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The Einstein-de Haas gyromagnetic effect in 3He-B is analyzed. In a magnetic field, 3He-B 
acquires an orbital angular momentum comparable in magnitude to the spin but rotated from it 
by the matrix Rafi, which is an order parameter in 3He-B. Only a negligibly small part of the 
orbital angular momentum stems from the local rotational motion of Cooper pairs; most of it 
comes from a current ffowing along the surface. This orbital angular momentum could be OD- 

served in an NMR experiment in a rotating apparatus, where it should make the orientation of the 
order parameter dependent on the rotation direction. The orientational effect would be negligibly 
small in large vessels, since it is due to a local gyromagnetism. It is suggested that the orbital 
angular momentum instead be measured in thin capillaries, where the orientational effect stems 
from a surface gyromagnetism, which is amenable to measurement. 

1. INTRODUCTION 

Gyromagnetic effects in superfluid 3He-B differ from 
the corresponding effects in ordinary media because of the 
unusual breaking of the invariance under rotations in the 
spin and orbital spaces and also because of the rigidity of the 
coherent state of the superfluid system. Because of the co- 
herence in the motion of Cooper pairs, the quantum 
numbers of the state of the pair cannot be changed by a weak 
external perturbation; the system therefore opposes this per- 
turbation, completely neutralizing it. Examples of this can- 
cellation are well known in coherent systems; one is the re- 
sponse of a superconductor to a magnetic field which results 
in the complete displacement of the field, and another is the 
complete neutralization of friction during the flow of a su- 
perfluid liquid. A similar effect in superfluid 3He-B leads to a 
peculiar gyromagnetism, as was first pointed out by Leggett 
and Takagi. ' 

This effect can be seen in a simple model of 3He-B: a 
Bose condensate of molecules having the structure of a Coo- 
per pair in 3He-B. A molecule consists of two 3He atoms and 
has a spin S = 1; the orbital angular momentum of the rela- 
tive motion of the atoms in the molecule is L = 1. The state 
of the molecule is isotropic and has a total angular momen- 
tum J = 0. Since the spin-orbit interaction is negligibly 
weak, the states of the molecule are degenerate with respect 
to the choice of the relative orientation of the orbital and spin 
coordinate axes. A state in which the relative orientation of 
the axes is specified by the three-dimensiopal rgtation mAa- 
trix RaVi is an eigenstate of the operator Ji = Li + Ra,Sa 
with a zero eigenvalue, J = 0. Both the matrix Rai and the 
quantum number J = 0 are identical for all molecules of the 
Bose condensate at equilibrium, with the consequence that 
the quantum state of the molecules is rigid on a macroscopic 
scale. 

Let us assume that a magnetic field H is applied to this 
Bose liquid and induces a spin density of molecules S = x H/ 
y, wherex is the magnetic susceptibility of the liquid, and y 
is the gyromagnetic ratio for the 3He nucleus. If the quantum 
number J = 0 is to be conserved, the system must react to an 

external field through the formation of an orbital angular 
momentum Li = ( X  /y)Ha Rai, which cancels the change in 
J. The magnetic field thus causes a rotation of electrically 
neutral molecules. This analog of the Einstein-de Haas gyr- 
omagnetic effect is due exclusively to the rigidity of the co- 
herent state. 

A coherent analog of the Barnett effect arises in a simi- 
lar wayAWhen a l&uid is rotating at an angular velocity fl, a 
term SH = - i2.J must be added to the Hamiltonian where 
the total angular momentum is 

P i = B i f  E i = ~ i - R a i B a .  
The magnetization which arises upon the rotation,15 

contains two terms, the first corresponding to the standard 
Barnett effect and the second resulting from the rigidity of 
the coherent state with J = 0. 

How is the coherent Einstein-de Haas effect modified in 
real 3He-B, i.e., in a Fermi liquid with Cooper pairing at the 
Fermi surface? We will show that in a Fermi liquid, where 
Cooper pairs overlap each other markedly, the coherent ef- 
fect is conserved only in an integral sense, i.e., only when the 
orbital angular momentum is averaged over the entire vol- 
ume of the liquid, including its boundaries. The local effect, 
in contrast, is exceedingly small, specifically, the local inter- 
nal orbital angular momentum of the liquid, Lint, contains 
an additional small factor on the order of (T, /E,)'~~(E,/T, ), 
while the large integral angular momentum is produced by 
the macroscopic flow of 3He-B along the surface of the ves- 
sel. 

