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The decay of a metastable state to the quasicontinuous spectrum, which may occur in a quasista- 
tionary system in an external field, is considered. For times t < T, where T is the period of the 
motion in the external field, this analysis predicts the Gamov exponential a-decay law for a finite 
system. New decay harmonics appear for t = mT (m = 1,2, ...). They correspond to the interac- 
tion of the decayed primary flux with the flux transmitted by the potential well produced by the 
external field. These interference harmonics oscillate as functions of the external field because 
discrete levels produced by the field are found to cross periodically the quasistationary level as the 
field is varied. For sufficiently long times t)T, the decay process corresponds to the distribution 
of the quasistationary state over the discrete levels. Possible systems for the observation of these 
effects are suggested. 

1. FORMULATION OF THE PROBLEM. INTERFERENCE 
PHENOMENA DURING THE DECAY OF A QUASISTATIONARY 
STATE IN AN EXTERNAL FIELD 

Consider two potential wells separated by a barrier (see 
the Figure). We shall suppose that the left well (I) contains a 
stationary state of energy E, when the interaction with the 
right well (11) is neglected. The size L of the right well will be 
assumed to be much greater than the size of the left well, and 
we shall suppose that the former contains a large number of 
energy states. At the initial time, the state under considera- 
tion is localized in well I. We shall examine the decay of the 
state in the course of time. In the limit as L-+a,  we shall 
thus obtain the decay law for a quasistationary state that was 
considered by gar no^'^^ as far back as 1928. It will be clear 
later that the derivation of this law relies heavily on the ex- 
ponentially small level splitting due to the interaction 
between the two wells through the potential barrier. On the 
other hand, when L is finite, we find that, in addition to the 
usual decay law for the quasistationary state, there are also 
new exponentially falling harmonics that correspond to the 
decay of a metastable state in the first well to discrete states 
in the second well. The new harmonics appear for t > T, 
where Tis the period of classical motion in well I with energy 
E,, and are the result of interaction between the decaying 
state in well I and the wave that had passed through well I1 
and has returned to well I. 

Our problem reduces to the solution of the Schrodinger 
equation 

tion would be 

I$~(X, t )  =$, (x) exp (-iE,t) . (1.2) 

We are interested in the probability amplitude for a transi- 
tion from this state to a state $(x,t ) that is a solution of (1.1) 
with initial condition (1. la): 

Let us expand $(x,t ) into a series in terms of the normalized 
wave functions $, (x) of (1.1): 

$ (x, t )  = x CE$i (x) BXP (-iEt) . (1.3) 
E 

The coefficients CE are determined by the initial condition 
(1.la): 

CE = dx 90 (2) $8: ( X I .  (1.3a) 

Substituting (1.3), (1.3a), and (1.2) and (1.2a), we obtain 

Before we can evaluate the transition arnplitudep(t ) in 
(1.2b), we must know the coefficients CE given by (1.3a), 
which are expressed in terms of the wave functions $,(x) and 
$, (x). The quasiclassical approximation3 will suffice for the 
evaluation of the wave functions. Simple calculations yield 
the expression for p(t ), and if we expand all the quantities 

where V(x) is the two-well potential shown in Fig. 1. The 
initial state at time t = 0 corresponds to the state in well I 
with wave function $,(x) and the energy E,: 

( l . la)  $(x, t) I t=o=$o(x), 
where $,(x) is the wave function for the isolated well I with 
energy E,. In the absence of well 11, the system would contin- a b c d x 
ue in this state in well I, and the corresponding wave func- FIG. 1. 
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around the point E = E,, we obtain 

( t )  = exp (i6Et) 1+A2 ( I  + (r6E)  3 - 
bE 

w O ( E O ) ] - '  0) (En) , (1.4) 

where 
1 

6E=E-E,, A ( E )  = - e-D(E) ,  
2 

and w,(E) and w(E) are the frequencies of classical motion 
with energy E in the first and second wells, respectively. The 
sum in (1.4) is evaluated over all the discrete states of the 
system that are defined by the following dispersion relation: 

S (E,)  +n6Enlo ( E , )  =nn-arctg [TGE,] , (1.5a) 

where 

is the classical action in well 11. 
The sum in (1.4) over the discrete levels SE,, , given by 

