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Integral equations are derived for the resonance and virtual (antibound) states consisting of two or 
three bodies. The derivation is based on the analytic continuation of the integral equations of 
scattering theory to nonphysical energy sheets. The resulting equations can be used to exhibit the 
analytic properties of amplitudes that are necessary for practical calculations using the equations 
for the quasistationary levels and Gamov wave functions derived in this paper. The Fourier 
transformation and the normalization rule for the wave function are generalized to the case of 
nonstationary states. The energy of the antibound state of the tritium nucleus is calculated for a 
"realistic" local potential. 

1. INTRODUCTION 

Recent years have seen renewed interest in physical 
problems that can be solved by the methods of quantum me- 
chanics. Studies of resonance and virtual states in strongly 
interacting systems occupy an important position among 
these problems. From the formal mathematical point of 
view, descriptions of unstable (Gamow) and bound states are 
almost equivalent, since they correspond to the same condi- 
tion for the emission of an outgoing spherical wave in the 
radical part of the wave function, i.e., the poles of the S ma- 
trix are the zones of the Jost function. However, the fact that, 
for unstable states, the poles of the S matrix lie on the non- 
physical sheet of the Riemann energy surface'.2 (1m@ < 0) 
leads to well-known differences. Hence, even in those cases 
where, for given interaction, the bound-state problem can be 
solved reasonably rigorously (for example, for systems con- 
sisting of two or three bodies), it is found that difficulties 
arise when resonance or virtual states are considered. For 
example, a serious obstacle to using the Schrodinger equa- 
tion to find the poles of the S matrix is that the asymptotic 
form of the Gamow wave function increases exponentially. 
On the other hand, the integral equations for the t matrix, 
which are widely used for bound states, are formulated on 
the physical sheet of the energy E, and cannot therefore be 
used directly for unstable states. Having found the t matrix 
on the physical sheet, it is, in principle, possible to continue it 
analytically to the nonphysical sheet. If the scattering ampli- 
tude is known in an analytic form, this does not, of course, 
present any problems. However, in most physically interest- 
ing cases, only a numerical solution can be obtained, and its 
analytic continuation is not a simple matter. This is the rea- 
son why, until quite recently, rigorous results for even the 
two-body potential problem were known only for the square- 
well2 and separable potentials of finite rank (see, for exam- 
ple, Ref. 3) for which the scattering amplitude has an analyt- 
ic form. 

We therefore have to face the problem of analytic con- 
tinuation of the integral equations for the t matrix to non- 
physical energy sheets in order to transform the resonance 
problem to a form analogous to the bound-state problem. 
This is, in fact, the aim of the present paper, in which we 
derive integral equations for the resonance and virtual states 

of two- and three-body systems. The resulting equations are 
analogs of the corresponding Schrodinger equations for the 
bound states in momentum representation, and can be used 
directly to find the poles of the S matrix on nonphysical 
sheets, and the corresponding Gamow wave functions. We 
note that the evaluation of the scattering amplitude in the 
physical energy region, i.e., the solution of the problem for 
the continuous spectrum, is known to be unrelated to the 
problems considered here. However, the fact that the cross 
section is a maximum necessarily signifies the presence of 
the corresponding pole in the S matrix, but the determina- 
tion of this pole is a separate problem. 

The approach developed here was formulated pervious- 
ly by one of the present authors in a brief comm~nication,~ in 
which he examined the analytic continuation of the Lipp- 
mann-Schwinger equation for the two-body potential prob- 
lem. The general character of this approach distinguishes it 
from other methods that have a limited range of application 
or are computationally laborious and frequently do not 
guarantee that correct results will be obtained. Let us enu- 
merate briefly the other methods used in the literature with- 
out any pretence to completeness. These methods include 
the effective range appro xi ma ti or^^.^ for near-threshold 
poles, the evaluation of the Regge trajectory,' and analytic 
continuation in the coupling constants that so far has been 
developed only for single-channel problems. A method of 
summing the divergent perturbation-theory series by the 
Pade-Bore1 method has recently been de~eloped .~  Complex 
poles have also been investigated by the N/D method in 
which the discontinuity in the scattering amplitude on the 
left cut is specified instead of the potential. lo*'' The availabil- 
ity of numerous methods for studying the resonances indi- 
cates not only the degree of interest in this particular field, 
but also the unsatisfactory situation in this branch of phys- 
ics. An example of this is the recent paper by Kloet et a1.,I2 
who resorted to an analysis of the numerical convergence of 
Neumann iteration series for the t matrix in order to eluci- 
date the existence of a resonance pole (it is known that the 
series diverges near this pole), and arrived at an incorrect 
conclusion (see Ref. 13). 