The behavior exhibited by the orbital angular memen- 
tum of Cooper pairs in 3He-B in response to an external field 
is thus analogous to the behavior of the spontaneous orbital 
angular momentum of pairs in 3He-A (Ref. 2). In the latter 
medium each pair has an orbital angular momentum fil, 
where the unit vector 1 is common to all pairs. Although the 
integral orbital angular momentum of the liquid consisting 
of N 3He atoms is W1/2, the lion's share of this angular 
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momentum corresponds to the macroscopic current of the 
liquid along the surface. In contrast, the density of the local 
angular, momentum, corresponding to the internal rotation 
of pairs, is not @1/2m3 as we would expect in the model of a 
Bose gas of molecules with a density p/2m3 but instead con- 
tains the same additional small factor: 

Let us discuss the possibility of measuring the orbital 
angular momentum in 3He-B in the rotating minilab at 
Otaniemi, Finland.3 In our original paper,4 where we had 
not yet distinguished between the integral and local angular 
momenta, we suggested that the orbital angular momentum 
might be detected by detecting a change in the orientation of 
the order parameter due to the gyromagnetic energy, which 
depends on this orientation, 

A change in the orientation of the Rai matrix upon a reversal 
of the rotation direction or the direction of the magnetic field 
should have been detectable by an NMR technique. A 
change was in fact de te~ted ,~  but it turned out to be due to a 
coherent analog of the Barnett effect in 3He-B. Specifically, 
the rotation of the vessel gives rise to quantized vortices 
which have a magnetic momentum concentrated in the cores 
of the vortices. It was this magnetic momentum which was 
detected and measured for the first time. The orbital angular 
momentum, on the other hand, which has a local orienting 
effect under these experimental conditions, is extremely 
small, on the order of the small factor (Tc ~ ~ ) ' l n ( & ~ / T ~  ), and 
could not be detected. 

For an experimental observation of the orbital angular 
momentum we suggest carrying out the same NMR experi- 
ments but in a liquid in a system of thin tubes. In this case the 
orienting effect exerted on the order parameter by the orbital 
angular momentum will be an integral effect, by which we 
mean that it will include the surface gyromagnetism, which 
is amenable to measurement. 

2. LOCAL AND INTEGRATED ORBITAL ANGULAR MOMENTA 
OF COOPER PAIRS 

We wish to determine the difference between the local 
and integral properties of the angular momentum of Cooper 
pairs in an arbitrary superfluid state of 3He. An arbitrary 
state is characterized by the order parameter Aai , which is a 
complex 3 X 3 matrix with a Latin letter used as an orbital 
index and a Greek letter used as a spin index. A Cooper pair 
may be represented qualitatively as a molecule with a spin 
S = 1 and an angular momentum L = 1. The order param- 
eterAai , which is a vector in both the spin and orbital spaces, 
specifies the wave function of this molecule. 

The qualitative behavior of the orbital angular momen- 
tum can be seen most easily near Tc where we can use the 
Ginzburg-Landau functional, which consists of the conden- 
sation energy and a gradient energy. The condensation ener- 
gy is6 

Here a = +N (0)(1 - T/Tc ), and the coefficients /3 are given 
in the weak-coupling approximation by 

where N(0) = m*pF/27r2fi2 is the state density on the Fermi 
surface for one spin projection. 

Local angular momentum. To find the local orbital an- 
gular momentum in an arbitrary state Aai it is sufficient to 
examine the gradient energy, whicli we write as follows, tak- 
ing into account the motion of the normal component: 

F,,ad= J dV {KiDiAv,'DiA,+K2DiApiiDIAMj+ K3DiA&i}. 

(2.2) 
Here D is the Galilean-invariant differentiation operator, 
which acts on the order parameter in the following way: 

2m3 . A,  DA'= v +-I"") A', (2.3) 
ti 

where vn is the velocity of the normal motion. In the approx- 
imation of a symmetry of the particles and holes on the Fer- 
mi surface, the coefficients K,, K,, and K3 are all equal: 

When we take the asymmetry of the particles and holes near 
the Fermi surface into account, we find that these coeffi- 
cients differ slightly, by a relative difference on the order of 
(Tc / ~ ~ ) ' l n ( & ~ / T ~  ). This small difference gives us the magni- 
tude of the local angular momentum of the Cooper pairs.'.* 
The local orbital angular momentum is determined from the 
reaction of the system to the angular rotation velocity 
a =  (1/2)curlvn . To find this reaction, we use an integration 
by parts to put (2.2) in the form 

