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The kerenkov interaction of electrons with the natural oscillations of a plasma excited by ions 
reflected from the fronts of strong shock waves is examined as a mechanism for the acceleration of 
electrons to ultrarelativistic energies by strong shock waves. The energy spectrum of the acceler- 
ated electrons at ultrarelativistic energies is a power-law spectrum with a universal exponent y, 
= 2. The angular distribution of the electrons is highly anisotropic, since they are accelerated 

primarily along magnetic lines of force. The spectrum of the synchrotron radiation of the acceler- 
ated electrons is calculated, with allowance for the synchrotron energy loss and the tendency 
toward a less anisotropic electron angular distribution. 

1. INTRODUCTION 

The acceleration of charged particles by collisionless 
shock waves is usually attributed to a Fermi acceleration of 
the first kind. This mechanism operates when the scattering 
of particles by plasma inhomogeneities ahead of and behind 
the shock front makes it possible for some of the particles to 
be reflected repeatedly from these inhomogeneities. Since 
the inhomogeneities ahead of the shock front are carried off 
by the plasma flow more rapidly than are inhomogeneities 
behind the front, there is effectively a motion of inhomo- 
geneities in opposite directions, and a particle acquires ener- 
gy by bouncing between these inhomogeneities. This mecha- 
nism has been under discussion for a long time now in 
connection with the observation of bursts of high-energy 
particles at the fronts of interplanetary shock waves (Ax- 
ford's review1, has an exhaustive bibliography). Interest in 
this mechanism increased dramatically when it was 

that the energy spectrum of the particles acceler- 
ated in this manner is a universal one and almost exactly the 
same as the observed spectrum of high-energy particles of 
cosmic origin (the so-called cosmic rays4). A crucial question 
here is the nature of the inhomogeneities which scatter the 
particles. Although we do not yet have a self-consistent the- 
ory for the appearance of inhomogeneities, analysis of the 
experimental data on interplanetary shock waves and shock 
waves in the space environment of the earth shows that these 
inhomogeneities are apparently low-frequency MHD 
waves5 excited by a firehose or ion cyclotron instability of 
ion streams emerging forward from the vicinity of a shock 
front.6 Since the emission of ions from the front region is 
particularly likely when shock waves are propagating nearly 
along magnetic lines of force, the Fermi acceleration mecha- 
nism described above is characteristic of so-called quasipar- 
allel shock waves, which are propagating at an angle 5 45" 
from the magnetic field. A quasilinear theory7 for the scat- 
tering and acceleration of ions by these MHD waves of a 
plasma gives a good description of the acceleration of ions by 
quasiparallel shock waves if we use the wave spectral density 
measured on satellites.' For the electrons, on the other hand, 
these waves constitute essentially adiabatic perturbations, 
and the electron acceleration efficiency is sharply lower be- 

cause of the reduced scattering efficiency, Indeed, analysis of 
the measured fluxes of high-energy electrons and ions ahead 
of a shock wave in the supersonic solar wind near the earth 
has shown that the high-energy electrons come from those 
regions of the shock front where the magnetic lines of force 
run nearly parallel to the front, i.e., where the wave is quasi- 
perpendicular, rather than q~asiparallel.~ In other words, 
the electrons are accelerated more effectively by quasiper- 
pendicular shock waves. The acceleration mechanism in this 

turns out to be completely different from that in 
quasiparallel shock waves: At large Mach numbers the Lor- 
entz force and the electric field cause up to 25% of the ions of 
the incoming plasma stream of the solar wind to be reflected 
from the front of a quasiperpendicular shock w a ~ e . ' ~ ~ ' ~  
Since the energy of the ions increases severalfold upon reflec- 
tion, the beams of reflected ions carry off a significant frac- 
tion of the energy of the incoming stream, and their relaxa- 
tion in the plasma dominates the overall energy dissipation 
at the shock front. l3  It is during this relaxation of the beam of 
reflected ions that the electrons are accelerated. The entities 
which transfer the energy from the ion beam to the electrons 
are oblique plasma waves, which convert into whistlers in a 
high$ plasma is the ratio of the plasma pressure to the 
magnetic pressure). Whistlers have highly anisotropic phase 
velocities: The phase velocity is low in the direction across 
the magnetic field, and the waves reach a resonance with the 
beam ions, while along the magnetic field the phase velocity 
can vary over broad range, reaching and even exceeding the 
velocity of light. The waves excited by an ion beam can thus 
easily reach a eerenko resonance with the motion of elec- 
trons along the magnetic field, accelerating these electrons 
to ultrarelativistic velocities. 

