
Strong-interaction approximation in the theory of nonlinear waves 
E. A. lbragimov and T. S. Usmanov 

Institute of Electronics, Academy of Sciences of the Uzbek SSR, Tashkent 
(Submitted 15 August 1983) 
Zh. Eksp. Teor. Fiz. 86, 1618-1631 (May 1984) 

The given-field approximation (GFA) and the recently developed given-intensity approximation 
(GIT) are widely used in the theory of nonlinear waves. A new approximation is developed in the 
present paper. This strong-interaction approximation (SIA) takes into account strong energy 
transfer between interacting modulated waves in anisotropic dispersive media. It is shown that 
the range of validity of SIA is considerably greater than that of GFA or GIA. In this paper, we use 
SIA to consider the stationary interaction between real wave beams in homogeneous and inhomo- 
geneous nonlinear media, and the nonstationary interaction between waves. The effect of cubic 
nonlinearity on frequency multiplication in the presence of a strong pump field is examined. An 
expression is obtained for the limiting efficiency of conversion of pump energy into the energy of 
generated wave under realistic conditions. Several effects that are absent from GFA and GIA are 
identified. They include the dependence of the angular dispersion parameter on the pump power 
density and the shortening of the harmonic pulse under nonstationary excitation by a phase- 
modulated pump pulse. 

INTRODUCTION mation, which means that the degree of approximation is 

l-he given-field  approximation^-^ (GFA) has been wide- measured by the difference between the real and the plane 

ly used for a considerable time in the theory of nonlinear waves. The method is valid for both weak and strong interac- 

wave interaction in dispersive media, ~h~ GFA approach it tions between real waves in real media that lead to complete 

to take the complex amplitude of the original wave as given, transfer of energy from the original wave to the resulting 
i.e., to ignore the reaction of the generated or amplified wave. Several problems in nonlinear optics are analyzed be- 

waves on the pump wave. This provides a correct description low On the basis SIA. 

but only for weakly-interacting waves. On the other hand, 
the nonlinear wave equation with allowance for reaction has 

1. FUNDAMENTALS OF THE METHOD 

been solved only for special cases that are not close enough to Let us consider the principle of solving nonlinear wave 

real beams in real nonlinear media.4-6 The given-intensity equations that describe harmonic generation in SIA. In its 

approximation'-9 (GIA) has recently been developed for most general form, the process of degenerate triple-frequen- 

nonlinear wave interactions. In contrast to GFA, this does CY interaction is described by the following set of equations: 

not impose any restrictions on the phase of the pump wave, 
and the pump-wave intensity is regarded as given. GIA pro- 
vides a satisfactory description of waves in nonlinear media, 
but only on the scale of one nonlinear interaction length.' In 
other words, this approximation is not valid for strongly in- 
teracting waves. Numerical methods have now been devel- 
oped for the solution of nonlinear wave equations, which are 
capable of describing the interaction of focused beams or 
waves in inhomogeneous nonlinear media. lo.'' However, it 
is very desirable to develop analytical methods capable of 
describing strong interactions between waves, and yielding 
manageable results. 

In this paper, we develop the strong-interaction approx- 
imation (SIA) for the analysis of nonlinear interactions 
between waves in dispersive media. SIA differs from GFA 
and GIA in that it imposes no restriction on either the phase 
or the amplitude of the interacting waves. The new approxi- 
mation is founded on the physical principle that strong ener- 
gy transfer between waves in weakly-dispersive media can 
occur only between almost plane, i.e., ideal, waves. The 
mathematical foundation of this approximation is the meth- 
od of successive approximations. The known4 plane-wave 
solution of the equations is used as the zero-order approxi- 

+afi (A,, A , )  =-iyAi'A,eiAkz, 
dz 

8 A2 - faf, (A,, A,) =-iyA,2e-ihkz', 
dz  

where A, and A, are complex amplitudes of the fundamental 
and the second harmonic, respectively, y is the nonlinear 
coupling coefficient, Ak = 2kl-k, is the phase mismatch, 
and a is a dimensionless constant. When a = 0, the above 
equations describe the interaction of unmodulated plane 
waves in a nonlinear medium, and their solution is knowa4 
It is clear that the simple plane-wave theory is inadequate for 
the correct description of nonlinear processes in real situa- 
tions. The spatial and temporal modulation of real laser radi- 
ation limits the wave interaction efficiency in real nonlinear 
media, and the functions fl(Al,A2) andf2(Al,A2) in (1.1) de- 
scribe the influence of factors restricting this efficiency. One 
or other of these factors becomes dominant, depending on 
particular experimental conditions. 