X (DiApi'DjA,+ DiApj'DjApi) 
1 + - ( K z - K 3 )  [ A ,  (DiD,-DID<) Api'+AMj' ( D , D , - D ~ D ~ )  A , ] ) .  
4 

(2.4) 

Since we have 

the density of the internal angular momentum of the pairs, 
L'"', is found by varying the third term in (2.4) with respect 
to n :  

The expressions 0 = (1/2)curlvn do not appear in the 
first two terms in (2.4). In the equation forA,, which is found 
by minimizing the Ginzburg-Landau functional, these terms 
lead to a dependence on vn either in the trivial combination 
v' - vn or in the symmetric form ViuJ + Vju;, which van- 
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ishes in the case of a uniform rotation, v n  = [fir]. 
Expression (2.5) can be written 

A 

where the angular-momentum operator L acts on A,, in ac- 
cordance with 

LiA.= (hl i )  e*kApk, (2.7) 

and (Z) is the expectation value of this operator in the state 
of the diatomic molecule having the same wave function Aai 
as the Cooper pair: 

In a Bose liquid of such molecules, the coefficient Lo is 
equal to the density of molecules in the Bose condensate; i.e., 
Lo = ps /2m,. In a real Fermi liquid, this quantity is much 
smaller, according to (2.5), on the order of the small particle- 
hole asymmetry: 

To show this, we note that since we have 

and since we have K O(2m3/fi2) IA 1 -ps /m3 [as in 3He-B, ac- 
cording to Ref. 6, we have pS+Q (2m3/fi)2K OIA 12), then 

In other words, this coefficient is several orders of magni- 
tude smaller than we would expect for the model of a Bose 
liquid of molecules. 

The origin of such a large difference has been explained 
for the A phase of 3He as resulting from the pronounced 
overlap of Cooper pairs in a superfluid Fermi liquid.' We 
recall that the state of a Cooper pair in the A phase is charac- 
terized by the quantum numbers L, = 1, S, = 0. The wave 
functip 9f such a state is described by the order parameter 
A,, cc r, (xi + i;i). The expectatio? value (i) for a diatomic 
molecule in such a state is fil = fiz, where the unit vector 1 
runs along the quantization axis for the orbital angular mo- 
mentum. As a result of the overlap of the pairs, their orbital 
motion transforms almost completely into a motion of the 
center of mass of the pairs along the surface of the vessel; 
only an insignificant part of the orbital motion corresponds 
to a local internal rotation of the pairs. The integral total 
orbital angular momentum of the A phase, on the other 
hand, which includes the angular momentum of the current 
along the surface, is the same as for a Bose liquid of mole- 
c u l e ~ . ~  

We need to determine whether a similar a~sertion~can 
be made for an arbitrary state of 3He, with a nonzero (L). 

Integral angular momentum. To calculate the integral 
angular momentum we consider the state of a liquid in a 
cylindrical vessel in which the order parameter is uniform 
everywhere except in a narrow layer of the liquid near the 
surface, where the order parameter may vary because of the 
boundary condgions. We assume as asymmetric distribution 
of A,,; then (L) is constant in the cylinder and directed 

along its axis (everywhere except in the boundary layer). Let 
us find the integral angular momentum in this state; 

9= d v [ r j ] .  

An expression for the density of the superfluid current 
can be found by varying the gradient energy (2.2) or (2.4) 
with respect to vn. Since these expressions differ by a total 
derivative, the result for the current does not depend on 
whether we choose (2.2) or (2.4): 

6 F  1 j ( r ) = - - - =  - rot Lint+ 2m3 K ,  [A,.'VAPi-c.c. ] 
6 v n ( r )  2 hz 

For simplicity we consider the following distribution of 
the order parameter in the vessel. In the volume, the order 
parameter is constant, equal to A E,. It structure does not 
change in the boundary layer; it simply rotates in this l a ~ r  
in such a manner that the angular momentum of the pair (L) 
is perpendicular to the boundary at the surface. This circum- 
stance eliminates a term which we have ignored in the sur- 
face current, which contaks a gradient of the density9 and 
wkich is proportional to [(L), Vp]. This term vanishes, since 
(L) and Vp are parallel at the surface. Substituting the order 
parameter 