Our purpose in the present paper is to solve the problem 
of electron acceleration in the limit of subreiativistic shock 
waves (by which we mean plasma velocities k 0. lc, where c 
is the velocity of light), where electrons can be accelerated 
effectively to ultrarelativistic energies. In contrast with the 
nonrelativistic case discussed in Ref. 1 1, we find it possible in 
this case to derive analytic expressions for the angular distri- 
bution and energy spectrum of the accelerated electrons, 
which we can then use to calculate the synchrotron radiation 
of these electrons. 
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2. BASIC EQUATIONS 

A self-consistent calculation of electron acceleration by 
quasiperpendicular shock waves should include the follow- 
ing steps. 

1. Determination of the angular distribution and energy 
spectrum of the ions reflected from the shock front as func- 
tions of the properties of the medium and the characteristics 
of the wave. 

2. Study of the relaxation of the distribution of the re-, 
flected ions under the influence of the oblique plasma waves 
which they excite. 

3. Calculation of the angular distribution and energy 
spectrum of the electrons in the region ahead of the shock 
wave, where these electrons are resonantly accelerated by 
waves excited by the reflected ions. 

4. Determination of the angular distribution of the ac- 
celerated electrons behind the shock front, where plasma 
instabilities substantially change the originally highly aniso- 
tropic angular distribution.14-l6 

The first of these steps is a problem in its own right and 
lies outside the scope of the present paper. We will accord- 
ingly make use of the extensive theoretical and experimental 
research on ion reflection from shock waves in the interplan- 

etary medium and in the space environment of the earth (see 
Ref. 12, for example) and assume that about a tenth of the 
ions of the incoming plasma stream, with an energy three or 
four times the kinetic energy of the plasma ions, are reflected 
from the front of a strong shock wave. This appears to be a 
reasonable assumption if we wish to apply the theory derived 
here to the synchrotron radiation of the plasma ejections 
from the cores of active galaxies, since the Mach number for 
the motion of a plasma formation in the interstellar medium 
is just as high as for shock waves near the earth" (M =: 5-10). 

We will concentrate our effort in this paper on solving 
the last three of these problems. The energetics of the accel- 
eration can be determined easily by making use of the fact 
that the energy dissipation of the beam of reflected ions 
ahead of a strong shock dominates the total energy dissipa- 
tion at the shock.13 

The problem of the relaxation of the distribution of re- 
flected ions and the problem of the ion acceleration should 
be solved jointly on the basis of the system of well-known 
quasilinear equations for the reflected ions and the acceler- 
ated electrons, along with a kinetic equation for the excited 
waves: 

where 

The x axis is directed along the unperturbed magnetic field 
H,; vll  , pI1 and v, , p, are the velocities and momenta of the 
particles respectively along and across the magnetic field; 
fb (x,pI, ,p, ) and f, (x,pyI ,p, ) are the distribution functions of 
the reflected ions and the accelerated electrons, respectively; 
IE, 12/877 is the spectral energy density of the electric field of 
the excited waves, with frequency w, and wave vector k; kll 

the Lorentz factor of the accelerated electrons; J ,  is the Bes- 
sel function of index n; wpj = (4~e j2n~/ rn~)"~  is the plasma 
frequency of plasma component j, with density nj, particle 
charge ej, and particle mass m, ; a,. = 1 ej I Hdm,c is the cy- 
clotron frequency of the nonrelativistic particles of species j; 
and w,, = (wciwce)1/2 is the frequency of the lower hybrid 
resonance in the two-component plasma. The frequency of 
the waves which are excited is determined from the well- 
known dispersion relation for oblique plasma waves with the 
electromagnetic corrections (see Ref. 18, for example): 

