
the number of nonzero vertex blocks containing three and 
four vertices increases (compared with Fig. 1) because they 
can include arbitrary combinations of the operators S" and 
so . 

As already noted, we use the representation of the cor- 
relation functions in terms of a scattering matrix (Eq. 5.7) of 
Ref. 18). This representation generates expansions of these 
functions in powers of the interaction. The correction of nth 
order in n is shown in the form of individual blocks, pertain- 
ing to one site, which are joined by bare-interaction lines. 

As a result of the foregoing features of vertex block, the 
nonzero paired correlation functions GaP will be those of the 
spin operators S" and SP with arbitrary indices and a andP, 
and the equations for them will be coupled with correlation 
functions with other different indices, i.e., the series will be 
branched in terms of the indices. We can nevertheless pro- 
ceed as usual," i.e., introduce the concept of a nonreducible 
part of the diagram which cannot be cut on theAelementary 
line of the interaction if defined in matrix form (Z). The con- 
nection between the correlation fu%ctio? an@e i r~ducib le  
part is then given by the relation G = (I - ZV)-'8,  which 
differs from Larkin's equation only in the matrix form (V is 
the bare-interaction matrix and i is the unit matrix). 

The next step is to classify the diagram in accord with 
some small parameter. In our problem we can choose it to be 
the reciprocal of the average relative radius of the exchange 
interaction, l/rA (Ref. 17). In the magnets of interest to us, in 
which the OA is comparable with the exchange interaction, 
the latter is mainly indirect, since it is long-range, so that the 
chosen parameter is quite good (of course, far from the fluc- 
tuation region). 

The diagrams are classified in accord with this param- 
eter with account taken of the fact that the result of a single 
summation over the intermediate momentum q is of the or- 
der of l/r. Accordingly, the main contribution is made by 
those diagrams with not even one summation over q. These 
steplike diagrams for the correlation functions, in which the 
paired vertex blocks shown in Fig. 2 are connected by bare- 
interaction lines. Calculation of an infinite series of such dia- 
grams for the correlation functions is equivalent to zeroth- 
approximation calculation of the irreducible part when its 
components are determined by Fourier transforms of the 
vertex blocks (26), i.e., by formulas (26) in which Ki(.ri - 7,) 

are replaced by their Fourier transforms: 

Ki(ion)  = [p (ci-ion)]-' ,  1=1,2,3. 

, , E , = ~ Z .  (28) 

4. GROUND STATE AND SPECTRUM OF COLLECTIVE 
EXCITATIONS 

In the considered zeroth approximation the ground 
state is determined by one of the eigenvectors of the Hamil- 
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tonian Ho. In the 8-dimensional-space coordinates, in which 
this Hamiltonian is diagonal, the ground state is an eigen- 
state of the operators ' and is therefore characterized by the 
maximum, in absolute value, projection of the spin on the z 
axis, i.e., 

or by the minimum projection 
- 
a=O, A=-2. 

The foregoing solutions of Eqs. (1 1) of Ref. 9 are unitarily 
equivalent and correspond to a different choice of the 8-di- 
mensional-space frame in which is diagonal. 

What is the ground state in the initial space? Since S ' is 
a superposition of generators of an 8-dimensional space [Eq. 
(34)], in the general case the ground state is an eigenstate of 
an operator that is a certain linear combination of the spin 
and five quadrupole operators. Obviously, if there is no spin- 
operator contribution to this linear combination, the ground 
state will be nonmagnetic (all the magnetization projections 
are equal to zero, and the order will be determined by the 
mean values of the quadrupole operators 0 ;". Such a ground 
state can be naturally called a quadrupole-ordered ~ h a s e . ~ ' ,  
Obviously, it cannot be realized in the absence of OA, when 
the complete aggregate of the operators that describe the 
state of the site includes only spin operators. 