~ , i = ~ i j ( G ,  P(r)  )Ak:. 
into (2.10), where RU is the rotajion matrix for a rotation 
through an anglep (r) around the (O axis [r, p, z are cylindrical 
coordinates;p (0) = O;p (R ) = ~ / 2 ;  and R is the radius of the 
cylinder], we thus find the following expression for the azi- 
muthal projection of the surface current: 

m~ 
1.3 

dP . ( K z + K 3 )  [A,'OApO] - sin p. 
h  i dr 

The integral angular momentum is 
2m3 2=iJ - ( K , + K ~ )  I A . o I ~ v ( ~ ) ,  (2.12) 

A 
where V is the volume of the liquid. The same valuz of the 
angular momentum 3 can be found for a uniform (L): The 
angular momentum 9 stems from the current associated 
with Vp. 

The total angular momentum of a superfluid F ~ r m i  liq- 
uid is thus on the same order of magnitude, y - c p ' /  
m,) v [% as that of a Bose liquid of molecules with the struc- 
ture of Cooper pairs, but it is due nearly entirely to the sur- 
face current. Only an insignificant fraction of the orbital an- 
gular momentum, with a density 

represents the local angular momentum of the internal rota- 
tional motion of the Cooper pairs. 

3. ORBITAL AND SPIN ANGULAR MOMENTA OF COOPER 
PAIRS IN THE B PHASE 

At equilibrium in 3He-B the order parameter is propor- 
tional to the orthogonal matrix Rai : 
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Herep,, = PI + P2, P345 = P3 + P4 + P5, and ei@ is a phase 
factor. A diatomic molecule in a state with this wave f u p -  
tion has the quantum number J = 0, where the operator J is 
the total angular momentum in the coordinate system in 
which the spin axes are rotated from the orbital axes by the 
rotation matrix R,, : 

4i=2i+RaiS,. (3.2) 

It is easy to show that 

f ~ , , i = o ,  (3.3) 

since the spin operator acts in the following way: 

SaAPi= (Mi) ea,,AVi. 

It can be seen from (3.2) and (3.3) that the expectation 
value of the orbital angular momentum in the state of the 
molecule with wave function (3.1) can be expressed in terms 
of the expectation value of the spin in this state: 

<Li>=-(Ba>Rai. (3.4) 

This is of course a trivial relation for state (3. I), since both 
sides of (3.4) are zero: Cooper pairs have no spin or orbital 
angular momenta in an isotropic state in the B phase. This 
relation is nevertheless important, since it must also hold, by 
virtue of the rigidity of the wave function, for small pertur- 
bations which cause a deviation of A,, from isotropic state 
(3.1). We wzuld therefore expect that in a magnetic field in 
which an ( S )  # O  appears an orbital angular momentum of 
the Cooper pairs should also appear. 

We turn now to the appearance of an orbital angular 
momentum in a magnetic field. In a field, the Ginzburg- 
Landau functional (2.1) is supplemented by two other terms. 
First, there is the energy Fg),  which is quadratic in H and 
which describes the change in the paramagnetism of the Fer- 
mi liquid due to the formation of Cooper pairs: 

Here y = - 2.04.104 is the gyromagnetic ratio of the 3He 
nucleus, and Zo is a Fermi-liquid parameter. Second, there is 
a term Fg' which is linear in H and which describes the 
interaction of the field with the spontaneous magnetic mo- 
ment of the pairs1': 

The coefficient gg' is nonzero because of the slight asymme- 
try of the paricles and holes near the Fermi surface: 

g;' =' / ,yi iNr ( 0 )  ln ( c F / T e ) ,  (3.7) 
where N '(0) is the derivative of the state density with respect 
to the energy on the Fermi surface. 

The change in the paramagnetic moment of the liquid 
upon the transition to the superfluid state is 

Here X, and X, are the magnetic susceptibilities in the B 
phase and in the normal Fermi liquid, respectively. It might 

seem quite natural to assume, as in Ref. 4, that if a pair spin 
density M'~'/Y arises in the system then an orbital angular 
momentum density Li = - R,,Mz'/y. will arise simulta- 
neously. However, the paramagnetic increment (3.5) to the 
condensation energy (2.1) does not give rise to nonunitary 
increments in state (3.1) with a nonvanishing expectation 
value of the spin, 

( s > = A , ~ ' S A , ~ / ~  Avj1 '. (3.9) 

