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A quantum-kinetic equation is derived for the density matrix using a new collision integral that 
characterizes the nonlocal character of the interaction and the effect of a strong electromagnetic 
field on the collision dynamics. A new method is developed on the basis of this equation for the 
analytic investigation of optical collisions, nonlinear dynamic effects, and the contours of atomic 
spectral lines resulting from collisions with multilevel particles of the impurity gas. The new 
method differs in principle from earlier ones in that it combines the dynamic and kinetic problems 
of the theory of atomic collisions. The following physical problems are solved by the proposed 
method: 1) a universal formula for the spectral-line contours is obtained, which is valid for the 
entire spectrum, including the shock, intermediate, and quasistatic frequency ranges in an elec- 
tromagnetic field of arbitrary strength; 2) formulas are obtained for the optical-collision broaden- 
ing and line-contour shifts in an electromagnetic field of arbitrary strength and frequency; 3) the 
absorption and emission of energy by the electromagnetic field is taken into account automatical- 
ly, not only in the case of optical collisions, but also in the case of atoms in free flight; 4) the 
dependence of the spectral-line contour shift on the strength of the electromagnetic field is deter- 
mined; and 5) the problem of the effect of a strong electromagnetic field on the dynamics of 
optical-collision transitions (the dynamic problem) is formulated and solved. It is shown that in 
special cases the universal formula obtained for the spectral-line contours yields generalized 
versions of the well-known Karplus-Schwinger and Lisitsa-Yakovlenko formulas and others. 

1. INTRODUCTION 

In an earlier paper,' the author and Rautian pointed out 
a limitation of the standard theory of spectral line broaden- 
ing by a weak electromagnetic field that does not affect the 
dynamics of optical collisions (OC). To remove these limita- 
tions we subsequently2 obtained quantum kinetic equations 
for the density matrix, in which the collision integrals are 
expressed in terms of the generalized Moller operator f2 ( t  ) 
and the 7 ( t  ) matrix, which depend on the parameters of the 
electromagnetic field and the time t .  As a result we predicted 
a new physical effect-"field" narrowing of spectral lines 
associated with the influence of a strong electromagnetic 
field on the collision dynamics (nonlinear dynamical effects) 
and investigated it analytically.2 

The dynamics of an individual OC event in a strong 
electromagnetic field was investigated by Lisitsa and Yakov- 
1enk0,~ using differential equations for the probability am- 
plitudes (in a basis of "field dressed" states3,'). Their results 
confirmed the field narrowing effect2 and made it possible to 
predict the "brightening" of the m e d i ~ m , ~  which is a direct 
manifestation of field narrowing in the quasistatic region of 
the spectrum. These effects have recently obtained reliable 
experimental ~onfirmation.~.' 

Much attention has been given in recent years to the 
study of nonlinear dynamical effects. This is due, on the one 
hand, to new experimental possibilities resulting from the 
development of laser techniques, and on the other hand, to 
new prospects for obtaining additional information on the 
characteristics of the collisional interaction of particles, and 
on the selective initiation of new processes that do not take 
place in the absence of a strong electromagnetic field. As 

examples we may adduce radiative collisions4 and laser-in- 
duced excitation exchange (see, e.g., Refs. 5 and 8). 

A characteristic feature of the known methods for in- 
vestigating the OC broadening of spectral lines (see, e.g., 
Refs. 3,4, and 10) is the separation of the problem into two 
independent problems: the dynamical problem, and the ki- 
netic problem. The solution of the dynamical problem yields 
the probability (cross section) for an OC transition, which 
may then be used to determine the populations of the energy 
levels and the shape of the "field saturated" spectral 
In this case, because of the separation of the problem into 
two parts, one cannot obtain a general analytic expression 
for the line broadening and shift that would suitably describe 
the entire line contour. Moreover, the dynamical problems 
for the impact and quasistatic regions of the spectrum are 
solved by different methods, and it is not possible to 
"match" the results; the intermediate frequency region is 
therefore not discussed. 