The solution of (1.1) will be found for the most general 
case, so that, for the moment, the form of the functions will 
not be specified. The method put forward below can be used 
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to obtain solutions of (1.1) that are close to the exact solu- 
tions and are valid for a broad range of functions describing 
both weak and strong energy transfer between the waves. We 
shall seek the solution in the form of an expansion in powers 
of p = a(l,,, /a):  

where I,, = y-'A , ' is the nonlinear interaction length and 
a is the width of the beam (or the pulse length, depending on 
the particular special case). The function q, does not depend 
on z and is found from the boundary conditions. The solu- 
tion of zero order in p is the known exact plane-wave solu- 
t i ~ n . ~  For second-harmonic generation, the boundary condi- 
tions at z = 0 are: 

A l ,  o=c (x, y, t )  eiQ(', V ,  ') 

A,, .=O (nZO) ; A,, ,=O, 

wherec and q, are, respectively, the amplitude and phase dis- 
tributions at entry to the nonlinear medium. Substitution of 
the solutions in the form of (1.2) into (I.  1) gives a set of linear 
differential equations for each quartet of terms of order n, 
and the solutions of this set are the functions 

where Di ,Qi involve terms of order n - 1 or lower: 

. n-t 

where Gq = e c i q q  f, (Aq) and the sums on the right-hand 
sides of the expressions for F vanish for n = 1. 

Under certain particular conditions, namely, when the 
phase difference between the first and second harmonics is 
constant, we can show, using the estimates given in Ref. 12, 
that the difference between first-order SIA and the exact 
solution does not exceed 5% for p < 1. 

For a rigorous demonstration of the validity of (1.4), we 
would have, generally speaking, to prove the uniform con- 
vergence of the series (1.2) but, as will be shown below, com- 
parison with numerical calculations indicates that very good 
agreement between exact and approximate solutions is 
achieved provided ,O is not too large. In the ensuing calcula- 
tions of conversion efficiency and other quantities, we shall 
confine our attention to terms of the second order in small 
quantities. This turns out to be quite sufficient for the solu- 
tion of all the problems that we shall consider. 

2. NONLINEAR WAVE INTERACTION IN THE ABSENCE OF 
EXACT PHASE MATCHING 

The efficacy of SIA is most simply illustrated in the case 
where nonlinear interaction is restricted by the fact that the 
phase matching conditions are not satisfied. We then have 
f, = 0,af2(A,,A,) = iAKA,, so that 

Exact solutions of (2.1) are well known4 and can be com- 
pared with the SIA solutions. The conversion coefficient ~ ( z )  
that represents energy transfer between the waves is given by 
the following expression in terms of the first- and second- 
order approximations: 

where As = Akl,, is the normalized mismatch. 
Substituting for uij , which are the solutions of (2. I), into 

(2.2) and using the SIA method, we obtain the following 
expression from (1.4) and (1.5): 

As2 shz sh(4z) 
q (2) =th2 Z- - - 

32 o h ' z [ ~ - ~ ]  

Thez coordinate is also normalized to I,,. As expected, (2.3) 
does not contain terms proportional to As. This is a direct 
reflection of the fact that ~ ( z )  should not depend on the sign 
of the phase mismatch. It follows that the next-order non- 
zero terms in the expansion given by (2.3) must be propor- 
tional to As,4 which enhances the precision of SIA. Compari- 
son of (2.3) with the exact solution shows that, for As < 1, the 
two results agree to a high degree of precision up to the val- 
ues of z for which the conversion process begins to occur in 
the reverse direction. This is not unexpected since the expan- 
sion up to the second order i n p  can describe the conversion 
process only up to the first maximum. However, SIA can be 
substantially improved by exploiting the fact that, after the 
first maximum has been reached, the quantity 7 can be ob- 
tained by symmetric reflection at the point at which the max- 
imum was reached. It is, in fact, readily verified that this 
problem is symmetric relative to the point l,,, at which the 
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phase changes sign. From Ref. 4, we have 

where v,  is the amplitude of the second wave at the point of 
maximum: 

Solutions obtained with the aid of (2.3) using reflection at 
l,,, are shown in Fig. 1. It is clear that SIA gives sufficient 
precision even when As is large and the maximum conver- 
sion coefficient is much less than 50%. 