The reason is, as can be seen from (3.5), that the paramagnet- 
ic moment differs from that of a normal Fermi liquid only 
because of the Cooper pairs in the state with a zero projec- 
tion onto the field direction. The paramagnetic contribution 
to the free energy of a superfluid liquid can thus change only 
the weight of the state with a vanishing spin projection onto 
the field direction with respect to the weights of states with 
projections S, = f 1; it cannot change the weights of the 
latter states with respect to each other. By virtue of (3.5), the 
state (3.1) becomes 

Api= [a12 ( 2 p , z + p 3 ~ ) ]  "eioR,i (6,,+aH26,,+bH,H,) 

with the expectation value ( S )  = 0. Here a- 6-gg)/a (see 
Ref. 6 ,  for example). Although in a magnetic field there are 
more pairs with a spin projection S, = + 1 on the field di- 
rection than pairs with S, = - 1, because of the higher den- 
sity of states the Fermi surface, the probability for pairing 
two particles with spins along the field direction in a state 
with S, = + 1 is still equal to the probability for pairing of 
two particles with spins counter to the field in a state with 
S, = - 1, as in the absence of a field. 

The paramagnetic increment in the energy, 
--MPH=- ( x , H + M ( ~ ) )  H 

is equivalent to an energy change - L-Kt upon rotation at an 
angular velocity fl= yH with an angular momentum 
L = MP/y. The paramagnetic contribution to the B phase of 
3He describes the ordinary Einstein-de Haas effect, as in a 
normal Fermi liquid, and has no bearing on the specific ef- 
fect which results from the rigidity of the coherent state of 
the pairs. 

To describe the latter effect we return to expression 
(3.6), according to which the expectation value of the pair 
spin, ( S  ) in (3.9), is related to the spontaneous magnetic mo- 
mentum M"' of the pairs by 

M ' ~ ) =  (g:' /h) l A P i l 2 < ~ > .  (3.10) 

If we ignore Fermi-liquid corrections, we can write this mag- 
netic moment as 

M ' " = ~ L , ( S > ;  (3.11) 

i.e., it contains the same small quantity Lo as expression (2.6) 
for the internal orbital angular momentum of the pairs. This 
circumstance was first pointed out by Fomin." The magnet- 
ic moment of Cooper pairs thus constitutes only an insignifi- 
cant part of the magnetic moment of a Bose liquid consisting 
of molecules with the same wave function. The reason lies in 
the presence of two Fermi occupations with opposite spins, 
so that their magnetic moments cancel out almost perfectly. 
The internal orbital angular momentum of the Cooper pairs, 
Lint,  and their spontaneous magnetization are thus weak- 
ened identically in a Fermi liquid in comparison with the 
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corresponding quantities for the corresponding Bose liquid 
of molecules. 

The magnetic moment M"' and also the orbital angular 
momentum of the pairs arise from a magnetic-field-induced 
change in state (3. I), which can be found by minimizing the 
sum F,,,,, + F : 

The expectation values (2 ) and (g ) in a state of a diatomic 
molecule with a wave function of this type are 

Using (3.10) for the magnetic moment M"', expressions (2.6) 
and (2.9) for the local orbital angular momentum Lint, 2 d  
expression (2.12) for the integrated angular momentum Y ,  
we find the following expressions for these quantities: 

Near Tc, these quantities are independent of the tempera- 
ture. The range of applicability of these expressions is of 
course restricted by the inequalities g i lH  < a and gs'H <a,  
which are violated in the immediate vicinity of Tc . The first 
of these inequalities ensures that the B phase is stable with 
respect to the formation of the A, phase, while the second 
ensures stability with respect to the formation of the A 
phase. "O 

Expression (2.5) for the local angular momentum in a 
magnetic field is changed because of the appearance of a 
correction to the gradient energy which is linear in H: 

In the approximation of a symmetry of the particles and 
holes on the Fermi surface, the coefficients k , ,  k,, and k3 
are all equal to each other and to the coefficients from (2.2): 
k = = k: = KO. The correction to Lint is found from 
the reaction of (3.17) to (1/2)curlvn, as in the derivation of 
expression (2.5): 

For the B phase, this quantity is 

Since the difference K2 - k3 differs from zero only because 
of an asymmetry in the particle and hole distributions, 

the result is only relatively small correction, on the order of 

(1 - T/T,), to Lint in (3.15). 
We see thus that the local internal orbital angular mo- 

mentum of the pairs in the B phase is equal in order of magni- 
tude to the spontaneous spin angular momentum of the 
pairs. In contrast, the integral orbital angular momentum of 
the pairs per unit volume is far greater than the spin angular 
momentum of a normal Fermi liquid in a magnetic field. 