It accordingly seems natural to resort to the quantum 
kinetic equation for a single-particle density matrix when 
investigating the problem of optical collisions in a strong 
electromagnetic field, for in that method the dynamic and 
kinetic problems turnout to be automatically unified. Such a 
method was first developed in Ref. 2, but the Markovian 
collision integral obtained there does not provide an ade- 
quate description of the wings of the spectral lines. It there- 
fore became necessary to obtain a new collision integral that 
would contain detailed information on the "nonlocality" of 
the collisions9 and the effect of the electromagnetic field on 
their dynamics. 

In this paper we develop a nonlinear quantum-kinetic 
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theory of optical collisions and spectral-line contours result- 
ing from collisions of active particles with impurities in a 
strong electromagnetic field. In Section 2 we obtain a colli- 
sion integral of non-Markovian type in the binary approxi- 
mation, which makes it possible to describe the entire con- 
tour, including the impact, intermediate, and quasistatic 
frequency regions. Its distinguishing feature is the presence 
of a new evolution operator L (t,t ') that characterizes the col- 
lision dynamics in a strong electromagnetic field. In Section 
3 we derive a kinetic equation for the density matrix and use 
it to formulate the problem of investigating the spectral-line 
shapes in the two-level resonance approximation. In Section 
4 we determine the dynamical evolution operator L (t,to) in a 
strong electromagnetic field (the dynamical problem). In 
Section 5 we obtain for the first time a universal formula for 
the line shapes that describes the entire spectrum, including 
the shock, intermediate, and quasistatic frequency regions in 
the case of an arbitrarily strong electromagnetic field. The 
application of this formula to special cases yields generaliza- 
tions of the well-known Lorentz-Weisskopf, Karplus- 
Schwinger," Lisitsa-Yak~vlenko,~ Rautian,12 and Vdovin- 
Galitski:-Yakimets13 formulas. In Section 6 we analyze 
some special cases, and in Section 7 we investigate a new 
physical effect: the dependence of the shift of the spectral- 
line contours on the strength of the electromagnetic field. 
The published papers most closely related to the subjects 
discussed here are Refs. 3-5 and 15-18. 

2. THE COLLISION INTEGRAL 

Let us consider a two-component gaseous mixture (par- 
ticles a and b ) at low pressures and derive the collision inte- 
gral ~ ( t )  as a result of their interactions with the impurity 
particles (6 ). We shall start from the chain of Bogolyubov 
equations broken off at the two-particle density matrix Fa, (t ) 
(the binary approximation)2~14: 

a Fa, ih- =[Ha+ Hb+V ( t )  +W, Fa* ( t )  1, 
r3 f 

Here the Fa,, (t ) are single-particle density matrices, Ha and 
Hb are the Hamiltonians for the isolated particles, V(t ) and 
Ware the energy operators for the interactions of particles a 
with the field and with the particles b, respectively, and n, is 
the concentration of the impurity particles. We express the 
two-particle matrix Fa, (t ) as the sum of the correlation ma- 
trix g(t ) and the product of the single-particle matrices' 

F a b  ( t )  =Fa ( t )  Fb ( t )  + g ( t )  . (2.3) 
From the differential equation (2.1) for Fa, and Eq. (2.3) 

we obtain the following equation for the correlation matrix 
s(t ): 

iti = [H.+L+v ( I )  + W ,  g ( I )  ] + [ W ,  F 3 . I .  (2.4) 
at 

Analysis showed that the differential equation (2.4) can be 

solved with the aid of the evolution operator G (t,to), which 
has the form 

G(t ,  to)=L ( t ,  to)S( t ,  to)F(t ,  to). (2.5) 
The operators F, L, and S satisfy the differential equa- 

tions 

in which I i s  the operator for the identity transformation (the 
unit matrix). The unitary-transformation matrix Y (t ) satis- 
fies the same differential equation as S (t,to) = Y (t ) Y +(to), so 
we can use the operators (t,O) in place of Y (t )in the equation 
(2.7) for L. 

The evolution operators G, S, and L have the standard 
transformation properties: 

L ( t ,  t i )L ( t i ,  to) =L(t ,  to), L ( t ,  t,) = L f ( t 0 ,  t ) .  

The operator F(t,t,) transforms all the operators to the 
interaction representation. The operators (t,to) characterizes 
the evolution of the correlation matrix and other operators 
under the action of the electromagnetic field. The evolution 
operator L (t,to) represents the collisional interaction in a 
strong electromagnetic field; we shall call it the dynamic- 
evolution operator. 