(1.5a), will be evaluated with the aid of the Poisson formula: 

+ m  

Jk = J dn exp (2nikn+i6Ent) 

We now transform in (1.6a) from the integration variable n to 
the variable SE. The derivative dn/dSE can be found from 
(1.5a), and the result is that (1.6a) assumes the form 

+ m  

Jk=A-2wo-'(EO) dx exp (2nink+ixt) [1+ ( T X ) ~ ] - ' .  (1.7) S 
- m 

We note that the factor in the numerator of (1.6a) cancels 
with the corresponding factor in the density of states. As a 
result, the main contribution to Jk given by (1.7) is due to the 
neighborhood of the point x = i / ~ .  Substituting for n from 
(1.5a) into (1.7), we obtain 

+ m 

J,=rc-' erp [BikS (E.) ] exp (ixl,) dx ( l + i x ) ~ /  ( l+z2)  k+l, 
-O0 

(t+kT) /T 
(1.8) 

where T = 2.n/w(E,) is the period of classical motion with 
energy E, is well 11. The quantities Jk vanish identically for 
k> 1 since the contour of integration in (1.8) in the complex 
plane of the variable x can be closed in the upper half-plane 
yk > 0, and there are no poles in the upper half-plane in this 
case. In precisely the same way, Jk = 0 for k < - t /T. For 
the other values of k, the integral in (1.8) is readily evaluated, 

and (1.6) can be written in the form 

p ( t )  = e-'~ -I- exp [-2imS (E,)  ] C 
i<mSm, 

The first term in (1.9) corresponds to the usual exponen- 
tial decay of a quasistationary state',' 

00 p ( t )  = e-70, yo=t - e-2D(Eo), O<t<T. (1.9a) 
4n 

We are thus able to derive the decay law for a quasistationary 
state of a finite system, and remove the methodological diffi- 
culties2 that are encountered for an infinite system (for ex- 
ample, the difficulties with the normalization of the wave 
functions). In a finite system, the primary wave that has de- 
cayed is found to return to well I for times t > T, and inter- 
acts with the state in this well. Interference between these 
two wave results in a decay law that is more complicated 
than the exponential law given by (1.9a). Thus, for 
T< t<2T ,  we have 

p ( t )  =e-To+2y-, exp [-2iS(E,)] e 4 ,  

y.=t/~, y-'= ( t - T ) / T  

which, in addition to the usual exponential term (1.9a), con- 
tains a further term that describes interference between the 
primary flux during the decay of the state in well I and the 
waves reflected from the right-hand edge of well I1 when 
they interact near the barrier between the wells. The second 
term also contains an exponential, but its argument involves 
the time measured from the instant of interaction between 
the two waves. The second term also contains a factor that is 
linear in time, i.e., it falls more slowly with t than the expo- 
nential given by (1.9a). It is clear from (1.9b) that p ( t )  is a 
continuous function, but the first derivative with respect to 
the time, pl(t), has a discontinuity at T. For large times 
(t > mT, where m is an integer), the interference terms con- 
tain an exponential whose argument is proportional to 
(t - m T ), i.e., the time is measured from the instant when the 
decayed wave traverses the right well m times and interferes 
with the primary flux (1.9). The factor in front of the expo- 
nential contains a polynomial of degree m in the time t. The 
functionp(t ) is continuous at the point mT, but all its deriva- 
tives from the first to the mth inclusive exhibit a discontin- 
uity at this point. The above interference terms are hardly 
small, and their scale is determined by the ratio of the period 
ofmotion Tin well I to the constant characterizing the decay 
time 7 .  Although w,Tis always much greater than unity, the 
ratio T/T [see (1.4)] can be either greater or smaller than 
unity because of the exponentially small penetration 
between the wells. The interference effects come into their 
own when the constant T is less than the period of motion in 
well 11, i.e., when T 5 T. 