Another possibility, when the linear combination con- 
tains both spin and quadrupole operators, corresponds from 
the magnetization viewpoint to the ordinary ferromagnetic 
phase. It is important to note, however, that since the maxi- 
mum, unity value is reached at T = 0 by the length of the 
vector in 8-dimensional space, and its components are both 
spin and quadrupole operators, the average magnetization 
does not reach saturation at T = 0, and can be arbitrary. The 
ferromagnetic phase with the most complicated structure is 
the canted phase, in which the magnetization vector makes 
an angle with the external-field direction, i.e., both magneti- 
zation projections M ' = (S ' ) and M " = (S " ) differ from 
zero (the third component M Y  vanishes identically if the 
external field has no y component); in addition, the mean 
values of the quadrupole operators differ from zero, 
(0° )#0 ,  ( 0 '  + 0 - 2 ) # 0 ,  ( 0 '  - 0-')#O.Theclosestto 
the usual ferromagnetic phase is a collinear ferromagnetic 
phase in which the magnetization is parallel to the external 
field. 

We proceed now to a quantitative description of the 
ground state. We consider for the sake of argument an exter- 
nal field parallel to the z axis. With account taken of an OA 
of arbitrary symmetry in the initial Hamiltonian, followed 
by analysis of all three possible phases, this choice is general 
enough, since one can reduce to it any arbitrary case of rota- 
tion of the z axis in the xz plane through the angle between 
that plane and the external field. When uniaxial OA is con- 
sidered this is not the case, since rotation in three-dimen- 
sional case leads to the appearance of one-ion terms of more 
complicated symmetry. On the other hand, this is precisely 
the preferred choice for the analysis of the Hamiltonian ei- 
genvectors corresponding to collective excitations (see the 
end of the section), for in this case thez axis singled out by the 

external field coincides with the singled-out quantization 
axis in the expression (9) for the quadrupole operators. 

The qualitative classification of the possible phases cor- 
responds to the following solutions of Eqs. (8) and (1 1) of Ref. 
9 for the angles p, K, and L and the mean values a and R at 
T=O. 

1) Quadrupole-ordered (QO) phase: 

2) Collinear ferromagnetic (FM, ) phase: 

sin rp=sin K=O, o=l, k=l. (32) 

The parameter 2L is determined by the fourth-degree equa- 
tion 

h sin 2L+'/,Jo sin 4L+E cos 2L=0. (324 

The magnetizations are equal to 

3) Canted ferromagnetic phase (FM, ):4' 

d+E h2 
cos 2K = - - 

2J ' 2J(d-E) ' 

(d-E)  (2J-d-E) +h2 '12 

sin cp = - 
(d-E) ( 2 1 + d + ~ )  -% 1 (33) 

M2=-sin cp sin 2K, MZ=cos .cp sin 2K. (334 

The foregoing explicit values of the parameters p, K, L, cr, R 
in the different phases determine exhaustively all the equilib- 
rium characteristics of the system at T = 0. For example, the 
average magnetizations and the quadrupole mean values are 
connected with these parameters by Eqs. (13) of Ref. 9, from 
which follow, in particular, the relations (31a), (32b), and 
(33a) of the present paper; from them, on the other hand, it is 
easy to obtain explicit formulas for the susceptibilities, etc. 
The frequencies of the collective excitations, obtained later 
in the present paper, are also determined explicitly by the 
values of p, K, L, a, and A. 

The same three phases can be realized at finite T. The 
corresponding values of the angles p ,  K, and L and of the 
mean values a andR, just as at T = 0, are determined by the 
solution of Eqs. (8)-(11). In the general case, however, the 
solution cannot be obtained analytically at arbitrary T. 
Nonetheless, the classification of the solutions correspond- 
ing to different phases can be easily implemented also in this 
case. In particular, for the FM, and QO phases, we have as 
before 

sin cp=sin K=O, (34) 

the angle L is determined by Eq. (32a) but with a# 1, and the 
values a and R are determined by the transcendental equa- 
tions (1 l )  of Ref. 9. 