3. HARMONIC GENERATION IN ANISOTROPIC MEDIA 

The general form of equations for the triple-frequency 
interaction of waves in an anisotropic medium with quadrat- 
ic nonlinearity is 

where the x axis lies in the principal optical plane of the 
crystal, at right angles to the direction of propagation of the 
beam, pi are the birefringence angles for the ith wave, and 
Ak = k, + k, - k, is the wavenumber mismatch. 

It is well known that anisotropy of the medium restricts 
conversion efficiency and leads to a slower growth of the 
second harmonic as compared with the plane-wave case5,13 
because of the so-called aperture effects. The influence of 
these effects is usually estimated by means of the following 
characteristic spatial scales: the aperture length I, = a/p 
and the coherence length of the divergent beam,' or the dis- 
persion length, I, = 2n-/PK6, where 6 is the beam diver- 
gence angle at fundamental frequency and a is its aperture. 
We use a new dimensionless parameter instead of I,. This 
parameter depends on the power density and is uniquely re- 
lated to the conversion coefficient. 

Before we solve (3. I), we must carry out a few deriva- 
tions. The functions Ai will be taken in the form 

AS=u3 exp (icp, (x-fi3z) ficpz (x-B3~) 1. 

where pi (x) is the phase of the ith harmonic at entry to the 
crystal. Thus, u, (O,x), u2(x,0), u,(x,O) are real functions of x 
at z = 0. It is shown in Ref. 13 that the quantities / Pi (du, / 
ax)/  -Pi /a, which appear on the left-hand side of (3.1) after 
the substitution of (3.2), can be neglected even for relatively 
low values of the aperture a. These quantities will be neglect- 
ed from now on because, from the practical point of view, we 
are mostly interested in large-aperture beams ( Z 1 cm). This 
leads to a set of equations with x-dependent phase mismatch 
Ak (x) = (2P3 - 0, - P,)dp/dx. For the boundary condi- 
tions u,(O) = u,(O) = 2-'/2~(x,y,t ) and u,(O) = 0, the conver- 
sion coefficient is given by the following expression [analo- 
gous to (2.3)] 

where pi = 14, /a)l,, are the normalized birefringence an- 
gles. It follows from (3.3) that the influence of the dispersion 
effect on q will vanish altogether when 

There is a well-known special case of this relation, which 
arises when the dispersion-theory equations are solved in the 
first approximation; this is the so-called quasistatic case, for 
which P, = P, = P, (the group velocities of the interacting 
waves must satisfy this relation in this case). The most im- 
portant special case of (3.4) in the theory of harmonic genera- 
tion in anisotropic media is as follows: 

which shows that, when the angle of birefringence at the 
fundamental frequency is equal to twice the angle of birefrin- 
gence for the second harmonic, there will be no phase mis- 
match between the harmonics in interactions of the second 
type. Conversion will therefore proceed just as effectively as 
in the case of plane waves. 

It is clear from (3.3) that the conversion efficiency is 
wholly determined by the quantity Q 2(x) = (2b, - 0, - PI), 
(dP/dx)'/32. Let us take the value of Q at x = 2 so that, for 
the quadratic phase distribution of the fundamental at entry 
to the nonlinear medium, 

k 
Ai,,(O, x) =Ao exp {-({I -izx2} 

FIG. 1. Comparison of results obtained from (2.3) with the exact solution; 
As = 0.2, 1.0, 3.0, and 5.0 for curves 1, 2, 3, and 4, respectively. Broken 
curves show regions where the SIA differs from the exact solution. 

we have 

l=Q (2) ='I,[ Ps-i/2 ( P z f P i )  ]kelnl,  (3.7) 

where R is the phase radius of curvature of the fundamental 
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FIG. 2. Conversion coefficient 71 as a function of I = z/l,, for beams mod- 
ulated in space and time; I = 0.113 for curves 1-3 and I = 0.5 13 for curves 
4-6. 

at entry into the crystal, 0 is the measured angle of diver- 
gence (0 = 2 a / f i ~  ), and k is the wave number of the first 
harmonic. 