Using the operator G (t,to), we obtain the following for- 
mula for the correlation matrix g(t ) from Eq. (2.4): 

- ~j G+ ( t ,  t ') [ W ,  Fa (t') Fb (t') lG ( t ,  t') dt'. (2.8) 
ti 

b 

On substituting (2.8) into (2.3) and (2.2) we obtain the 
following expression for the collision integral in the interac- 
tion representation: 

a ( t )  = sPI [ U ,  p ( t )pb  ( t )  ] +[ U ,  Go+ ( t ,  to)g(to) Go (4  t o )  I 
rt i  { 

x Lo ( t ,  t ' )  S( t ,  t ' )  dt' ; I} 

Lo ( t ,  t') = Y+ ( t ' )  L ( t ,  t') Y  (t ' ) .  (2.9) 

The collision integral (2.9) differs from others in the 
presence of the dynamic evolution operator L (t,t '), which 
describes the effects of the strong electromagnetic field and 
the nonlocal character of the interaction9 on the OC dynam- 
ics. When L (t,t ') = I (the Born approximation), Eq. (2.9) 
yields the result obtained by Apanasevich and Nizovtsev,15 
while in the absence ofan electromagnetic field (S (t,t ') = I )it 
yields a collision integral that is similar in form to the non- 
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Markovian collision integral of Ref. 16 but differs essentially 
from it in content. 

When (2.9) is taken into account, the quantum kinetic 
equation for the single-particle density matrixp(t ) takes the 
form2,12 

Here we have introduced the matrix Q (t ), which character- 
izes the pumping, and a supplementary term containing the 
diagonal matrix r, which describes the spontaneous transi- 
tions12; V(t ) = FV(t )F +; and p and ma are the momentum 
and mass of the active particle. The generalization of (2.9) 
and (2.10) to the case of collisions of identical particles 
(a - a) is trivial.' 

The non-Markovian collision integral (2.9) makes it 
possible substantially to extend the range of applicability of 
quantum kinetic equations of the form of (2.10). In particu- 
lar, it can be used to investigate new nonlinear dynamical 
effects due to the influence of a strong electromagnetic field 
on the OC  dynamic^^.^ and to obtain a universal formula for 
the shapes of gaseous absorption lines (induced emission) 
that makes it possible to describe the entire spectrum, in- 
cluding the impact, intermediate, and quasistatic frequency 
regions. 

3. THE KINETIC EQUATION FOR THE DENSITY MATRIX 

Let us consider the evolution of a two-level quantum 
system (an atom) in a strong electromagnetic field under 
collisions with multilevel unpolarized ( pbA, = p, SAP ) im- 
purity particles. The formulation of the problem corre- 
sponds to the nonlinear OC t h e ~ r y ~ . ~  and differs from the 
known variants of the t h e ~ r y ~ - ~  in the method of investiga- 
tion and in yielding general results for arbitrary electromag- 
netic-field strengths and arbitrary mismatch between the 
frequency w, of the electromagnetic-field and the transition 
frequency w,, , in accordance with the model1' based on 
relaxation of constants. 

We shall use the quantum-kinetic equation (2.10), 
which leads to the following set of differential equations for 
the matrix elements p(t ) in the two-level approximation: 

(3.1) 

Here k is the wave vector and r(t ) the radius vector of the 
particle. In the equations for the diagonal matrix elements 
p, (t ) the plus and minus signs correspond to s = m and 
s = n, respectively, while the q, (r,p,t ) characterize the inco- 
herent pumping and determine the steady-state populations 
of the energy levels in the absence of an electromagnetic 
field. The constants y, y, , and y, describe the spontaneous 
transitions,I2 while V = V,, / f i  and w = w, - a,,. 

In the subsequent investigations we shall need the ex- 

plicit form of the collision integral (2.9). To simplify the for- 
mulas we shall assume that p = 0, since in the final formulas 
for the characteristics of the particles having nonvanishing 
momenta, the p dependence can be recovered with the aid of 
the standard substitution12 w + w - kv, v = p/m, . 