Attempts to obtain the analytic continuation of the in- 
tegral equations for the t matrix, in particular, for the three- 
body problem, had been undertaken previously in Refs. 13- 
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15. A particular deformation of the contour of integration 
was used there to isolate singularities in the kernel of the 
integral equation. This exposes part of the nonphysical sheet 
on which the required poles of the S matrix may be located. 
This method is technically quite complicated and, most im- 
portantly, requires an apriori knowledge of the singularities 
of the t matrix. In the present paper, we consider a deforma- 
tion of the contour of integration that arises when a point on 
the plane of the complex variable E passes from the physical 
to the nonphysical sheet, and is actually dictated by the con- 
ditions of the problem in its most general case. This not only 
enables us to write down the integral equation for the unsta- 
ble state in a simple form, but also establishes the analytic 
properties of its solution, both in momentum and energy. 
The latter is fundamentally important for the practical im- 
plementation of the method of analytical continuation itself. 
Finally, we have been able to accomplish the complete ana- 
lytic continuation in energy of the Faddeev equation for the 
three-body problem. l6 This problem has not been examined 
in detail in the literature. 

The results obtained below remove the currently exist- 
ing gap between descriptions of bound and unstable states, 
and enable us to consider poles of the S matrix on a unified 
basis, independently of their position, and to exploit the 
methods of solution developed for bound states. Our ap- 
proach is universal in the sense that it is valid for any integral 
equation with a Cauchy kernel (i.e., a free Green function). 

Our plan is as follows. Section 2 examines the two-body 
potential problem. Section 3 generalizes the Fourier trans- 
formation and the normalization of the wave function to the 
case of unstable states. Section 4 is devoted to the multichan- 
nel problem. Sections 5 and 6 discuss the method of calculat- 
ing quasistationary and virtual states for the three-body sys- 
tem. Finally, Section 7 applies this method to the evaluation 
of the antibound state of the tritium nucleus. 

2. INTEGRAL EQUATION FOR THE RESONANCE STATE OF A 
TWO-BODY SYSTEM WITH A SHORT-RANGE POTENTIAL 

The Lippmann-Schwinger equation for the partial t ma- 
trix ouside the energy surface can be written in the following 
form (z is the complex energy on the physical sheet I+ ,  i.e., 
for 1m& > 0): 

where 

j, (x) is the spherical Bessel function, p is the reduced mass, 
and I is the orbital angular momentum (the index I will be 
omitted for the sake of brevity). To obtain the Lippmann- 
Schwinger equation on the nonphysical sheet I- (1m& < O), 
we must perform the analytic continuation of the Cauchy- 
type integral on the right of (1). The analytic continuation of 
the Cauchy-type integral 

FIG. 1. Constrained deformation of the contour of integration for a 
Cauchy-type integral on the right of the Lippmann-Schwinger equation 
during the transition to the nonphysical sheet of energy z: a-z on physical 
sheet (Im & > 0), b-z = E-real positive number, c-z on physical sheet 

(Im & < 0). 

from I+ to I- is the function (see, for example, Ref. 17) 