and k ,  are the components of the wave vector respectively In the limit wie ( k  2 ~ 2  this relation describes oblique electro- 
along and across the magnetic field; r = (1 +p2/m~~2)112 is static plasma waves, while in the opposite limit w&,k 'c2 it 
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describes electromagnetic whistlers. We restrict the present 
discussion to the case k (k :, which corresponds to large 
phase velocities for the wave propagation along the magnetic 
field. This simplification is justified by the circumstance that 
the energy density of the particles in plasmas in space is 
usually comparable in magnitude to the energy density of the 
magnetic field, so that waves with kil 2 k,(m,/mi)'/* are 
subject to intense Landau damping by thermal electrons. In 
this limit the phase velocity for the wave propagation across 
the magnetic field does not exceed the AlfvCn velocity, 
which is (mi/m,)112 times smaller than the velocity oflight in 
a comparatively low-density plasma (w;, the phase 
velocity is thus an order of magnitude below the velocity of 
the reflected ions. The instability growth rate in this case is 
significantly lower than the ion cyclotron frequency, so that 
formally, the individual cyclotron resonances would have to 
be taken into account. However, even a slight spread in beam 
velocities will allow us to switch to a summation over the 
individual cyclotron resonances in the dispersion relation 
for the waves and in the quasilinear equation for the ions. 
This approach corresponds to the well-known approxima- 
tion of a weak magnetic field in a description of ion motion; 
this approximation was used in Ref. 19 to derive the equa- 
tions which we need here, Eqs. ( I )  and (3). 

The term with n = 0 on the right side of the quasilinear 
equation for the electrons describes a resonant acceleration 
of electrons at Cerenkov resonance with the natural waves of 
the plasma which have been excited. We should also take 
into account the pitch-angle scattering of the accelerated 
electrons which reach cyclotron resonance with the waves 
because of the normal (n > 0) and anomalous (n < 0) Doppler 
effects. Equation (2) can be extended to the relativistic case, 
with allowance for the nonelectrostatic nature of the waves, 
through a simple generalization of the equations of Refs. 14 
and 15. 

Finally, the wave growth caused by the beam of reflect- 
ed ions [the first term on the right in Eq. (3) for the spectral 
energy density of the excited waves] is offset by the damping 
of these waves due to Cerenkov (n = 0) and cyclotron (n f 0) 
resonances with electrons and the induced scattering of 
waves by thermal ions of the plasma (the second and third 
terms, respectively, on the right) and also by the propagation 
of the waves out of the excitation region [the right side of Eq. 
(3)]. The induced scattering of waves by plasma ions was 
found from Ref. 19 in the so-called differential approxima- 
tion, which holds in the limit 

O ~ - O ~ ~ ~ A U ~ ~ = A ~ , U ~ > A ~ ~ U T ~ ,  

where v, = H, (4~n ,m, ) - "~  is the AlfvCn velocity, and 
v, = ( 2 ~ ~ / m ~ ) " '  is the thermal velocity of the ions. This 
condition usually holds in a plasma in space because of the 
slight difference between the electron and ion temperatures 
(T, 2 Ti) and because of the condition fl=. 8 ~ n ,  T , / H i  - 1. 
We turn now to an analysis of system (1)-(3). 

3. RELAXATION OF THE BEAM OF REFLECTED IONS 

Since the electrons are accelerated by energy taken form 
the beam of reflected ions, the acceleration efficiency is de- 
termined by the extent to which the reflected-ion distribu- 

tion relaxes in a bounded volume ahead of the shock front. 
Here we can use the approximation that the plasma is infi- 
nite and homogeneous if the scale dimension of the region 
ahead of the shock wave (which is evidently smaller than or 
on the order of the radius of curvature of the shock front) is 
much smaller than the relaxation length for the beam of re- 
flected ions. To determine the relaxation length from quasi- 
linear equation (1) for the ions we need to know the spectral 
energy density of the waves which are excited. In general, 
this energy density depends on the momentum distribution 
of the electrons which reach resonance with the waves. We 
will show below that the Cerenkov interaction of waves with 
electrons in the relativistic limit is stronger than the cyclo- 
tron interaction. We would thus naturally expect that the 
wave level will be severely suppressed by Landau damping 
over the entire phase-velocity range a k / k I I  < vl,,,,, (u,,,,,, is 
the maximum velocity of the accelerated electrons) in which 
these waves can interact with electrons. At higher phase ve- 
locities, the mechanism which primarily limits the growth of 
the energy of the natural waves of the plasma is the induced 
scattering of these waves by thermal ions in the plasma, not 
cyclotron damping due to the normal Doppler effect. The 
propagation of waves out of the excitation zone is also of 
minor importance. Equating the first and last terms in Eq. 
(3), we find the following wave energy distribution in the 
transverse component of the wave vector: 

We see that the spectral energy density of the waves 
increases at long wavelengths. Correspondingly, the relaxa- 
tion of the reflected-ion distribution is dominated by the 
longest waves which can grow in a plasma with a finitefl. An 
upper limit is imposed on the wavelength of the unstable 
waves by the condition for an overlap of the individual cyclo- 
tron resonances in the expression of the growth rate of the 
ion-beam instability: 

We will accordingly use the approximation k,, zwPi/A V,, 
where V, is the velocity of the reflected ions. 