An analysis of the transitions between the foregoing 
phases, with respect to field and temperature, is carried out 
in part in Ref. 9. 

We proceed here to an investigation of the spectra of 
collective excitations in different phases. The sought fre- 
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quencies are determined by the poles of the correlation func- 
tion or by the zeros of the dispersion equation 

det [f -% (k, o) Pr ]  =O. 

In the considered lowest approximation, the irreducible part 
was determined in Sec. 3. Explicit calculations yield a E z  a 
number of similarlity transformations of the matrix B V  a 
third-degree dispersion equation 

det [021'--B+ (k)B- (k)] =O. (35) 

The matrix elements of the three-dimensional matrices 
h + - (k) are explicitly given by the formulas 

[D* (k)] pp=dkPq(k) [l/26pi c ~ + h )  +'/26pz (0-A) +,6p3(~1 f s p q ~ p ,  

d,"=Vl*Vz, d,2"V,*V,, d,33=ulTuz, (35a) 

d~l2=v1*vZ, dki3=W1*wl, d*23=Wzf~2. 

Here a,, is the Kronecker delta, p, q = 1,2,3; d 4P, = d qP + ' 
and the dependence of the coefficients on the wave vector k is 
determined by the formulas 

V1, ,=J(k) ['Iz sinz 2K(f*sin 2L) -11, 

Vz, ,=*J(k) cos 2K(sin 2L cosZ KTsinz K),  

vl=-J(k) cosZ K cos 2Kcos 2L, 

vz=-2J(k) cos2 K sin2 K cos 2L, 

sin 2K cosz K cos 2L (cos L*sin L)  , w1,z = - 
fi 

J (k) 
W,,, = - - 

Y2 
sin 2K (sin2 KTcos2 K sin 2L) (cos LTsin L) , 

u1=-J(k) (1-cos' Kcos2 2L) ,  

u2=-1 (k) (cos 2K-cos' K cos2 2L) , (36) 

where J (k) is the Fourier tranform of the exchange integral. 
The roots of the secular equation, (35) and (35a), yield 

the general solution of the problem of determining, in the 
approximation considered, the frequencies of the three 
branches of the spectrum of the collective excitations for the 
case of arbitrary OA symmetry and arbitrary external-field 
direction in any of the three possible phases. The depen- 
dences on the OA constants, on the field, and on the tem- 
perature are determined by the dependences, on these quan- 
tities, of the mean values a and A and of the 
unitary-transformation parameters a, K, and L; these de- 
pendences, we recall are given by Eqs. (8) and (1 1) of Ref. 9. 

We now study some particular cases. Consider first the 
collinear ferromagnetic and nonmagnetic phases, for which 
according to (34) sin q, = sin K = 0, so that the secular equa- 
tion factors out and the spectrum decays into independent 
parts 

o:, (k) = ( E ~ ~ + E ~ ~ ) / ~ + V ,  [ ( d h )  el + (o-h) ez]/2f vlZo2/2 

The constants in (37a) and (37b), which determine the disper- 

sion of the collective excitations, and the frequencies of the 
local transitions, are respectively equal to 

V,=V3=-J(k), Vz=-VL=J(k) sin 2L, 

u,=-J(k) cos 2L, (38) 

el, z=h cos 2L+Jo cos2 2L-E sin ZLTd, 

(39) 
&3=2(h cos 2L+Jo cos2 2L-E sin 2L). 

They contain, besides the constants of the initial Hamilton- 
ian, the parameter sin 2L defined by Eq. (32a) (in which a# 1 
unlike at T = 0) and the mean values a and A defined by the 
transcendental equations (1 1) of Ref. 9. 