As before, the SIA results were checked against numeri- 
cal solutions of (3.1). It was found that, for example, for 
I = 0.197 and 0.838, the z dependence of 77 obtained by SIA 
differed from the numerical result by not more than 1 % for 
values of p for which conversion reached a maximum, and 
again fell down to almost zero (for example, for I = 0.838, 
the conversion coefficient rose from zero to 0.57 and then fell 
to 0.15). 

In contrast to the numerical solution of (3.1) for the 
two-dimensional system, the SIA method can be used to ob- 
tain the conversion coefficient for real beams with an arbi- 
trary distribution of amplitude in all three coordinates. Fig- 
ure 2 shows the conversion coefficient 7 for I = 0.113 and 
0.5 13 for beams with the following amplitude and phase pro- 
file: 

A, , ,  ( r ,  0) = A ,  erp { - rN1- tNs  -i (3.8) 

where r is the position coordinate in the plane perpendicular 
to the direction of propagation, and N1,N2 characterize the 
respective spatial and temporal components. All the curves 
in Fig. 2 correspond to N, = 2. Curves 1 and 4 represent 
Gaussian beams (N, = 2) and curves 2, 5 and 3, 6 the so- 
called hypergaussian beam of degree 4 and 6, respectively 
(N, = 4 and 6). It is clear that the curves descend after the 
maximum (conversion occurs in the reverse direction), and 
thereafter oscillate, gradually approaching a definite level 
that is roughly the same for all I. The oscillations become 
more pronounced as N increases. As can be seen, for higher 
values of N,, the conversion maximum appears earlier and is 
higher. For example, for N, = 6, it is higher by about 6% 
than for N ,  = 2. However, this difference declines as N, in- 
creases. 

3.1 Rapid estimates of conversion efficiency 

As already noted, the single parameter I, given by (3.7), 
suffices to enable us to describe the conversion efficiency. In 
the theory of second-harmonic generation, the question of 
maximum conversion efficiency (vmaX ) under given experi- 
mental conditions is of considerable practical importance. 
For beams modulated in both space and time, the relation 

between vmaX and I can be found by using (2.4) if we replace 
v, with q,,, and A d 4  with I: 

Despite the fact that (2.5) is valid only for plane beams, it is in 
close agreement with the exact solution for hypergaussian 
beams with N = 6 and N, = 2. Let us illustrate the practical 
calculation by the example of the KDP crystal. Two types of 
wave interaction are possible in this crystal, namely, O O E  
and OEE. For the first case, Dl = P2 = 0; 0, = 2.8 1-loV2 rad 
and, for the second, P, = 0, P2 = 2.O39.lOV2 rad, 
P3 = 2.509- rad. For the same incident power density in 
the two cases, we have I,,(ooE ) /I,,(oEE ) = 1.3. Thus, for the 
same initial conditions, we have the following ratio of the 
values of I for the two types of interaction: 

Thus, for given power level and given divergence of 
plane-polarized beams, it is more convenient to perform sec- 
ond-harmonic generation with interaction of the second 
type provided, of course, the length of the nonlinear medium 
has been chosen to have the optimum value. 

3.2. Limiting conversion efficiency for real laser beams 

The limiting conversion efficiency that can be achieved 
in real laser systems is of considerable practical importance, 
e.g., for the problem of controlled thermonuclear f ~ s i o n . ' ~ , ~ ~  
It was shown in Ref. 13 that the angular dispersion effect was 
the principal factor restricting the conversion efficiency of 
modern optical frequency-doubling systems. Almost com- 
plete (90%) transfer of energy from the fundamental to the 
harmonic was observed in the experiment with a KDP crys- 
tal in Ref. 16. The length of the crystal was 30 mm (angle of 
birefringence P = 0.028 1 rad, nonlinearity d,, 
= 1 . 0 4 ~  loV9 esu). The conversion maximum was reached 