4. CAN THE ORBITAL ANGULAR MOMENTUM OF COOPER 
PAIRS IN ROTATING =He-B BE OBSERVED? 

The orbital angular momentum of the Cooper pairs of 
the B phase in a magnetic field is very small. Even the inte- 
gral angular momentum amounts to only a small fraction, on 
the order of .It/ y IH / E ~ ,  of the angular momentum produced 
by the current circulating around a single quantized vortex. 
This smal angular momentum is nevertheless amenable to 
observation by an NMR technique, which can measure ex- 
tremely subtle effects in the B phase, including the magnetic 
moment of the cores of quantized vortices, which would 
amount under experimental conditions to something on the 
order of lo-" of a nuclear Bohr magneton per atoms5 The 
reason lies in the pronounced isotropy of the B phase, which 
makes it possible to detect even slight effects on the order 
parameter. In this section of the paper we examine the effect 
of the orbital angular momentum of Cooper pairs on the 
orientation of the order parameter. 

The factor which primarily determines the properties of 
the NMR in the B phase is the weak spin-orbit ("dipole") 
interaction, which mixes the spin and orbital indices6: 

This interaction has the following important consequences: 
First, it partially lifts the degeneracy of states (3.1). Specifi- 
cally, the minimum of dipole energy (4.1) corresponds to 
only those matrices Rai which describe a rotation around an 
arbitrary axis n, but through a fixed angle 0, = arccos( - 1/ 
4): 

- 
R u i  (n, 0,) ='I4 (-6,i+5nani--1/15e,iknk). 

Second, the dipole interaction shifts the frequency of the 
transverse NMR with respect to the Larmor frequency 
wo = 1 ylH, which depends on the relative orientation of n 
and H. In sufficiently strong fields, H >  25 G, the frequency 
shift is given by12 

wherep is the angle between n and H, and a, is the Leggett 
frequency of the B phase, which is nonzero because of the 
dipole interaction. The NMR frequency is thus seen to be 
sensitive to the orientation of the vector n. 

The magnetic field and the boundaries have the primary 
orienting effects on the vector n in a vessel at rest. A magnet- 
ic field acts on n through the slight magnetic anisotropy 
which results from the dipole interaction; this interaction 
causes a slight perturbation of the order parameter (3.1), 
making it anisotropic. The magnetic-anisotropy energy is 
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The interaction with the boundary results from the pro- 
nounced distortion of the B phase near the surface, which 
gives rise to a pronounced magnetic anisotropy in a surface 
layer with a thickness on the order of the coherence length 

g=  ( K O / a )  "-lO-B(l-T/T,)- '".  

The corresponding energy is7 

where B is the normal to the surface. The competition 
between the effects FHD and Fs gives rise to a texture of the 
vector n, which varies over a broad layer near the boundary, 
with a thickness on the order of the magnetic length 
6 :: -(K O ~ / & H  2)1/2. The thickness of this layer reaches a 
millimeter in the fields H--, 300 G used in the experiments of 
Ref. 3 and 5. 

The orienting effect of the orbital angular momentum 
on the vector n is seen when the vessel rotates. Let us assume 
that a vessel is rotating at an angular velocity fi but that 
there are no vortices in it, so that the conditions J = 0  and 
vn = [fir] hold. We will discuss the conditions under which 
vortex formation is supressed below. A difference between 
the velocities of the superfluid and normal components in a 
rotating vessel, J - vn = - [fir], also perturbs the order 
parameter (3. I), giving rise to an additional magnetic anisot- 
ropy, whose energy can be written in terms of the parameter 
a for comparison with (4.3) (Ref. 7): 

vc=-, 
2m3tD 

where cD = (K,,/gD)1/2- lop3 cm is the dipole length. 
The orbital angular momentum contributes the orienta- 

tion of n because of the n dependence of the gyromagnetic 
energy. This energy arises, first, because of the internal orbi- 
tal angular momentum of the pairs, 

h 

Here fi is a unit vector along fi, and the new parameter xi"' 
is given in order of magnitude by the following expression, 
according to (3.15): 

Second, there is a component of the gyromagnetic energy 
which stems from the surface current (2.11) created by the 
orbital motion of the Cooper pairs: 

Here, accordLng to expression (3.16) for the integral angular 
momentum 2, we have 

The surface gyromagnetism (4.8) can also be interpreted in 
terms of a surface magnetic moment 

M:"" - ke.. ~ ~ k ? ~ a j  s. (vka-vkn) r 

Y 

produced by a countercurrent vs - vn near the boundary of 
the liquid. 