Let us analyze the nature of the collective excitations in 
the phases considered. Whereas in an isotropic FM the only 
collective-excitation branch is connected with the oscilla- 
tions of the transverse components of the spin, i.e., is a spin 
wave, in the presence of OA the picture of the collective 
oscillations becomes complicated even in the considered 
simplest phases. Namely, each of the two branches with fre- 
quencies w,(k) and w2(k) is connected with a superposition of 
oscillations of the transverse components of the spin and the 
components 0 '-, , 0; ' of the quadrupole moment, while 
the branch with frequency w3(k) is connected with a superpo- 
sition of the longitudinal component of the spin and the com- 
ponents 0 2 ,, 0; 2, of the quadrupole moment, i.e., all 
three branches are mixed spin-quadrupole waves. The fore- 
going follows from the fact, which can be easily verified by 
direct calculations, that the branch 03(k) is connected with a 
subspace specified by the operators S', , 0, 2, 0 '-, , since 
S (7) = a20 + a 8  + a - 0 -', while the branches w ,(k) 
and w2(k) are connected with a subspace specified by the 
operatorsS;,S +,, O,', 0'-,,since 

S- (T) =~~,S++a-~S-+p~O~+f i -~o-~ .  . 

The equations (37a) and (37b) for the fgequencies are 
formally alike for both considered phases, but for the ferro- 
magnetic and quadrupole phases the solutions for the pa- 
rameters a, A, sin 2L are different, in analogy with the differ- 
ence between the solutions (31a) and (32a) at T = 0. This 
leads to a different character of the spectrum in the consid- 
ered phases. For example, for the QO phase the mode that 
becomes separated, with frequency w3(k), is thermal, i.e., it is 
excluded from the collective-excitation spectrum at T = 0. 
It corresponds to local transitions from one excited level to 
another. For the FM, phase, the same mode has dispersion 
at T=O. 

We note that in the uniaxial case [when sin 2L = 0 ac- 
cording to (32a)], the formulas for the FM, -phase spectrum 
simplify and coincide with the results of Refs. 1 and 2. 

As for the most complicated canted ferromagnetic 
phase, at finite T the dispersion equation is not factored out 
in this case and the frequencies of the three branches of the 
collective excitations, each of which has dispersion, are giv- 
en by the three solutions of the cubic equation (35), which are 
too elaborate to write down here. The nature of the collective 
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excitation is also more complicated in this phase-each of 
the three branches corresponds to a superposition of the os- 
cillations of all eight generators of the SU(3) algebra, i.e., the 
three spin components and the five components of the qua- 
drupole moment, since it is connected with the complete 
eight-dimensional space. At T = 0 [where a = 0 according 
to (33)] one of the branches drops out of the spectrum of the 
collective excitations and the solutions of the remaining qua- 
dratic dispersion equations are 

oiqz(k)= (e l -V ,+Vz)  ( e l - V l - V 2 ) / 2  

It can be easily shown that at T = 0, just as at finite tempera- 
tures, each of the two branches is a superposition of the oscil- 
lations of three components of the spin magnetic moment 
and five components of the quadrupole moment. 

At T = 0, the equations for the spectra of the FM, and 
QO phases are also simplified. For the FM, phase, taking 
(32) into account, we have for the two modes with dispersion 

a t 2 ( k )  =e l2-2J(k)  e 1 + ( J ( k )  cos 2L)',  ei=-d-Elsin 2L, 

as2 ( k )  =e3 ( e 3 - 2 J ( k )  sin2 2 L ) ,  e3=-2Elsin 2L. 
(41) 

The parameter sin 2L is determined by Eq. (32a) at a = 1. 
For the QO phase the frequencies of the branches with dis- 
persion take, with allowance for (3 I), the form 