In addition to the nonstandard dependence of the inter- 
ference term on time, the expression (1.9b) describes oscilla- 
tions in p(t ) as a function of the classical action S (E,) (the 
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factor exp[ - 2iS (E,)] in the interference term). Since S (E,) 
depends on the strength of the external field, the probability 
p(t  ) exhibits oscillations as a function of this field. As the 
external field is varied, the energy levels successively ap- 
proach the quasistationary field E,, and this periodic pas- 
sage of a "ridge of levels" across E, is responsible for the 
oscillations inp(t ). This effect is completely analogous to the 
oscillations accompanying quantization in a solid, when a 
variation of the field is accompanied by the passage of the 
successive discrete states across the Fermi level. Naturally, 
all that we have said above applies not only to (1.9b) but also 
to all times t > Tin  (1.9). 

2. ASYMPTOTIC DECAY OF A METASTABLE STATE 

The representation ofp(t )by the sum of harmonics (1.9), 
measured from the time of interaction between the decaying 
wave of the quasistationary state and the wave that has tra- 
versed the right well m times (see Fig. I), is convenient pro- 
vided m is not too large, since the terms in (1.9) grow rapidly 
for large m and tend to cancel each other. In the present 
section, we shall derive formulas that are convenient for 
large t: t /B 1. 

It follows from the results of Sec. 1 thatp(t ) can be writ- 
ten in the form 

P ( t )  = n-' exp [-2imS (E,)  ] 8,, m,=f/T, (2.1) 

y-, = ( t-rnT)l~>O, (2. la) 

where R  is an arbitrary number greater than zero. The repre- 
sentation given by (2. la) for T = 0 is obtained from (1.7) by 
substituting for n from (1.5a) and then replacing the variable 
so that 6E = tan p .  For R  > 0, the representation given by 
(2. la) is obtained by transforming to the complex plane of the 
variable p, and taking into account the fact that the inte- 
grand is periodic in p  with period r. We are interested in the 
asymptotic behavior of the integral in (2. la) for m, 1 and, 
generally, y - , , 1. We shall use the saddle-point method. 
The principal contribution to the integral in (2. la) is due to 
the neighborhood of the points p  at which the derivative of 
the argument of the integrand in (2. la) vanishes: 

c0s2 q=y-,/2m. (2.2) 

Since y - , > 0 and m > 0, we find that cos p  must be real. 
We can then distinguish two cases: 

In the former case, p  is real and equal to p , ,  where 
p ,  = a r c o s ( ~  - , /2m)lt2. In the latter case, p  is purely 
imaginary: 

The asymptotic behavior is essentially different for these two 
cases. For (2.2a), we use (2.la) with R  = 0. This yields 
@, = X ,  , where 

r (v3) = 2,6789 . . . , (2.4) 
and 

pm=l, 6,=0 for m t g  cpm<l, (2.4a) 

em=-x /4  for m tg cp,,Bl. (2.4b) 

Since m, 1, we have the narrow region m tg p ,  2 1 in which 
the law defined by (2.4) and (2.4a) is replaced with (2.4) and 
(2.4b). In the case defined by (2.2b), we can use (2. la) with 
R  = R ,  (2.3), and the result is @, = $, , where 

2t12r 
Qm = 3vem 8 p, exp ( - y - ,  th Rm+2mR,), (2.5) 

and 
p,=l for m th  Rm<l ,  (2.5a) 

pm= (3/m)"8(n/th Rm)"' /2r ('1,) for m t h  R,>>I. (2.5b) 

The asymptotic behavior defined by (2.5) and (2.5a) is re- 
placed by (2.5) and (2.5b) in the narrow region in which 
m th R ,  2 1. The result of this is that (2.1) can be written as 
the sum of two terms: 

p ( t )  = n-'9. erp (-2imS (E,)  ) 
O<m<m, 

+ n-'y, erp (-2imS (E.) ) .  (2.6) 

The critical value m, that separates the two ranges of valid- 
ity of the asymptotic quantities $, and X ,  is defined by 
(2.2a) and (2.2b), and is given by 

m,=t/ ( T + ~ T ) .  (2.6a) 

Since m, = t / T  (2. l) ,  we have 

m,/m,= (1+2z/T)-I. (2.6b) 

