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Depolarized Rayleigh scattering in helium due to the fluctuations of the phonon distribution 
function is considered. The spectral and total extinction coefficients are calculated in the case of 
scattering of a linearly polarized wave. 

In Rayleigh light scattering in liquids and dense gases, 
the narrow "unshifted" line that appears as the result of fluc- 
tuations of thermodynamic quantities, with "wavelengths" 
of the order of the wavelength of the incident light, has been 
well studied theoretically. The much more diffuse wing of 
the Rayleigh line contains, in addition, a scalar part also a 
symmetric part and corresponds to scattering from anisotro- 
py fluctuations, elastic strains, and so on. The corresponding 
(Maxwell, Debye) relaxation times cannot be calculated phe- 
nomenologically, and require consideration of the motion of 
the particles over atomic distances and introduction of mod- 
el representations. 

The scalar scattering in superfluid 4He with formation 
of scattering doublets from first and second sound has been 
well ~tudied. ' .~ As is shown in the present work, a complete 
description of the symmetric part is also possible in 4He. 
Such scattering arises because of fluctuations of the distribu- 
tion function of phonons with wavelength less than the 
wavelength of the light, but larger than the interatomic dis- 
t a n ~ e . ~ . ~  Thus, the problem arises of the description of the 
relaxation of the fluctuations in the phonon gas. The situa- 
tion is complicated by the existence of several relaxation pro- 
cesses. In the casesrl, >A /2sin(0 /2) (S is the speed of sound, 
rl, is the characteristic time of longitudinal relaxation, A is 
the wavelength of light, 0 is the scattering angle), we have 
purely Doppler collisionless broadening. In the opposite 
limiting case, a state of incomplete thermodynamic equilib- 
rium is realized. Equalization of the values of the phonon 
temperature and the velocity, which correspond to different 
directions in k space, is effected by the superdiffusion opera- 
tor.' It is easy to estimate the values of the scattering angles 
corresponding to the different directions. Thus, at A - 5 
X lo-' cm and T-0.6 K we have rIl I -  5 X lo7 s-I, which 
gives the "limiting" value of the angle 0, = 2 arcsin (A / 
2.~7~~ ) - 5'. Thus, the "superdiffusion" relaxation takes place 
in a narrow cone near scattering at zero angle. 

1. Having the aim of calculating the spectral extinction 
coefficients in the case of superdiffusion relaxation, we de- 
termine the time correlator of the generalized temperature. 
As has alrady been shown,5 under normal pressures, in the 
region of phonon temperatures, the transverse relaxation is 
due to processes of three-phonon collisions and is described 
by a differential equation of fourth order. We introduce a 
random force in it. We start out from the kinetic equation for 
the phonon distribution function with a random external 
force y, : 

We multiply (1) by sk 3dk / ( 2 ~ ) ~  and, using the phonon of the 
equilibrium distribution function with respect to directions 
in k space, we integrate over dk. Neglecting the dependence 
of the speed of sound on the coordinates, we obtain 

Here we have "redefined" the random force 

and the following notation is used: E is the angular density of 
phonon energy, O is the generalized temperature, ni is a unit 
vector, li = eijmn,d/dnm is the operator of an infinitely 
small rotation, and M is a parameter dependent on the tem- 
perature. We shall need the linearized equation (2). We rep- 
resent the generalized temperature in the form 

where T is the equilibrium phonon temperature, Z is a di- 
mensionless function of the direction. Denoting by E, and 
M, the values of the phonon energy and of parameter, deter- 
mined at the equilibrium temperature T, we obtain 

Following the general theory of quasistationary fluctu- 
ations, we represent the rate of increase of the entropy den- 
sity of the phonon system as a quadratic function of the 
quantities Y and Z.  The change in the entropy density as a 
consequence of collisions is 

The symbol d r  denotes integration over phase space. Separ- 
ating in the integration over d r  the integrations over the 
modulus of the wave vector and over the solid angle do, and 
taking into account, as in (I),  the equilibrium of the distribu- 
tion function along the direction in k space, we have 

With account of (4), and after linearization, we have 
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By virture of the spherical symmetry of the problem it is 
convenient to carry out an expansion in spherical functions. 
We are interested in fluctuations which do not change the 
mean temperature and velocity of the phonon system. Then 
the expansion of Y and Z begins with the second spherical 
harmonic 