Since the off-diagonal elements of the matrix U (t ) are 
rapidly oscillating functions of time in the interaction repre- 
sentation, their effect on collisions with unpolarized impuri- 
ty particles turns out to be negligibly small (in the two-level 
approximation). We shall accordingly assume the matrix 
U (t ) to be diagonal: Us,. = fiU, 6,; (elastic processes). 

The operators Y(t ) and S +(t,t - .T) have the following 
form12*15 for a two-level system in a monochromatic electro- 
magnetic field: 

1 a i i ( t )  ai.(t, r )  I( s+ ( t ,  t-7) = Y+ ( t )  Y ( t - t )  = - 
2 I1 -al2* ( t ,  -c) a,; ( r )  

where we have used the notation 

0 
a,, ( t )  = c+e-'"-'+c-e-'"", c,=lf - , 

v 

21 VI 
a,, ( t ,  7) = - (eiw-r-eiw+r) e - i ( w t + ~ o )  7 

v  
1 

o, = - ( o i v ) ,  ~ ~ = 0 ~ + 4 1 V 1 ~ ;  
2 

and p, is the phase constant of the matrix element 
V= +(d,,E) = (Vleipo. 

Analysis showed that the final results do not depend on 
the phase p,, so for simplicity we shall assume it to be zero 
(po = 0) in the intermediate formulas. 

Using the matrix (3.2), we obtain the differential equa- 
tion for the dynamic evolution operator L +(t,t,): 

i 
dL+ ( t ,  t o )  

at 
= u1 ( t ) L +  ( t ,  to) ,  

where 

1 u, ( t )  = - Y  ( t )  U Y +  ( t )  
A 

L+ ( t ,  t )  = I ;  

Equation (3.5) has the same form as the differential 
equation for the matrix identified in Ref. 18 with the scatter- 
ing matrix in a basis of dressed 

The basic and most complicated problem of nonlinear 
OC theory is to determine the dynamic evolution operator 
L + (t,t,). This is due to the time dependence of the matrix 
Ul(t ), which, in turn, is due both to the dependence of the 
collision interaction potential on the distance Ira (t ) - r, (r ) 1 
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between the particles and to the effect of the strong electro- 
magnetic field. The following section is devoted to the solu- 
tion of the dynamical problem. 

4. THE DYNAMIC EVOLUTION OPERATOR 

It is not difficult to show, using (3.6), that the dynamic 
evolution operator L +(t,to) can be expressed as a product of 
two operators: 

L'(t, to) =L,+ ( t ,  to) L2+ ( t ,  t o ) ,  (4.1) 
where L ,+ (t,to) is a diagonal matrix with the matrix elements 

To determine the phases $, (t,to), we deviate from the 
VPS method and use second-order differential equations 
that are equivalent to the initial matrix equation (4.3): 

gsf Qs2-asips+ 1 %  12=0, s=m, n; 

1 dx am=-- an = am'. 
(4.9) 

x  dt '  

It is not difficult to verify that the solutions of these 
equations are the functions 

while the operator matrix L ,t (t,to) satisfies the differential 
equation 

Here we have used the notation 

U ,  ( t ,  to) = 

l  V l  (4.4) 
x ( t ,  to)  = - AU(t)exp{--i[vt-q ( t ,  t o )  11. 

Y 

To solve the differential equation (4.3) we transform to 
equations for the matrix elements lss. = (L2+),,. , which form 
two pairs of coupled equations with the same coefficients. To 
investigate the set of differential equations for I,, (t,to) and 
I,, (t,to) we introduce the new complex functions pm (t,to) 
and p, (t,tO): 

Lmm(t, t o )  =exp cp,(t, t o )  ; 
(4.5) 

il,, ( t ,  t o )  =expcp, ( t ,  t o )  . 
From (4.3) we obtain the following differential equation 

for the difference between the arguments of the exponentials 
in (4.5): 

On separating the real parts in equations of the form of 
(4.6) and solving the resulting equations by the Vainshtein- 
Presnyakov-Sobel'man (VPS) method19 we obtain an expres- 
sion for the matrix elements of the operator L ,+ (t,t,): 

lss ( t ,  to) = [COS 1 ( t ,  t o )  ] el*.('. to), S=m, n, (4.7) 
1 3 ~ ~  ( t ,  t o )  =-i [sin A, ( t ,  t o )  ] e'@Jt. ' L ) ,  s+s', 

where we have used the notation 

t 

h ( t ,  t o )  = J Re [ X  (t', t o )  ei*(t',to) 1 dt', 
to (4.8) 