The sums in (2.6) can readily be evaluated by using the 
above expressions for pm (2.5) and X ,  (2.4). Let us consider 
the first sum. We note first that, since ch2 R ,  = y -  , /2m, 
the argument of the exponential in $, is always negative and 
equal to - 2m(sh R ,  ch R ,  - R ,  ) < 0. Correspondingly, 
the maximum contribution to the first sum is due to the re- 
gion near the point m = m, at which the argument vanishes. 
Expanding all quantities around this point, and recalling 
that the argument of the exponential $, tends to zero near 
this point as a(m, - m)3t2, where the small coefficient is 
given by a-m, we obtain the following expression for 
the first sum: 

- 
V2 exp[-2im,S (E, )  1 

pi ( t )  = - I? ( ' I3) (mcv% - l i a  . (2.7) 
x I-exp[-2iS (E, )  ] 

We note that the right-hand side of (2.7) becomes infinite for 
S (E,) = 2rn, where n is an arbitrary integer. To remove this 
divergence, we must allow for the fact that the coefficient a 
in the expansion for $, is finite. The second sum in (2.6) can 
be evaluated by analogy. In precisely the same way as in 
(2.7), but with a further factor of two, we now have the con- 
tribution due to the neighborhood of the point m = m, , but 
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there is also the contribution due to the neighborhood of the 
point m, that corresponds to the maximum harmonic in the 
sum. The final result can be written in the form 

3 1 5  exp[-2im,S (E,)  ] 
p ( t )  = - r ('/,) (m,13) - '" 

n 1-exp[-2iS(E,) ] 
+ ?ma ( t ) ,  

(2.8) 
pm, ( t )  = (2nmo tg cp,,) -'" exp [ -2im,S (E,)  ] 

,ia e-ia + 
X{  I--exp[SiS(E,) - i x ]  l-exp[ZiS(E,)  + i x ]  

(2.8a) 
a=2mcpm- y -, tg cp,, r.=2cp,,+ (T la)  t g  cp,,. 

The structure of (2.8a) is somewhat different from that of 
(2.7) because, when all the quantities are expanded around 
the point mi, the derivative within the cosine is not zero near 
the point m,, as was the case in the summation leading to 
(2.7). 

Thus, the asymptotic expression given by (2.8) has an 
oscillatory character for large t .  Two harmonics are empha- 
sized. The first contains exp ( - i(t /T )S  (E,)] ,and the second 

The oscillatory character of the asymptotic expressions for 
large t corresponds to the Fock-Krylov theorem4: in a sys- 
tem with discrete states, the decay of quasistationary state is 
oscillatory and not exponential. The presence of two empha- 
sized oscillatory harmonics is due to the fact that the system 
has two characteristic energy parameters, namely, the level 
separation T - ' in well I and the level broadening r- ' in the 
individual wells due to the interaction between them. The 
close connection between the characteristic level separation 
in a system and the way it reaches its asymptotic behavior 
has been investigated in detail in connection with problems 
on the stochastization of motion in dynamic quantum-me- 
chanical systems (see, for example, the review by Chirikov5). 

The picture of the decay process that we have estab- 
lished can be described as follows. For times t such that 
r < t < T, we have the usual exponential decay of the quasi- 
stationary state [see (l.9a)], and the period T has no effect on 
the decay. For t > T, a new harmonic of the exponential de- 
cay exp[ - (t - T)/r] (1.9b), due to the interaction between 
the primary flux and the flux that has traversed well I1 and 
has returned to well I. The higher harmonics of the exponen- 
tial decay that appear at times 2T, 3T, ... have traversed well 
11, respectively 2, 3, etc. times. For sufficiently large 
t = m,T, where m,) 1, it is essential to allow for the fact that 
the levels in well I1 are discrete and have separation - 1/T. 
This results in the oscillatory behavior described by (2.8), 
which "feels" the discrete nature of the levels in the well and 
completely "ignores" the decay time r of the quasistationary 
state. 

We note that, for m, <m,, which is equivalent to 2r)T 
[see (2.6b)], the transition probability is given by the simple 
formula 

6 $ / 3  

I P  ( t )  I 2  = 7 r2 ( I / $ )  ( 7 / t ) " \  1-exp (-2iS ( E , ) )  I -', (2.9) 

which describes the decay of the system to the discrete levels 

of well 11. In the opposite limiting case for which T )2r, we 
again have (2.9), but with a different coefficient: it differs by 
the factor + ( ~ / 2 r ) ~ ' ~ .  