0- ( 2 )  =@ ( 2 )  --q ( z ) ,  (4) 

which is definable in the region in which @ (z) and p(z) are 
analytic. From (4), we obtain 

t-(9, q'; 2) = V ( q ,  9 ' )  

where p  = ( 2 , ~ ~ z ) " ~  is the arithmetic value of the root (i.e., 
= + i). The derivation of (5) is a relatively clear illus- 

tration of the constrained deformation of the contour of inte- 
gration in ( I ) ,  in which the point p = (2,uz)"* is displaced 
from the upper half-plane of the complex variable k to the 
lower half-plane (Fig. 1). It is clear from Fig. 1 that the addi- 
tional term in (5) is due to the residue of the integrand at 
k = p. Let us now transform (5) so that the equation does not 
include the unknown function t-(p,ql;z) for complex mo- 
mentump. This will be done by obtaining t-(p,ql;z) from (5) 
at q = p  and substituting the result in (5). The final result is 
the following equation, which has the same form as (1): 

but with the new "potential" 

i.e., with the replacement 

V(Q, q')*P(cr, q'1 P). 

The connection between the t and t- branches is made, as 
required, at the threshold branch point z = 0 at which Vand 
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V become identical. The addition to the potential is separa- 
ble (i.e., nonlocal) and depends on the energy z. The latter is 
responsible for the more complicated analytic structure of 
t-(q,qly) in z outside the energy surface. It is not difficult to 
see from (7), by taking into account the known properties of 
V,(qgl) [see (2)], thatihe actual potential satisfies the equa- 
tion V *(q,ql - p*) = V(q,qf,p). The well-knownsymmetry in 
the disposition of the S-matrix poles relative to the imagi- 
nary axis of the complex variablep follows from this for the 
Hermitian Hamiltonian. We note that we did not use the 
unitarity condition in the derivation of (6), so that this result 
can be used for the complex potential as well. It is shown in 
Ref. 4 that the zeros of the denominator in (7) are not the 
poles of the t matrix. This is also clear from the relationship 
between t and t -  that can be obtained from the Low equation 
and unitarity condition (see, for example, Ref. 18). In our 
normalization, we have irealp>O) 

t - ( ~ ,  9'; p2/2p) =t(p, qf; p2/2p) [I-i8n2ppt(p, P; p2/2p)l-'. 
(9) 

The analytic continuation of this relation to the entire com- 
plex energy plane will also enable us to find the poles of the S 
matrix as the zeros of the denominator of (9). However, this 
requires the initial evaluation o f t  @,p;p2/2p) for the entire 
range ofp, for which the pole is required, whereas once we 
have Eq. (6), it is sufficient to determine the zeros of its Fred- 
holm determinant without solving the equation itself. Since 
t @,p;pz/2,u)# V @,p), the zeros of the denominator in (7) do 
not coincide with the required poles of the S matrix. How- 
ever, in the neighborhood of one of these zeros, it is better to 
consider the original equation (5) [augmented with (5) at the 
point q = p] instead of (6). The poles can also be sought by 
using the condition A (z) = 1, where A (z) is an eigenvalue of 
the kernel of the Lippman-Schwinger equation at energy z. 
The eigenvalues il (z) are obtained on I -  from the homogen- 
eous equation [according to (6) and (7)] 

This form of the equations is convenient because it reveals 
the presence of potential singularities in the solution of the 
homogeneous equation (10). The dependence of X (q,q';p2/ 
2p) on q appears explicitly in (12) through V(q,p). Thus, the 
analytic continuation of the integral equation enables us not 
only to determine the energy poles ofthesmatrix, but also to 
establish the singularities of X (q,qly) in energy z = p2/2p 
and momentum q[ql is an external variable in (I),  (6), and (10) 
and can assume any value]. The vertex function g(q) for the 
decay of the corresponding unstable state has the same sin- 
gularities in g, and the equation for this function is obtained 
from (9) by a limiting transition to the pole at z = z,, using 
the well-known result1' 

limit-(q, q'; Z) (z-ZO) 1=g(q)g(q1). (13) 
1-10 

The equation for the vertex functian has the form [see (13) 
and (10) for il (z,) = 11: 

This is the analog of the Schrodinger equation in momentum 
representation for which the transition to the nonphysical 
sheet is also reduced to the replacement (8). 