Taking (4.4) and (4.8) into account, we obtain the fol- 
lowing expressions for the phases $(t,to) and Ill, (t,t,): 

1 

+(t ,  to)  = v (t-to) - q ( t ,  to)  - 2 ~e  J ~ ( r )  d ~ ,  (4.11) 
to 

( t ,  to) =-&(t, t o )  ='I2$ ( t ,  1 , ) .  

The method of obtaining the phases $s (t,to) from equa- 
tions of the form of (4.9) is a generalization of the WKB and 
VPS  method^'^,^^ to the case in which the nonadiabatic char- 
acter of the collisions and the effect of the electromagnetic 
field on their dynamics are taken into account. The general- 
ization also involves the fact that the condition IJm /'$I, 
which is characteristic of the asymptotic  method^'^.^^ does 
not apply to the quantity 1 Jm 1 .  We note that the VPS method 
corresponds to the J(T) zz Jm (T), approximation. 

Formulas (4.2), (4.7), and (4.11) completely solve the 
problem of determining the dynamic evolution operator 
L +(t,to): 

where we have used the notation 

11 ( t ,  to) =[COS h ( t ,  t o )  ] e7"('. '0) , TI ( t ,  t o )  =isin ( t ,  t o ) ]  e m ( ' ,  

(4.14) 
and 

$0 

The plus and minus signs in (4.15) correspond to the 
cases w < 0 and - w > 0, respectively. In the adiabatic ap- 
proximation,1° in which the components proportional to A u 
and A u are neglected in (4.12), the expression for the phase 
p(t,to) takes the form 
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The relation (4.13) obtained for the dynamic evolution 
operator L + (t,to) enables us to proceed to the development of 
a nonlinear quantum kinetic theory of spectral line contours. 

5. A UNIVERSAL FORMULA FOR SPECTRAL LINE 
CONTOURS 

On substitution the matrices (3.3) and (4.13) for 
S +(t,t - 7) and L +(t,t - 7) into Eq. (2.9) we obtain, in the 
limit to-+ - m with g(to) = 0, the matrix elements for the 
collision integral u(t ): 

a,, ( t )  =-P,p,, ( t )  +P2e-2i("t~+Qo) pmn* ( t ) ,  
(5.11 

on, ( t )  =a,,* ( t )  , ~,,,"onn"O, 

Here we have introduced the following notation: 

The angle brackets (. . .) denote averaging over the relative 
velocities v of the particles and the impact parameter b and 
summing over the index p. 

In deriving Eqs. (5.1) and (5.2) we considered only the 
quasiclassical approximation, lo although the collision inte- 
gral (2.9) contains information on the changes in the mo- 
menta of the particles during c ~ l l i s i o n s . ~ ~ ' ~  

To determine the absorption-line contour (induced 
emission) we must find the off-diagonal element of the den- 
sity matrixp,, (t ). Using formulas (5.1)-(5.3) we obtain the 
following expression for the steady-state value ofp,, (t ) from 
the set of differential equations (3.1): 

m OD 

P , ( I  V I ,  o ) = i ~ ~ + n , l (  J p . ~ u ( t ) a t J  AU(t -r )  
- - o (5'2) where we have used the notation 

x ( 7 )  Li2(t, t -T) 

+d,(r)r,*'(t, t - r )  ldr  ); 
m m 

=iAO+n, ( j p ,Au  ( t )  dt j ~ U ( t - r )  

~ [ d ,  (a)r i2( t ,  t -T)  + dz(r)Lt*2(t ,  t - t )  ] d t  x [ d ,  ( 7 )  eZQ+d2 ( T )  e-2iQ] dr ) , 
where in turn, we have used the notation 

(5.5) 

and yo, ( I  V 1, w) is the half width of the line contour due to OC 

(5.3) 
transitions. 