The scale length for momentum relaxation of the beam 
of reflected ions is found from quasilinear equation (1) with 
the help of expression (5) for the spectral density of the wave 
energy: 

where n, and Ap, are the density of the reflected ions and 
their momentum spread due to scattering by the excited 
waves. Actually, the region ahead of the shock wave is not 
always large enough for a complete dissipation of the beam 
energy in this region, even in astrophysical objects. Expres- 
sion (7) can then be used to determine the extent of the energy 
relaxation of a beam in a region of scale dimension L: 
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As we will show below, it is this dimensionless parameter 
which characterizes the efficiency of the acceleration to ul- 
trarelativistic energies. We note that this parameter de- 
creases with increasing density of the plasma ahead of the 
shock wave. 

4. ACCELERATION OF ELECTRONS 

The resonant acceleration of electrons is described by 
the term with n = 0 on the right side of quasilinear equation 
(2) for the electron distribution function. This process is es- 
sentially a one-dimensional quasilinear diffusion of elec- 
trons in longitudinal velocity, which results in the formation 
of superthermal (nonMaxwellian) tails on their energy distri- 
bution. Here we would expect that the Landau damping by 
the electrons of the superthermal tail would lower the inten- 
sity of the resonant waves, and that as the tail was formed a 
balance would be struck between the rate at which waves are 
excited by the beam of reflected ions and the rate of the Lan- 
dau damping by the superthermal electrons. The low energy 
of the resonant waves would then justify our ignoring the 
nonlinear terms in Eq. (3) for the waves. Equation (3) then 
takes the simple form 

OL a f b  a f e  
,3- dpf j kll - ~.'nb ( ( o ~ - ~ ~ ~ v ~ ~ )  d p ]  1 J (kL2vL2-ok ) u,dp, ~ P I I  

A balance between the excitation and absorption of waves 
can be reached over the entire range of longitudinal phase 
velocities wk/kIl < u , , , ~ ~ ~  only under the obvious condition 

i.e., under the condition that the quantity on the left is inde- 
pendent ofpll and thus of k I  . If we ignore processes tending 
to reduce the anisotropy of the distribution, i.e., if we assume 
(p, ) = 0, then we can easily derive a one-dimensional distri- 
bution of superthermal electrons in longitudinal momen- 
tum: 

where n, is the density of the accelerated electrons, and 
pmax is their maximum momentum. 

This acceleration of electrons by shock waves thus leads 
to a universal power-law energy spectrum for the electrons 
with an exponent y, = 2. Substituting (1 1) into (9), we find 
that the region where it is most difficult to reach a balance 
between the excitation and damping of waves is at the great- 
est wavelengths, since the excitation rate increases with in- 
creasing wavelength there, while the damping rate de- 
creases. We would thus expect the spectrum of excited waves 
to be of the nature of a "jet": 

where k,, is determined by condition (6) .  Making use of this 
circumstance, we find from (9) the following expression for 
the density of accelerated electrons (p,,, %m,c): 

We find the wave distribution in the longitudinal com- 
ponent of the wave vector from quasilinear equation (2) for 
the electrons, in which we again ignore the slow processes 
tending to make the distribution less anisotropic: 

The first term on the right gives an approximate description 
of the loss of electrons which results from their escape at the 
velocity v l  from the acceleration region, whose dimension is 
L, and in which the beam of reflected ions excites resonant 
waves. Using (1 1) for the distribution function of the acceler- 
ated electrons, we find a solution of this equation (ignoring 
processes tending to render the distribution i~otropic): 

where the integration constant C ,  can be found by joining 
solution (1 5) for the region of resonant phase velocities with 
solution (5) outside this region. 