for the power density of 2.7 GW/cm2 and beam aperture of 
32 mm. The divergence was about 6 x  rad. Calcula- 
tions based on (3.3), (3.7), and (3.9) give good agreement 
between theory and experiment. Comparison between calcu- 
lated and measured conversion coefficients shows that the 
closest fit to the experimental data is achieved for the same 
parameter values and divergence of 5.8 X loV5 rad. Calcula- 
tions show that, for given power density, the limiting (98%) 
conversion efficiency is achieved only if the divergence is of 
the order of loV5 rad (if the divergence at exit is set by dif- 
fraction), which corresponds to a beam aperture of more 
than 7 cm. When the limiting conversion efficiency is calcu- 
lated, it is important to take into account the restricting ef- 
fect of the depolarization of the fundamental wave. When a 
real beam is incident on a nonlinear crystal, the polarization 
at each point in its interior will depart from the optimum 
direction by an angle $. The maximum conversion coeffi- 
cient in the case of the OOE interaction will then be 

The OEE conversion coefficient is much more sensitive to a 
departure from the optimum direction of polarization: 
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~ ) o E E = ~  min (A:, Ae2)  =2 sin(n/4-$) =1-29. (3.12) 

The resultant conversion coefficient is obtained by taking an 
average of the individual 7 over the cross section of the 
beam: 

Let us define the depolarization coefficient as the ratio of the 
energy transmitted by the polarizer, whose axis is perpendic- 
ular to the optimum direction, to the total energy of the 
beam. We then have: 

It is clear that, for interactions of the second type, the restric- 
tion on the conversion efficiency is stronger than for the first 
type. 

4. NONSTATIONARY INTERACTION OF WAVES 

If we use the space-time a n a l ~ g y , ~  we can look upon 
(3.1) as a set of equations for the triple-frequency interaction 
of waves in a nonlinear medium with allowance for group 
delay: 

where t is the time and ui are the group velocities of the 
interacting waves. 

As before, we can show that, for the boundary condi- 
tions 

this system reduces to a system with time-dependent phase 
mismatch: 

Let us take the Gaussian pulse with the linear frequency 
variation 

A, (0, t )  =Ao exp 1- ( + ) 2 ( 4  -?)I 
as a model of a picosecond pulse. The half-width of this pulse 
is 

Ao= ( 4 + Q o 2 ~ 2 ) " ' / ~ .  (4.5) 

By analogy with the foregoing, we then have 

For the degenerate interaction (w, = o, = w3/2), the veloc- 
ity u, in (4.6) must be replaced with the group velocity of the 

second harmonic, and we must assume that u, and u, are 
both equal to the group velocity of the fundamental. 

Since one usually measures the frequency width, it is 
convenient to express I in terms of Aw. From (4.5), we have 

The parameter I then plays the same r6le as in the effects 
examined earlier. It has been shownI8 that even a relatively 
slight frequency deviation will seriously restrict the conver- 
sion coefficient for picosecond pulses. Estimates based on 
calculations of the coherence length I ,  = (l/u,  - l/u,)-' 
do not then yield satisfactory results. 

It was noted in Refs. 6 and 19 that allowance for group 
delay in the nonlinear equations leads to a substantial in- 
crease in the length of the second-harmonic pulse. However, 
the solution reported in these papers was obtained in the 
absence of phase mismatch, and the broadening of the pulse 
was entirely due to the delay between the pulse centers of the 
two harmonics. On the other hand, it will be shown below 
that phase modulation can introduce sufficient corrections 
into this process. The SIA approach leads to the following 
expression for the shape of the second-harmonic pulse: 

The evolution of the Gaussian second-harmonic pulse dur- 
ing its propagation in the nonlinear medium was calculated 
from (4.8) forz = 1, 1.5,2, and 2.5, and the result is shown in 
Fig. 3. It was assumed that 1 = 1.1 and that the behavior of 7 
was symmetric with respect to the position of the maximum, 
as noted in Section 2. The dashed curves show, for compari- 
son, the shape of the second-harmonic pulse for I = 0. Curve 
5 of Fig. 3 corresponds to the hypergaussian pulse (N, = 6) 
for z = 2.5. It is clear from Fig. 3 that the second-harmonic 
pulse is much narrower (by a factor of 3 4 )  for z > 2 as com- 
pared with the case where phase mismatch was ignored. It is 
interesting to note that the pulse shape for large z is practi- 
cally independent of N,, i.e., it is not sensitive to the shape of 
the incident radiation. 