Since the gyromagnetic energy is linear in fi, its orient- 
ing effect depends on the direction of the rotation. It is this 
dependence which led to the detection of the magnetic mo- 
ment McO" of the cores of vortices in the B phase; this mo- 
ment also makes a gyromagnetic c~ntr ibut ion,~ 

Here n = (4m3/2&)f2 is the density of vortices. The value 
xcore found experimentally5 agrees in order of magnitude 
with the theoretical estimate of Ref. 5, which can also be 
derived from (4.8) by treating the vortex as a cylindrical sur- 
face with a radius on the order of 6 in a flow I J - vn I - f i /  
2m35. The magnetic moment per unit length of the cortex is 
then given in order of magnitude by the following expres- 
sion, according to (4.10): 

Multiplying this expression by the density of vortices, we 
find the following estimate of the gyromagnetic parameter of 
a system of vortices: 

The effect of the vortex cores, xCore, is considerably greater 
than the local orienting effect of the internal orbital angular 
momentum, xint , but it is of the same order of magnitude as 
%surf . The component x""", however, could not be observed 
under the experimental conditions of Ref. 5. The orbital an- 
gular momentum in (4.8) has an orienting effect only near the 
surface; the effect falls off exponentially into the interior of 
the liquid over a distance 6 5. Experimentally the radius of 
the vessel is much greater than 6 ;, so that the NMR signal, 
which comes primarily from the central part of the vessel, 
could not detect the surface effect of the orbital angular mo- 
mentum. Furthermore, the vortices cancel the countercur- 
rent vS - vn at the surface almost completely. 

For observation of the surface gyromagnetic effect of 
the orbital angular momentum it will be necessary to carry 
our NMR experiments in a liquid in a system of thin tubes 
with a radius R 5 6 $. In this case the effect of the boundary 
is not attenuated. To simplify the analysis of the experimen- 
tal data, we impose an even stricter condition on the capil- 
lary radius: 

R G  ( a l d )  ( E H B ) ' ,  (4.14) 

where d is the coefficients of the surface energy Fs in (4.4) (d / 
a-3 mm; Ref. 12). In this case the field of the vector n is 
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uniform over the entire capillary, since the gradient energy 
prevents a deformation of this field. As a result, all the ori- 
enting effects have an integrated influence on the vector n. 

Integrating all the orienting energies over the volume of 
the capillary, we find the following effective orienting effect: 

By minimizing this effect we can find the equilibrium orien- 
tation of n in a rotating vessel. In particular, for the quantity 
sin2P which appears in the NMR shift in (4.2), we find the 
following equation, which expresses this shift in terms of the 
orientational parameters and the angle fp) between H and a: 

u~-'/~ 
he,, [u ms 2, * sin 2 p  ] 

(1-u")'" 
%surf U 

+-[cosp* H (1-u2)lh sin P] = I ,  

This equation is of the same form as the equation which 
determines the orienting effect of quantized v~r t ices .~  The 
only differences are that the vortex parameter A,,,, , which 
results from the pronounced anisotropy in the vortex core, is 
replaced by the parameter A,, , which depends on the radius 
of the vessel, and xCore is replaced by x""", which is on the 
same order of magnitude. Since it has been found possible to 
measure xCore, which is a measure of the gyromagnetism of 
vortices, we can hope that it will also be possible to detect 
%surf , which characterizes the surface gyromagnetism. 

The capillary dimension R must be chosen at the opti- 
mum value, such that the parameter A,, is not too large. We 
must therefore take the maximum possible radius allowed by 
condition (4.14), i.e., R-(a/d )g&, which amounts to 0.2- 
0.3 mm at low pressures. Here A,, would be about an order 
of magnitude greater than A,,,, . 