( k )  = d2+h2+E2 

We note also that at T = 0 the Hamiltonian eigenvectors 
correspondi* to frequencies (41) and (42) change form. In 
particular, to the branch w ,(k) for the FM, phase and to each 
of the branches w,(k) and w,(k) for the QO phase there corre- 
sponds at T = 0 a superposition of oscillations of only the 
transverse components of the spin magnetic moment, i.e., a 
spin wave. This can be easily verified in the following man- 
ner. The eigenvectors of the zeroth Hamiltonian Ho(i) for 
these phases are [Eq. (17) of Ref. 9 at q, = K = 01 

cos L - sin L 
(43) 

sin L cos L 

One of them, el for the FM, phase and e, for the QO phase, 
determines in the zeroth approximation the vacuum state. 
(This follows from the fact that the values (3  1) of the param- 
eters a and A for the QO phase corresponds to an arrange- 
ment Eo < El < E - , of the levels of the Hamiltonian Ho(i), 
while the values (32) of the parameters a and A for the FM, 
phase correspond to the arrangement El < Eo < E - , so that 
the eigenvectors corresponding to the lower levels are 

The transformation to the eigenvectors in the initial space is 
trivial.) At T = 0, when only transitions from the ground 
state are of importance from among the two types of excita- 
tions generated at a site by the operators S - and 0 -', the 
action of the indicated operators is equivalent. (This can be 
easily verified by using the matrix representations of the op- 
erators S - and 0 -' [Eqs. (3) of Ref. 141 and our Eqs. (43).) 
Therefore the waves of the excitations generated at a site by 
the operators S F ,  S i+, 0 ; ', 0 ,! at finite T reduce at low 
values of T to pure spin waves generated by the operators 
S, -  andS'. 

for the QO phase $ = 

In the case of uniaxial OA, the spectrum of the collec- 
tive excitations in the (only possible) FM, phase reduces at 
T = 0 to a single branch of oscillations generated by the op- 
erators S; and corresponding to the usual spin-wave the- 
ory. 

5. CONCLUSION 

0 
1 
0 

Let us summarize the features of the microscopic de- 
scription of a magnet with OA, bearing in mind that they are 
determined by the presence of a wider (compared with the 
three spin operators) basis of operators that describe the 
state of an individual ion. 

Generally speaking the algebra of these operators is 
specified only by the quantity S and reduces to the Lie 
SU(2S + 1) algebra, but the significance of the difference 
between this algebra and the ordinary SU(2) and of the influ- 
ence of this difference on the physical characteristics of the 
system are determined by the form of the Hamiltonian. If the 
latter includes only operators of the SU(2) subalgebra (the 
case of absence of OA), all the eigenstates and hence the 
equilibrium characteristics of the Hamiltonian are described 
within the framework of this subalgebra. If, however, the 
Hamiltonian contains certain operators that take it out of 
SU(2) (the case when OA is present), its eigenstates are deter- 
mined by the complete Lie algebra that is peculiar to the 
given value of the spin. 

For arbitrary SU(n) Lie algebra, the Wick theorem 
holds for those operators of this algebra which generate ex- 
cited states of the zeroth Hamiltonian Ho. In the uniaxial 
case, when the eigenstates of Ho are characterized by the 
projection of the spin magnetic moment on the z axis, such 
operators are the Hubbard operators Pq (p, q = - S, ... S ) .  
In all other cases these operators are rather complicated su- 
perpositions of various Hubbard operators or, in another 
language, of spin, quadrupole, . . . 2s-pole operators. 

The situation described is a reflection of the inner sym- 
metry of the systems, a symmetry that cannot be neglected 
by considering only, for example, spin operators by Lie split- 
ting of the higher operators or by some other approximate 
method. Since, however, the physical characteristics are de- 
termined as a rule just by the spin-magnetic moment opera- 
tors, it is possible to project accurately the complete 
[(2S + 1)' - I]-dimensional space into a subspace of spin- 
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moment operators and reformulate for them the diagram 
technique of Refs. 17 and 18, with account taken of the prop- 
erties of the complete Lie algebra, as was done in Secs. 2 and 
3. 