There is an important point to be noted regarding the 
slowness of the tendency of the electrons toward an isotropic 
distribution during their one-dimensional acceleration. The 
process is slow because the rate of the one-dimensional accel- 
eration is determined by the spectral energy density of the 
waves at the point kll  = wk/vl ,  which corresponds to the 
resonant phase velocity, while the processes tending to make 
the distribution isotropic depend on the integrated wave en- 
ergy density [see Eq. (19) below]. Therefore, because of the 
sharp increase in the spectral energy density of the waves at 
high phase velocities, lE, 1'- I kl,  c - w, / -' [see Eq. (15)], 
the acceleration rate will fall off with increasing electron 
energy, in contrast to the rate at which the distribution tends 
to become isotropic. This circumstance represents a funda- 
mental distinction between the model used here and the 
models of acceleration by an isotropic plasma t~rbulence.~' 

The maximum energy to which the electrons are accel- 
erated can be found by requiring that the energy flux carried 
into the acceleration region by the reflected ions, - n, ViAp,, must exceed the energy flux carried out of this 
region by the accelerated electrons, - n, me 
c31n (pmaX/mec). Using (13) for the density of accelerated 
electrons, we can write this condition as 
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The integrated energy density of the resonant waves is lower 
than that of the nonresonant waves. This circumstance justi- 
fies our use of the quasilinear approximation in calculating 
the spectral energy density of the resonant waves. This point 
can be verified easily by comparing (15) with (16). 

5. EFFECT OF THE TENDENCY TOWARD AN ISOTROPIC 
DISTRIBUTION OF ACCELERATED ELECTRONS ON THE 
ENERGY SPECTRUM OF THESE ELECTRONS 

Up to this point we have ignored the pitch-angle scat- 
tering of electrons due to the cyclotron interaction of the 
electrons with nonresonant waves (w, /k , ,  > u,,,,,,) in the 
normal Doppler effect (n > 0) and also with resonant waves 
in the anomalous Doppler effect. Because of the high intensi- 
ty of the nonresonant waves, we will at this point consider 
the scattering of electrons by these waves alone. Since the 
pitch-angle scattering of electrons slow in comparison with 
their acceleration, we need consider this scattering only at 
modest electron energies, where even a slight increment in 
the transverse momenta of the electrons leads to a signifi- 
cantly less anistropic electron distribution. We immediately 
note that the cyclotron interaction itself occurs only for rela- 
tivistic electrons with a Lorentz factor 

I'~p,]/mec>oCe/ok. (I7) 

Since we expect to find a significant decrease in the anisotro- 
py of the electron distribution, we consider the limiting case 

where n,,, is the number of the resonant cyclotron harmonic. 
In this limit we can carry out calculations on the pitch-angle 
scattering of electrons, described by the second term on the 
right side of Eq. (2), by working from 

Comparing this equation with Eq. (1) for the ion relaxation, 
in which we again find this intensity of nonresonant waves, 
we find an estimate of the transverse-momentum spread: 

Under condition (16), the pitch-angle scattering by nonre- 
sonant waves at comparatively modest energies, (18), causes 
a significant reduction of the anisotropy ((p, ))m,c), which 
should be taken into account both in determining the elec- 
tron spectrum from Eq. (10) and in finding the spectral ener- 
gy density of the waves from Eq. (14). It is easy to see that 
incorporating in (10) the pitch-angle spread, which depends 
on the electron energy, changes the energy spectrum of the 
electrons: 

This change in the spectrum, however, requires a large ex- 
penditure of energy, so that it can be implemented in a com- 
paratively narrow energy interval. The size of this interval is 
found from the energy considerations which we have already 
formulated [see inequality (16)l: 

Since this interval is extremely narrow in comparison with 
the maximum electron energies (rZ lo7), result (21) is of no 
major interest. Furthermore, we will show below that for 
realistic properties of a plasma in space condition (22) con- 
tradicts inequality (l8), so that solution (21) does not hold at 
all. In specific applications we are therefore justified in ig- 
noring the quasilinear diffusion of electrons in transverse 
momentum in a first approximation and taking the electron 
distribution to be one-dimensional. 