At this capillary radius, a vortex-free state in a rotating 
vessel at the angular velocities f2 - 1 rad/s which are used 
would be metastable, but it follows from experimental data 
for a vessel with R = 2.5 mm that the vortex formation time 
in the B phase is quite long, on the order of 1 min (Ref. 13). In 
narrow capillaries the lifetime of the vortex-free state should 
be much greater if only because the linear velocity of the 
superfluid flow at the surface of a capillary would be an or- 
der of magnitude lower. Consequently, vortex formation can 
be ignored during the experiments in such capillaries. 

5. CONCLUSION 

The gyromagnetism in superfluid 3He-B is a conse- 
quence of the rigidity of the wave function of a Cooper pair 
with the quantum number J = 0. Since this quantum num- 
ber is conserved, a magnetic field which produces an average 
spin gives rise to an orbital angular momentum of the Coo- 
per pairs. The behavior of this orbital angular momentum is 
extremely specific and sharply different from the behavior 
which would be expected in a Bose liquid of molecules hav- 
ing the same wave function as the Cooper pairs in 3He-B. 

Essentially the entire orbital angular momentum of the pairs 
is concentrated in a current which flows over the surface of 
the vessel; only an insignificant part of this angular momen- 
tum, - (T, / E , ) ~ ,  which results from the slight asymmetry of 
the particles and holes near the Fermi surface, is due to the 
local rotational motion of the liquid. This behavior of the 
orbital angular momentum of the B phase, which is charac- 
teristic of any superfluid Fermi liquid, including the A phase, 
shows that all earlier calculations on the gyromagnetism in 
the B phase14-16,4 were correct only in an integral sense, i.e., 
only in an integration over the entire volume, including the 
surface layer of the liquid. The local gyromagnetic effect, in 
contrast, is very small. 

The gyromagnetism was found in Refs. 14-16 through a 
solution of the Gor'kov equations in a zero magnetic field. 
The solution was carried out by means of a gauge transfor- 
mation which eliminated the dependence of the order pa- 
rameter on the coordinates and the time. This method is 
valid for calculating the terms in the current which are linear 
in the spatial and time derivatives of the order parameter. 
The term in the current due to the orbital angular momen- 
tum of the B phase is - 1/2eikl Vk (Ra,S, ), according to Ref. 
16, where S, is the spin angular momentum of the liquid, 
proportional to the time derivative of the order parameter. It 
was concluded from the form of this term that in the pres- 
ence of a magnetization yS the B phase would have a local 
orbital angular momentum Li = - RaiS,. We reached ex- 
actly the same conclusion in a previous paper4 by calculating 
the reaction of the current to a magnetic field at a constant 
value of the order parameter Rai.  

A calculation of the reaction of the current to the field 
incorporating the coordinate dependence of the order pa- 
rameter Rai , however, shows that the corresponding term in 
the current is of the form - 1/2eiklRai VkSa ; i.e., the order 
parameter has been taken through the derivative sign. This 
result means that the angular momentum Li  - - RaiSa ex- 
ists not locally but in an integral sense, in a manner precisely 
analogous to the situation in the A phase, where the corre- 
sponding term in the current is 1/2eikj lj Vk (p/2m3). The dif- 
ference in the expressions for the current, - 1/ 
2eiklS, Vk Rai, is of second order in the spatial and time de- 
rivatives of the order parameter and thus goes beyond the 
range of applicability of the gauge-transformation method 
used in Ref. 16. That method therefore cannot be used to 
distinguish a local gyromagnetism from a surface gyromag- 
netism. 

The orbital angular momentum which arises in the B 
phase in a magnetic field could be detected in experiments 
with a rotating vessel, in which the gyromagnetic energy 
should give rise to a change in the orientation of the order 
parameter and thus a characteristic shift of an NMR signal, 
which depends on the rotation direction. In wide vessels this 
orientational effect would be small, since the signal comes 
from the central part of the vessel, where the local gyromag- 
netic energy is negligbly low. It would be necessary to seek a 
shift of the NMR frequency in a liquid in a system of narrow 
capillaries, where the surface gyromagnetic orientational ef- 
fect would be dominant. We estimate the optimum radius of 
the capillaries to be on the order of 0.2-0.3 mm. 
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Since the surface gyromagnetism can be interpreted as 
the appearance of a surface magnetic-moment density 

in the presence of a countercurrent v' - vn , this effect could 
also be measured in experiments with a superfluid flow in a 
channel. 

We wish to thank M. Krusius, M. M. Salomaa, J. A. 
Sauls, and G. A. Kharadze for useful discussions. 
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