We note in conclusion that the exponential law defined 
by (2.8) and (2.9) is similar to (1.9) in that it is an oscillatory 
function of the external field. This is a consequence of the 
presence of S (E,). 

3. POSSIBLE EXPERIMENTAL OBSERVATION OF 
INTERFERENCE EFFECTS DURING THE DECAY OF A 
QUASISTATIONARY STATE 

In this Section, we shall discuss possible experimental 
detection of the effects discussed in the last two Sections, and 
the attendent difficulties, in terms of simple examples. The 
effects can be observed when the system under consideration 
has a metastable state, i.e., they can be looked for in all 
branches of physics, ranging from nuclear physics to solid- 
state physics and biophysics. 

Let us first consider a model that is valid for both a- 
decay of the nucleus and for the motion of an atom, mole- 
cule, or electron in a metastable state, when these systems 
undergo a change in their atomic or ionic configuration, for 
example, in the course of a chemical reaction. To be specific, 
we shall consider a-decay. Suppose that an a-particle source 
is placed in a uniformly charged material with charged-par- 
ticle density p. If the charge on the medium is negative, the 
a-decay process will occur in an external field that ensures 
that the motion of the a particle during the decay of the 
quasistationary state is finite. The effective potential in 
which the a particle moves is spherically symmetric and can 
be written in the form 

1 l(1-I-1) 
U,, ( r )  = U ,  ( r )  + Fr2 + ---- 

2m r2 ' 

where U,(r) is the potential due to the nucleus that is the 
source of the a particles. The second term on the right-hand 
side of (3.1) is the interaction energy between the a particle 
(charge 2e) and the charged sphere of density p: 

The third term on the right-hand side is the usual centrifugal 
energy. The equation for the function ~ ( r )  = rR (r) ,  where 
R (r) is the radial part of the wave function, is the one-dimen- 
sional Schrodinger equation3 with the potential U,,(r). The 
action S for the a particle outside the nucleus can then be 
written in the form 

I+ 

S = j  dr[2M(E-Uef f  ( r ) ) ] ' " .  (3.2) 
7 -  

where r- and r+ correspond to the zeros of the integrand. 
Outside the range of nuclear forces, E - U,(r) = E,, is a posi- 
tive constant independent of r. The energy E, is of the order 
of a few MeV. If we neglect the nuclear radius r,, the integral 
in (3.2) can be evaluated exactly: 
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Since the decay constant r in (1.9a) increases exponentially 
with increasing L, we shall confine our attention to small 
values of L (actually, L = 0): 

S= ( n / 4 )  Eo (2MIF) I". (3.3a) 

The necessary condition for the motion of the a particle to be 
finite for a given radius R of the system is 

Eo<FR2. (3.4) 

For given R, this yields the following condition for the den- 
sity: 

When R = 10 cm, this corresponds top - 10'' ~ m - ~ ,  and the 
dependence on R is very strong. For example, when R = 100 
cm, we already havep- 10' ~ m - ~ .  The voltage that is then 
produced in the system is determined by Eo and amounts to 
lo6 V. The electric field produces the following pressure in 
the system: 

which can be expressed with the aid of (3.4) in the following 
form: P =  +pE0 or P(Mbar) = 0.5.10-18pEo (MeV/cm3). 
This means that, for particles of about 1 MeV, the pressure 
produced in the system is about 1 Mbar for the charged- 
particle densityp - 10" ~ m - ~ .  The minimum size of the sys- 
tem is then R -0.01 cm. 

The interference effect described in the first two Sec- 
tions of this paper can then be observed in the system under 
consideration. To ensure that they are more clearly defined, 
the period of motion in well I must be greater than the time 
constant r characterizing the decay of the system: 

T27. (3.6) 

Since the velocity of the a particle emitted by the nucleus is 
u -  lo9 cm/s, we find that, for, say, R 5 lo2 cm, we have 
r 5 lop7 s. For R 5 cm, which corresponds to a pres- 
sure of about 1 Mbar in the system (3.5), we have r 5 lo-" s. 
Condition (3.6) is not actually a necessary condition for the 
observation of the above effects: when (3.6) is satisfied the 
scale of the higher harmonics in (1.9) is greater than that for 
the zeroth harmonic; however, as we have seen, the ratio of T 
to 7 can be arbitrary without affecting the possibility that the 
asymptotic laws of Sec. 2 will be observed. 