FIG. 3. Evolution of a pulse during its propagation in a nonlinear medi- 
um. Curves 1-4 correspond to the Gaussian pulse (N,  = 2 )  and curve 5 to 
the hypergaussian pulse (N,  = 6). 
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It is important to note that the curves in Fig. 3 were 
plotted without allowing for the spreading of the pulse due to 
group delay. In general, there will be two competing pro- 
cesses, one of which stretches and the other compresses the 
harmonic pulse. Thus, for large values of the dimensionless 
parameter I and coherence length I,, the pulse compression 
will predominate, whereas, in the opposite case, pulse 
stretching will do so. 

5. EFFECT OF CUBIC NONLINEARITY ON THE INTERACTION 
PROCESS IN QUADRATIC MEDIA 

The power density being used in the nonlinear processes 
has shown an upward trend. This means that higher-order 
nonlinearities (above all, the cubic nonlinearity) may become 
superimposed on the quadratic interaction. The truncated 
equations describing interactions in a quadratic medium 
with nonzero cubic susceptibility then assume the form 

where Bi are the third-order nonlinearity coefficients. Sim- 
ple substitution will reduce (5.1) to the following form: 

where A,  is the amplitude of the fundamental at entry to the 
nonlinear medium, 

and z is normalized to l,, . 
Solving (5.2) in the strong-interaction approximation, 

in accordance with (1.4) and (1.5), we obtain 

shz sh4z 
q (2) = thZ z-cp, - - - 

ch3 z [ 4 '1 

where 

The optimization of the process is, of course, an interesting 
question. If we allow z in (5.4) to tend to infinity, the condi- 
tion 7-1 will yield 

where As,,, is the optimum phase mismatch that completely 
compensates the cubic nonlinearity. The expression given by 
(5.5) was checked by a numerical calculation and was fully 
confirmed. 

It is important to note that, if As,,, is determined from 
(5.5), 100% conversion is possible only for smallb, i.e., in the 
region in which SIA is still valid. Numerical calculations 
show that (5.5) will no longer ensure complete conversion 
when p, =/?,/z < 1. It must also be remembered that the 
foregoing applies only to planar beams with uniform ampli- 
tude distribution. When the inhomogeneity in the amplitude 
distribution of the radiation incident on the nonlinear medi- 
um is taken into account, the compensation of the effect of 
the cubic nonlinearity by phase mismatching will not be 
complete. The value of As,,, for modulated beams will be 
somewhat different from that for planar beams. When the 
beam shape is given by (3.8), the biggest difference will occur 
for Gaussian beams: N, = N, = 2. As N,,N2 increase, the 
optimum phase mismatch for spatially, inhomogeneous 
beams will approach the optimum value for planar beams. 
There will also be a corresponding increase in the gain in 
efficiency for large N,,N2 as compared with small values of 
these quantities. Each point in Fig. 4 corresponds to the 
maximum conversion coefficient 77,,, that can be reached 
for given As,, ,B1,b2. Curves 1, 2, and 3 are plotted for 
P, =O.l, P2 =0.4, and curves 4, 5, and 6 for 0, =0,  
p2 = 0.4. The horizontal axis shows points at which the max- 
imum in As, is reached in the case of plane waves. As can be 
seen, the optimum As, for modulated beams is not very dif- 
ferent from that for unmodulated beams, but the height of 
the maximum is considerably lower. 

6. INTERACTION OF WAVES IN LINEARLY 
INHOMOGENEOUS MEDIA 

The course of nonlinear processes depends in many re- 
spects on the quality of the crystals used, since crystals fre- 
quently exhibit considerable growth inhomogeneity in their 
birefringence in the longitudinal direction. Let us consider 
stationary triple-frequency interaction in a weakly inhomo- 
geneous medium in which the refractive index is a linear 
function of z (this approximation is close to the practical 
situationz0): 

FIG. 4. Maximum conversion coefficient as a function ofAs,: 1 , k G a u s -  
sian beams; 2 ,  5-hypergaussian beams ( N ,  = 4, N, = 2);  3, b h y p e r -  
gaussian beams ( N ,  = 6,  N, = 2);  As, , As, --optimum values o f  As, 
for unmodulated waves. 