6. SPECTRUM OF THE SYNCHROTRON RADIATION BY 
ELECTRONS BEHIND A SHOCK FRONT 

One of the most obvious manifestations of acceleration 
in a magnetized plasma in space is the synchrotron radiation 
of the accelerated electrons in various frequency ranges. In 
particular, the synchrotron radiation of magnetized plasma 
formations ejected from the cores of active galaxies2' appar- 
ently reflects the acceleration of electrons by shock waves 
which arise in the supersonic (and super-AlfvCn) motion of 
plasmas through the interplanetary m e d i ~ m . ~ ~ . ~ ~  This inter- 
pretation is supported by the fact that the exponent of the 
power-law frequency spectrum of the synchrotron radio 
emission is approximately equal to the value (a = 0.5) which 
corresponds to the exponent found earlier for the power-law 
electron energy distribution, ye = 2, under the assumption 
that the pitch-angle distribution of the electrons subsequent- 
ly becomes isotropic. 

Before we go into the possibility that the accelerated 
electrons become isotropic, however, it is useful to make 
some quantitative estimates regarding the characteristic re- 
laxation lengths of the beam of reflected ions, the maximum 
energy of the accelerated electrons, and the extent to which 
the pitch-angle distribution of these electrons becomes iso- 
tropic. Let us apply our theory to the plasma jet from the 
core of the nearby active galaxy M87. The density of the 
interstallar plasma and the temperature of the plasma elec- 
trons near the jet are known from x-ray  measurement^^^: 
no--0.01 cm-3 and T, -3 keV. The interstellar magnetic 
field can be estimated by assuming that energy is distributed 
equally between the thermal energy of the plasma, noT,, and 
the energy of the magnetic field, H2/87~. Adopting this as- 
sumption, we find H,,- 3.10-5 G. The velocity of the ejected 
plasmas has not yet been measured. If we assume that the 
presence of a jet in only one direction means that the bright- 
ness of this jet is increased because of motion toward the 
observer along the line of sight, we can put the velocity of the 

969 Sov. Phys. JETP 59 (5), May 1984 A. A. Galeev 969 



plasmas at V z 0 . 6 ~  (Ref. 21). Substituting these values of the 
properties of the plasma and the magnetic field into expres- 
sion (7) for the relaxation length of the reflected-ion beam, 
we easily find that this relaxation length is almost ten orders 
of magnitude greater than the size of the plasma f~rrnation,~: 
L--,3.1019 cm. This result means that the shock wave which 
arises during the intrusion of the first plasma jet into the 
unperturbed interstellar medium cannot effectively acceler- 
ate electrons. Subsequent jets, however, will move through a 
medium of lower density, since the wake left by the first jet 
will not yet have been filled with interstellar plasma. The 
velocity at which plasma flows into the wake, which is on the 
order of the Alfven velocity, falls off rapidly as the wake 
becomes filled with plasma. The limiting plasma density in 
the wave can be estimated from the obvious relation 

L / v a z d /  Va, (24) 

where d is the distance between two successive plasma for- 
mations in an ejection, which is about d -- 20L. We then im- 
mediately find v, --c/30, so that the plasma density in the 
wake is no--, lop4 ~ m - ~ .  As a result, the relaxation length of 
the beam of ions reflected from the front of the shock wave is 
reduced by eight orders of magnitude, and the extent of the 
beam relaxation, (8), over the characteristic dimension of the 
plasma formation, L, becomes quite large: 

Vb2Apb/rn,c3'm5-10. (25) 

It follows from (16) that energy considerations impose no 
serious limitation on the highest energy to which the elec- 
trons can be accelerated. To find a more accurate estimate of 
this maximum energy we need to examine in detail the singu- 
lar behavior of the spectral energy density of the resonant 
waves in the plasma, (15), taking into account the exchange 
of energy between resonant and nonresonant waves. This 
singularity is responsible for the acceleration of electrons 
over a distance on the order of the relaxation length of the 
reflected-ion beam [see Eq. (1 5 ) ] .  The maximum electron en- 
ergy is determined by that wave phase velocity at which this 
singularity is eliminated. As for our approximation of a one- 
dimensional acceleration, we note that it holds quite well for 
the extent of the relaxation of the ion beam which we have 
found, (25). 