A more serious aspect of the problem is as follows: the 
action S (in units of Planck's constant) is exceedingly high: 

S = ~ . I O ' T ~ I ~ / ~  [ ~ e ~ . c m ~ ' ~ ] .  (3.7) 

This means that, for Eo- 1 MeV and high densitiesp - 1018 
cmP3 that correspond to an electric-field pressure of about 1 
Mbar, we haves- lo9, i.e., all the effects described in Secs. 1 
and 2 are substantially weakened in this situation: they are 
all multiplied by the factor S - ' that is due to averaging over 
the two spatial coordinates, each of which introduces the 
factor S - ' I 2  near the extremum of S. In reality, this is the 
usual situation in measurements of different oscillatory ef- 
fects in the solid state as well: averaging over momentum 
space is unavoidable. This is the reason why, for example, in 
the de Haas-van Alphen effect, one measures not the oscilla- 

tory corrections to the thermodynamic potential, but the 
second derivative of the thermodynamic potential, i.e., the 
susceptibility which contains the factor S2 that is large as 
compared with the thermodynamic potential. In our case, 
we can also measure the derivative of the effect: we have to 
apply an additional weak electric field to the system, which 
gives the factor S when the first derivative of the effect is 
measured. When S- lo9 and the voltage is V- lo6 V, the 
additional field is of the scale of m V. It is clear from (3.7) 
that, other things being equal, the effect is conveniently mea- 
sured for high charged-particle densities p and low Eo (the 
energy of the a particle leaving the nucleus). 

Precisely the same effect occurs in the electric field in 
the planar geometry. In this case, one isolates purely geome- 
trically the action Sex,, along the field, which may have defi- 
nite advantages from the external point of view. 

An analogous effect occurs in the uniform magnetic 
field as well: the motion of the a particle is finite in the direc- 
tion perpendicular to the field. The field strength is then 
determined by the condition 

where the left-hand side is equal to the radius of the orbit in 
the magnetic field, and the right-hand side is the size of the 
installation. This condition gives a magnetic field H = 4 kOe 
when the linear dimensions of the apparatus are 1 m. As in 
the previous case, we must measure the derivatives of the 
effect. This can be done by applying both a constant magnet- 
ic field and, say, a low-frequency electromagnetic field of 
small amplitude. 

As we have seen, the complexity involved in the obser- 
vation of these effects is due to the high energy Eo of the a 
particles and their large mass. If we take the electron as the 
emitted particle (low mass), with an energy of about 1 eV, the 
magnitude of S is reduced by a factor of lo7 as compared 
with (3.7), so that Scan be reduced down to lo3-lo4, or even 
less, for reasonable external fields. Examples of this kind of 
system are provided by the autoionization states of negative 
ions,6 say, the molecular hydrogen ion H;, with an energy 
of about 3 eV. This also applies to solvated and hydrated 
electrons that appear in biological tissues and solutions un- 
der exposure to hard r ad i a t i~n .~  The above effects can also 
be observed during the motion of atoms, but only at low 
energies of about 1 eV, which occurs, for example, during 
absorption on a surface. A possible system is that of hydro- 
gen adsorbed on a metal surface. Hydrogen escaping from 
the surface forms molecules, and this is accompanied by the 
release of energy of the order of a few eV. The motion of the 
hydrogen molecules in the perpendicular direction can be 
restricted by a second metal surface. 

Another possible object that is very different from that 
considered above is the decay of an excited quasistationary 
state of an atom that emits a photon. The photon may be 
returned to the system by a mirror. Vibration of the mirror 
produced, for example, by ultrasonic waves, can be used in 
measurements of the derivatives of the effect. 

We are greatly indebted to L. A. Maksimov and V. A. 
Khodel' for useful discussions and valuable suggestions. 
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