Equation (5.4) enables us to determine the entire con- 
d ( ) - IVl2 ( e i v ~ + e - i v ~ -  

2 r  -- 21, AO=n, ( j AUp, dr ). tour of an atomic absorption line in the presence of collisions 
v2 - - with multilevel particles in a strong electromagnetic field: 

I V l 2 ( ~ r n - ~ n ) [ ~ + ~ o ( ~ V I , ~ ) 1  Z ( l V l , o ) -  Re[-iV'(t)p,,(t)]= 
[o-A,, ( I  VI, o)  ]'+[Y+"(~ ( 1  V1, 0 )  I2 f21 V I 2 ( y f  yoc) (ym-'+ynn-')+ PQ 

(5.6) 

where 

pq=2 Re P2(y+y,,) - (Im P2)'. 

Formally, Eq. (5.6) has the same form as the Karplus- 
Schwinger formula" as generalized by Lisitsa and Yakov- 
lenko3 to the case in which a strong electromagnetic field is 
present, but there are also substantial differences. 

First, the collisional shift A,, ( 1  V I, w), which depends on 
the strength of the electromagnetic field and the frequency 
w, appears in Eq. (5.6). Formula (5.7) for A,,(I V 1, w) de- 
scribes a new nonlinear dynamic effect for optical collisions 
in a strong electromagnetic field. 

Second, the term in the denominator proportional to 
/ V l 2  contains the coefficient (y, -' + y, -I), which reflects 
the difference between the lifetimes of particles on levels m 
and n (an open system) in place of the factor y,,, -', which 
characterizes3." the inelastic rela~ation.~." It is evident 

from (5.6) that the description of the line contour with the aid 
of the two constants3*" yo, and y,,,, is valid when the condi- 
tions y, = y, = 2y and y = y,,, are satisfied; but these con- 
ditions are usually not satisfied12 in real systems. 

Thus, the component (y + 1/,c)2 in the denominator of 
the Lisitsa-Yakovlenko formula3 was introduced artificial- 
ly, since the theory developed in Ref. 3 is applicable only for 
frequencies v2>(y + In Eq. (5.6), however, the compo- 
nent (y + appears along with a new additive termpq in 
a natural manner, the additional termpq indicating that it is 
permissible to introduce the component (y + yo,)2 into the 
denominator of (5.6) only for values of I V l 2  and w for which 
~ 4 4 ~  + YO, 12. 

An important property of Eq. (5.6) is the fact that in the 
absence of collisions (yo, =A,, = 0) it, unlike the known 
formulas of Refs. 3 and 11, leads to the absorption-line con- 
tour due to spontaneous relaxation in a strong electromag- 
netic field.12 This means that (5.6) contains information on 
the absorption of radiation not only during OC transi- 
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ti on^,^^" but also during the free flight of the atoms. 
We note that two nonlinear spectroscopic effects that 

differ in nature find their expression in Eq. (5.6). The first is 
associated with the leveling of the populations of the energy 
levels in a strong electromagnetic field (the saturation effect), 
which is well known from the theory of lasers (see, e.g., Ref. 
12). The second effect is comparatively new; it is due to an 
effect of a strong electromagnetic field on the OC dynamics 
that leads to a dependence of the characteristics yo, and A,, 
of the collisional relaxation on the strength of the electro- 
magnetic field (a nonlinear dynamical effect). The specific 
physical manifestation of this effect was first investigated in 
Ref. 2 and in Refs. 3 and 4. 

We have analyzed the formal distinctive features of Eq. 
(5.6), which is a generalization of the well-known Lorentz- 
Weisskopf, Karplus-Schwinger, '' and Lisitsa-Yakovlenko3 
formulas, and others. A more thorough analysis of the re- 
sults can be carried through by considering the physical con- 
tent of the functions y,, ( )  V 1, w), A,, ( I  V 1, w), andpq as ap- 
plied to different ranges of variation of the parameters w and 
IVI2. 

Formula (5.6) characterizes the contour of a spectral 
line of an individual atom. To obtain the absorption-line 
contour for an ensemble of atoms (in a unit volume) one must 
average (5.6) over the velocities v of the active particles (with 
allowance for the substitution w-+a - kv), over the orienta- 
tions of the dipole moments,22 and over the spatial distribu- 
tion of the active particles. 