We note, however, that this is only a convenient math- 
ematical device, and that the excited states of the Hamilton- 
ian Ho are generated in the general case, as before, by the 
spin-magnetic, quadrupole, . . . 2s-pole moments. 
Allowance for H'"' makes these excitations collective, but 
does not change their nature. In Sec. 4 it is shown (withS = 1 
as the example, that in the general case each of the three 
branches of the collective excitations is a superposition of 
oscillations of the three components of the spin-magnetic- 
moment operator and five components of the quadrupole- 
moment operator. In various particular cases (for the collin- 
ear ferromagnetic phase, for the quadrupole phase), the basis 
of the operators may be narrower. 

We have considered here isotropic exchange interac- 
tion. Generalization to the case of anisotropic exchange en- 
tails no difficulty. All the basic equations and assumptions of 
the paper remain unchanged. 

In addition, in the calculation of the spectrum we have 
confined ourselves to a spin S = 1. Generalization to arbi- 
trary spin is not difficult in principle, but at largeS the calcu- 
lations become laborious, owing to the increased number of 
basis operators of the corresponding Lie algebra. At large S 
it is therefore more advantageous to use theories that contain 
the small parameter 1/S. In particular, it is possible in this 
case to use the Holstein-Primakoff t ran~formation~~ which, 
we recall, is effective for magnets with sufficiently strong 
OA only under this condition.23 

In conclusion, I wish to thank V. M. Adamyan for con- 
stant support and interest in the work, as well as A. A. Abri- 
kosov and I. E. Dzyaloshinskii for helpful discussions. 

APPENDIX 

We present here the values of the constants in expres- 
sion (23): 

1 
A,,' = * :(cos cp sin K sin L+sin  cp cos 2K cos L )  , 

1'2 

AoO=cos K(coscp cos 2LS.sin cp s i n  K s in  2 L ) ,  

B,,O=cos K(-sin 2L cos cp+si11 cp s i n  K cos 2 L ) ,  

1 
B,,' = zt.l=-(cos cp s i n  K cos L-sin cp cos 2 K  sin L )  , 

1'2 

BOu=3 s in  cp s i n  K cos K ,  

1 
A,,' = -[*(-sin cp sin K sin L+cos cp cos 2 K  cos L )  

2 

+ cos K cos L] , 

do' = --&cos K(-s in  cp cos 2Lfsin K cos cp sin 2L) , 
1'2 

1 
B*,' = ~ [ c o s  K ( s i n  cp s i n  2L+sin K cos cp cos 2L) i~ s i n  K], 

12 

1 
B,,' = :[T (sin cp s i n  K cos L f  cos cp cos 2K s i n  L )  

+ cos K sin L ] ,  

3 
Bo' =, cos K s in  K cos cp. 

1 2  

"The solutions given for it in a number of papers, e.g., in Ref. 16, where 
rhombic OA is considered, in Ref. 4, where a uniaxial ferromagnet is 
investigated in the presence of a transverse field, and elsewhere, cannot 
be regarded as satisfactory, since the treatment of nontrivial cases in 
these papers is restricted to a single trivial phase, the collinear ferromag- 
netic one, whose properties are closest to those of a ferromagnet without 
OA. 

2'In the present paper, just as in Refs. 14 and 15, 
S + - = S ( l / n )  (Sx + iSY), so that (S -)+ = - S +. Similarly, 
(0 -')+ = - 0 ', (02)+ = 0 -' [see Ref. 15, Eqs. (2)-(6)]. 

"Many properties of this phase are similar to those of a quadrupole-or- 
dered phase with biquadratic exchange (e.g., Refs. 20 and 21). The essen- 
tial difference is that the quadrupole order in the latter is cooperative, 
and in the presence of OA it is induced by an "external quadrupole 
fieldv-the OA field. 

4'The coefficients H(q,K) ,  D2(q,K) in (33) are defined by Eqs. (7) of Ref. 9. 
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