The processes tending to reduce the anisotropy of the 
distribution of accelerated electrons cannot be ignored be- 
hind the shock front, however, where only half of these elec- 
trons arrive with a velocity directed away from the front 
toward the plasma. We know that a highly anisotropic, sin- 
gle-sided electron tail of this sort would be unstable with 
respect to the excitation of plasma waves.I6 To determine the 
pitch-angle distribution of electrons behind the front we use 
the following equation for the number density (N,)  of elec- 
trons in the energy interval (E, E, + d ~ )  and the pitch-angle 
(8, 8 + d o ) :  

aN,  1 3 ah '  a 
u,, .= -- OD - + - ( B E '  sin2 ON,). 

ax  E Z  eae  ae a e  (26) 

The pitch-angle diffusion coefficient can be estimated from 
D- ope (n,/no)m2c4, since this diffusion is caused by waves 
offrequency a,, which grow under the influence of the small 

FIG. 1. Spectrum of the synchrotron radiation of electrons accelerated by 
a shock wave (the values of the parameters v,  are given in the text proper). 
HereZ, a v - " .  

fraction of accelerated electrons. The second term on the 
right side of this equation describes the synchrotron loss. 
Here we have = 2e4Hi/3mfc7 (Ref. 26). Equation (26) 
must be supplemented with a boundary condition on the 
trailing edge of the shock front: 

The theoretical exponent calculated above is ye = 2. 
It follows from Eq. (26) that at modest energies the elec- 

tron distribution easily becomes isotropic. Correspondingly, 
the low-frequency synchrotron radiation of the electrons ac- 
celerated by the shock wave is described by a power-law fre- 
quency spectrum with an exponent a = (ye - 1)/2 (Fig. 1). 

As the energy of the electrons increases, however, the 
decrease in the anisotropy of their pitch-angle distribution 
slows, and the synchrotron energy loss increases. Each of 
these effects tends to reduce the synchrotron radiation at 
high frequencies. The exponent of the frequency spectrum of 
this radiation depends strongly on the relative importance of 
these effects. 

If the plasma formations are quite large, 

the synchrotron loss becomes important even at relatively 
low energies, E > E, = c/PL, where the decrease in the an- 
isotropy has not yet come into play. We know that in this 
case there is a change in the slope of the emission spectrum at 
the frequency v, = vc,/P 'm;c2L ,, and the exponent of the 
spectrum becomes a, = y,/2 (Ref. 27; see Fig. 1 of the pres- 
ent paper). At even higher energies, E > E, + (D /P)'I3, the 
erasure of the anisotropy becomes incomplete because of the 
synchrotron energy loss of electrons with large pitch angles 
[ ( 6  ) -(E,/E)~'~].  The spectral density ofthe synchrotron ra- 
diation of the electrons in this case can be calculated approx- 
imately from 

( vr:2t:0) sin 0 d0 d ~ .  (29) I.= J Be2 sin2 ON. ( e , 0 ) 6  v - 

Here we have made use of the circumstance that an electron 
with a given energy and a given pitch angle radiates in a 
narrow frequency range. Hence, using (26), we easily find 
that the radiation spectrum becomes steeper (a, = 0.8ye 
- 0.6) at v > v, = vc,D 'I3/2P 213m72,2c4. 

Finally, at very high energies, E > E, = PDL '/c2, the ex- 
tent to which the distribution becomes isotropic is deter- 
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mined by the finite time taken for the electrons to traverse 
the plasma ( (0  )E - (DL /c)'12), and the exponent of the spec- 
trum changes for the last time (a, = ye at 
v > v j  = vJDL 2/2m,2c6). 

If inequality (28) does not hold, there is only a single 
slope change (a = ye at v > v,,DL /2m:c5) in the synchro- 
tron-radiation spectrum of the accelerated electrons. This 
slope change results from the slowing of the decrease in the 
anisotropy of the electron distribution the time required to 
traverse the plasma. It is this latter case which we are appar- 
ently seeing in the jet in M87, where the characteristic di- 
mension of theplasma formations isz5 L =: 3. 1019 cm, and the 
magnetic field in these formations is2' Ho = 3.10P4 G. We 
then see why the exponent of the emission spectrum is un- 
usually steep,24 a = 1.8, between the optical and x-ray fre- 
quency ranges. It is also interesting to note here that condi- 
tion (27) holds in the case of another well-known jet, from the 
quasar 3C273, because of the strong magnetic field H- loP3 
G and the far greater dimensions of the plasma formation. 
Correspondingly, the first slope change in the radiation 
spectrum of the jet is not as abrupt29: from a = 0.8 to 
a, = 1.3. 

I wish to thank R. Z. Sagdeev, V. D. Shapiro, and I. S. 
Shklovskir for several useful discussions. 
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