6. APPROXIMATE FORMULAS FOR THE WIDTH AND SHIFT 

Analysis of Eqs. (5.5) and (5.7) for yo, ( 1  V I, w) and 
A,, ( I  V 1, a) showed that, as applied to the impact region of 
the spectrum (YT, g 1, where 7, is the duration of a collision), 
they yield the classical formulas for y,,, and Aim, provided 
p, = 1 (Ref. 10, p. 252). 

In the quasistatic frequency region corresponding to 
the intersection of the difference of the "terms" A U and w, in 
the case of a weak electromagnetic field and a multipole in- 
teraction,'' Eqs. (5.5) and (5.6) yield the well known quasi- 
static distribution in the line wing (Ref. 10, p. 254). 

In the case of a strong electromagnetic field, for the 
Landau-Ziner r e g i ~ n ~ . ~ ~  with allowance for the identity 

we obtain2' the following expression in the adiabatic approx- 
imation (4.16): 

(6.1) 
When w2,4) V l 2  andp, = 1, Eqs. (6.1) and (5.6) lead to 

the results of Ref. 3. Both the field narrowing2 of the spectral 
line contours and the brightening of the medium in the qua- 
sistatic frequency region3 follow from Eqs. (5.5), (5.6), and 
(6.1). 

A comparison of relations (5.5), (5.7), and (6.1) with the 
known results of Refs. 3, 4, 10, 20, and 23 shows that Eqs. 
(5.5)-(5.7) describe the entire contour of atomic spectral lines 
from unified positions for an electromagnetic field of arbi- 
trary strength, while the following approximate expressions 
for yo, ( 1  V 1, w) and A,, ( 1  V 1, w) (for p, = 1) can be used to 
analyze various limiting cases: 

where we have used the notation 

po(t, t l ) = j  [ (o-AU)2+41VI'l'h d r .  

These formulas are not rigorous enough to describe the 
intermediate frequency region in which the coefficients d1(r) 
and d2(7) may play an important part. 

7. NONLINEAR SHIFT OF THE SPECTRAL-LINE CONTOURS 

For a qualitative study of the new nonlinear dynamical 
effect-the dependence of the shift A,(lV(, o) on the 
strength of the electromagnetic field-we use Eqs. (6.2) and 
(6.3), which yield the following expression valid at w = 0 (the 
center of the contour): 

Xsin cpo (t, t-T) d r  . I )  
(7.1) 

Equation (7.1) yields the classical formula for the impact 
shift in the limit 1 V I + 0: 

~ , , ~ , = n , (  sin 1 AU(t) dt ). 
- m 

In the other limiting case of a strong electromagnetic 
field ( 1  V / 2)(A U)2 and I V IT,, 1) the integrand in the nonlin- 
ear component of (7.1) is a rapidly oscillating function of 
time and its contribution to A,, ( 1  V I )  turns out to be negligi- 
ble. In that case the shift A,, ( 1  V ( ) reaches its maximum value 

- m 

We note that the divergence ofA U (r) as r - 4  is compen- 
sated by the nonlinear shift in (7.11, so that the following 
condition is satisfied in the region where r = (b + v2t 2)112 is 
small: 

[(-AU)'+41 V]"'""=(-AU). 

In the linear approximation in I V I (when / V 17, ( 1 we 
obtain 
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01 t 

yo=nb( J b U ( t ) d t J  A U ( ~ - r ) r r , - ' ( w s  J b ~ d r , )  d r ) .  
-- 0 t - T  

from Eq. (7.1). Consequently, the shift A,, ( 1  V I )  increases 
with increasing strength of the electromagnetic field; more- 
over, in the general case A,, ( I  V I )  increases nonlinearly, the 
character of the nonlinearity being determined by the form 
of the potential difference A U (r) .  The increase in the shift 
A ,  ( 1  V I )  may be attributed to the enhancement of the effect 
of collisions with large impact parameters as a result of the 
field splitting of the energy levels in a strong electromagnetic 
field. 

The author thanks A. N. Oraevskii, L. P. Presnyakov, 
S. G. Rautian, I. I. Sobel'man, and S. I. Yakovlenko for dis- 
cussing the results and for valuable advice. 
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