Y ;" is the spherical h a r m ~ n i c . ~  

Substituting (7) in (6), we obtain 

- y, A , " ' B , ~  ' ylmfl;  do. 
T 

With account of the orthogonality conditions 

we have 

where L = I (I + 1)(1 + I - 2) is the eigenvalue of the super- 
diffusion operator. In fluctuation theory7 the increment in 
the entropy is customarily represented in the form 

where the quantities xi-, and X,  are connected by the equa- 
tion 

with the correlation function for the random force 

(yayb) =yabf yba. (I2) 
Comparing Eqs. (10-12) with (9), we have 

As was explained above, of practical interest in our case is 
Rayleigh scattering at angles close to zero. This corresponds 

to the calculation of ( A  ;"A ;1') for the spatially homogeneous 
problem. The spherical harmonics are the eigenfunctions of 
Eq. (2), and the calculations are considerably simplified. We 
multiply (2) by Y ;" and integrate over the solid angle 

Taking the Fourier transform, we obtain for the spectral cor- 
relator 

where w is the frequency of the fluctuation wave. The combi- 
nation of (1 6 )  and (1 8) yields 

Equation (19) indicates that upon establishment of complete 
thermodynamic equilibrium in the considered case, each 
spherical harmonic relaxes independently with its own re- 
laxation time. 

We make use of the expression for the fluctuation incre- 
ment obtained in Ref. 4 to the dielectric tensor: 

wherep is the density of the liquid, E is the scalar dielectric 
constant of helium. We write out the tensor product and 
average over the fluctuations: 

" (:)'( J d rd r '  
kikjkl'krnT 

 BE^^ 6 E l m ) = -  B N ~ S N . , )  . 
E 2  OkO*' 

(21) 
Here SN, is the deviation of the distribution function from 
its equilibrium value, which can be expressed in terms of the 
function Z (n): 

which gives 

(23) 
Forward scattering with change in the polarization is 

described by thexyxy component of the tensor. Carrying out 
the expansion of Z (n) in spherical functions and integrating 
with account of the orthogonality condition 

we obtain (performing the Fourier transformation) 
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We note that, although introduction of an infinite set of 
relaxation times is necessary for the calculation of the damp- 
ing of an arbitrary perturbation, forward scattering "picks 
out" the relaxation of only the second spherical harmonic. 
The spectral extinction coefficient at a specified angle, R, , is 
given by the formula 

where the unit vectors a and b indicate the directions of po- 
larization of the incident and scattered waves, respectively. 
In our case, (25) is rewritten in the form 

and, substituting Eq. (19) at 1 = m = 2, L = 24 in (24), and 
also in (26), we finally obtain 

In liquid helium, the dielectric constant is close to unity 
and the derivative a&/+ is equal to (E - l)/p with a high 
degree of accuracy. Using this together with the thermody- 
namic expression for the phonon energy in terms of the den- 
sity of the normal component, we obtain 

and also the extinction coefficient integrated over the fre- 
quencies, 

It is not difficult to carry out the numerical estimate of the 
resultant expression. Thus, for characteristic light wave- 
lengths -5000 A and phonon temperatures -0.6 K, the 
dielectric constant has the value E - 1-0.05, the normal 
density is - 1 X lop6 g/cm3. This leads to the value 
R -0.5 x lo-'' cm-'. 

2. In the collisionless limit STl1 >A /2 sin(8 /2) weakly 
attenuated fluctuation waves are formed by the phonons 
moving at different angles with respect to the wave vectors of 
the waves. It is clear that these waves have different phase 
velocities. The electromagnetic waves, being scattered inde- 
pendently by the various fluctuation waves, obtain different 
frequency shifts as a result of the Doppler effect. It is easy to 
calculate the scattering intensity as a function of the frequen- 
cy. In the collisionless case, the perturbation of the phonon 
distribution function propagates with the speed of sound, 
whence it follows that the Fourier component of the time 
correlation function has the following form 