0.6 
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Here Ak,  and A k ,  denote the constant and variable phase 
mismatch, respectively. SIA then gives the following expres- 
sion for the conversion coefficient: 

sh z shS z 
F, (z) = z2 - + 22 th2 2-2 th3 z - - 

chS z chz ' 

where Aka = A kol,, and A k ,  = A k ,  1 i,. It is clear that, as the 
power density increases, the contributions of the second and 
third terms in (6.2) will decrease as compared with the first. 
Consequently, the effect of the inhomogeneity of the medi- 
um on the course of processes occurring in it can be eliminat- 
ed by increasing the incident power density. As before, let us 
consider the function (6.2) for largez. Setting to zero the sum 
of all terms proportional to Aki , we obtain 

and this relation between the constant and variable phase- 
mismatch coefficients will ensure that the conversion effi- 
ciency will tend to 100%. The validity of these conclusions 
has been confirmed by numerical calculations for a broad 
range of values of d l o  and d k , .  

Expression (6.3) becomes exact when the spatial in- 
homogeneity in the amplitude of a real beam is taken into 
account. Actually, (6.3) will not immediately apply to all the 
rays at once because the normalized coefficients Aka and A k ,  
depend on I,,, . However, despite the considerable restriction 
imposed on conversion, the optimum phase mismatch will 
not be very different from the value given by (6.3). Thus, 
instead ofAi0 = - 0.8, given by (6.3) for A k ,  = 0.4, we ob- 
tain d k ,  = - 0.9. As for the effect of the beam shape on 
conversion, we have the same result as before: because of the 
considerable inhomogeneity of hypergaussian as compared 
with Gaussian beams, the conversion efficiency will be high 
in this case as well. 

CONCLUSION 

We have developed a theory of nonlinear waves in the 
strong-interaction approximation. Application of this ap- 
proximation to nonlinear processes involving intensive ener- 
gy transfer between real waves in real media is physically 
more valid than the use of the other approximations em- 
ployed so far, especially since almost complete transfer of 
pump energy to the harmonic has now been produced ex- 
perimentally. l 6  

The potentialities of the method that we have developed 
were demonstrated above by considering the example of sec- 

ond-harmonic generation by real wave beams, and by pulses 
in homogeneous and inhomogeneous media. Numerical so- 
lution of the nonlinear equations on a computer has shown 
that SIA results in high precision not only in the case of a 
strong interaction, but also when it is highly restricted. 
Analysis of the frequency-multiplication process in the case 
of wave beams in a dispersive medium has enabled us to 
derive an expression for the dimensionless parameter char- 
acterizing the influene of the dispersion effect. Estimates us- 
ing the parameter I show that conversion can be highly re- 
stricted even in those regions where quantities previously 
used in estimates do not lead to any restriction on conver- 
sion. A simple formula involving I has been obtained and can 
be used to predict to within a few percent the maximum 
conversion coefficient that can be achieved experimentally 
for a beam modulated in the three coordinates. The most 
important result of SIA is the simple expression for the con- 
version efficiency that is convenient in calculations and can 
be used in rapid estimates of which particular interaction 
type predominates in a given case. Our estimate of the effect 
of the depolarization factor on wave conversion efficiency in 
KDP has shown that the restriction imposed on the process 
is greater for the OEE than the OOE interaction. 

For higher power densities, the nonlinear interaction in 
a quadratic medium may be restricted by cubic nonlinearity. 
Analysis of this process has shown that this restriction can 
be compensated by suitably choosing the optimum phase 
mismatch. 

In the case of nonstationary frequency multiplication 
and mixing, conversion efficiency can saturate for near-zero 
group velocity difference and slight phase modulation of the 
ultrashort pulse. We note that the harmonic pulse can then 
be much shorter than the pump pulse. 

The potentialities of SIA are not exhausted by the appli- 
cation examined above. The approximation is, in principle, 
suitable for a broad range of problems in the theory of non- 
linear waves when parameters analogous to f l  are small. 
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