(6nh6nk,)., q=2nNk(Nh+l) 6  (k -k ' )  6  ( o - s q n ) ,  (30) 

where w, q = (2/A ) sin(8 /2) are the frequency and the wave 
vector of the fluctuation wave. Substituting this expression 
in the Fourier component (2 1) and carrying out integration 

over the wave vector of the phonons, we obtain 

where the symbol F(q,w) denotes a symmetric tensor of 
fourth rank, which depends on the wave vector and the fre- 
quency of the fluctuation wave: 

The presence of the S function in the integrand means that 
the averaging over the solid angle reduces to averaging over 
the circle formed by the intersection of the unit sphere and 
the plane (w - sq-n) = 0. It is convenient to represent the 
vector n in the form of the sum of two vectors parallel and 
perpendicular to the direction q: 

where e and e, are unit vectors that are respectively parallel 
and perpendicular to q. After rather cumbersome calcula- 
tions, substituting (33) and (32) and using the formulas for 
averaging the products of unit vectors perpendicular to a 
given vector, 

(e,ie,j)='/z6ij-'-=i/z (Gij-eiej) , 

(eLiei;ellelm) ='la (6,j16k,-L+6,h-'-6jmL+6im-'-6jRL), 

we obtain 

This expression is, as it should be, symmetric relative to per- 
mutation of the indices. We then have for the spectral extinc- 
tion coefficient (25), by transforming as in (28) the derivative 
of the dielectric constant of helium with respect to the den- 
sity: 

+ 5 (2 ) ') ( (be)  '+ (ae)'+4 (ae)  ( b e )  (ab)  ) ). (35) 
sq 

For greater clarity, we write out the obtained expression in a 
chosen set of coordinates. Let the wave vector of the incident 
wave k be directed along the z axis. The wave vector of the 
scattered wave k' makes the angles p, $, 8 with the axes z, y, 
z, respectively. (The chosen angles are not independent but 
satisfy the relation cos2p + cos2$ + cos2B = 1.) The polar- 
ization vector of the incident wave is directed along the x 
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axis, that of the scattered wave is perpendicular to the plane 
formed by the vectors k' and a (the appearance of just this 
component of the polarization is a characteristic of symmet- 
ric scattering and is convenient for experimental verifica- 
tion). Thus the unit vectors have the coordinates 

0 cos cp 0 cos $ 
e =  cos-- ( 2 sin 0 

, COS--, 
2 s in  0 

(36) 

which gives 

c0sZ $ ctg" + 3-30 - +35 - ') 1R . ( J 2  ( 1  sm4(,/2) 

In the particular case of scattering in the direction of the 
vector a. 

Thus, in the considered collisionless limit, the entire 
depolarized scattering is in the frequency range 1 w 1 ((2s/ 
A ) sin(0 /2). For the calculation of the integrated extinction 
coefficient, we integrate (37) with respect to the frequency. 
The terms containing the angular dependence drop out, as 
should be the case for symmetric scattering, and we get back 
to Eq. (29). 

In the roton temperature region, the following formula, 
which is similar to (20), can be used 

where n = k/k, N ,  is the roton distribution function, and a 
is some phonomenological constant. Similarly to the deriva- 
tion in the phonon range of temperatures, we get from (39) 
for the simultaneous correlation of the permittivity tensor 

wherep, is the roton normal density,~, is the characteristic 
momentum of the rotons. In the case of symmetric scatter- 
ing, the integrated extinction coefficient is 

It is not difficult to estimate (41) by taking it into account 
that, in order of magnitude, a -p;/A, where A is the charac- 
teristic energy of the rotons. Then, in the case T- 1 K, 
p, -p, 0 /c-  lo5 cm-I, E - 1-0.05, we get R - lop9 
cm- '. 

As has been shown, the distribution-function fluctu- 
ations lead to the appearance of a depolarization part in the 
scattered light. The obtained spectral extinction coefficients 
do not contain such vaguely defined quantities as TI, and T, , 
so that an accurate comparison with experiment is possible. 
Evidently the value of the extinction coefficient in the region 
of phonon temperatures lies at the borderline of experimen- 
tal possibility, whereas the extinction coefficient in the roton 
region can be measured. 

It should also be noted that a mechanism similar to that 
considered leads to the appearance of a depolarization com- 
ponent even in the scattering of a linearly polarized wave 
from acoustical phonons in solids. 

In conclusion, it is my pleasure to thank A. F. Andreev 
for posing the problem and for numerous useful observa- 
tions. 
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