In the determination of the virtual pole, we must take 
into account the cut of V@,p) that begins at the point 
p = - ip, where V@,p) has a logarithmic branch point for 
the potential in the Yukawa form or in the form of a superpo- 
sition of Yukawa potentials. In the analytic continuation in 
p2 (or p), we must bypass the corresponding branch point. 
The trajectory of the pole of the t matrix for real energies 
z, = p2/2p is then found to lie on the sheet of the logarithm 
that corresponds to the real branch of the logarithm for 
p = - ibI. We can thus follow the trajectory of the pole as 
the factor A in front of the potential varies along the entire 
imaginary axis of p (the real axis of z on the nonphysical 
sheet). 

Equation (7) enables us to formulate a further theory of 
symmetry, but .now relative to the real axis of p. When the 
sheet I+ contains a bound state for p = ip, where ip is a 
singular point of the potential (i.e., V,@,p)-a, as p+iP ), a 
virtual pole (zero of the Jost function) should occur at 
p = - ip. This result is a consequence of the fact that the 
%dditional term in (7) is zero at the singularity of V(p,p) and 
V (q,ql,p) = V (q,ql). We recall [see (2)] that V ( - q, - q') 
= V(q,qf). Because of the symmetry of the zeros and poles of 

the S matrix, g( - ib ) = 0. The theorem is valid for analytic 
potentials, since the truncation of V(r) at any finite distance 
takes all the singularities of V(q,ql) to infinity. We note that 
rigorous results on the nature of the trajectory of the pole for 
V(r) that vanishes rigorously for r>R, were obtained in Ref. 
21. 

3. GENERALIZATION OF THE FOURIER TRANSFORMATION, 
THE NORMALIZATION RULE FOR THE WAVE FUNCTION, 
AND THE EVALUATION OF MATRIX ELEMENTS TO THE 
CASE OF QUASISTATIONARY STATES 

Having found the vertex functiong(q) from (14) to with- 
in a constant factor, we can normalize it through the t matrix 
[see (1 3)] as suggested in Ref. 4. However, it is also possible to 
perform a direct normalizationZZ of the wave function p, (q) 
which is related to g(q) by the well-known expression 

vk(9)=-g(q)/(qLk". (15) 

The poles of p, (q) at the points q = _f k determine the 
asymptotic behavior of the radial wave function if the singu- 
larities ofg(q) lie further away from the point q = 0. For the 
sake of simplicity, we confine our attention to the S wave 
(generalization to I > 0 is elementary). 

We shall look upon the unstable virtual state as an "ab- 
sent bound state", and will start with the known integral 
transformation for the bound-state wave function for which 
we must take k = ix, in (15), where x = (2pEb)ltZ and E, is 
the binding energy (x > 0). Using the equation g(q) = g( - q) 
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[see (14) and (2)], we can write the Fourier transformation in 
the form 

c - g ( q )  q d q ,  ~p. ( r )  = - J eiqr - 
r  

-OD qz+x= 

where Cis the normalization constant. 
If we close the contour of integration in the upper half- 

plane, on which we can discard the integral over the large 
half-circle, we obtain the well-known asymptotic expression 
determined by the residue at the pole at q = ix, 

r 

The contour also runs around the singularity ofg(q). To ob- 
tain the analog of (16) for the virtual state, we perform the 
analytic continuation in the coupling constant il in the Ha- 
miltonian H = Ho + il V. As il decreases from the region in 
which il >Ao to Lo, for which the bound state has zero ener- 
gy, the poles of p, (q) at the point ix and - ix move toward 
one another, approaching the contour of integration from 
different directions and clamp it down. As il is reduced still 
further, the poles change places and take the contour of inte- 
gration with them (see the contour shown in Fig. 2a), for 
otherwise the integral will not exist. The generalized Fourier 
transformation is thus found to have the form 

C 
r  

g ( q )  q  dq.  e ( r )  = - J eiqr - 
qZ+ xa 

This asymptotic expression is now determined by the residue 
a tq  = - ix(x>O): 

const 
$x(r) - - ex' for r + w .  r 

(19) 

The additional term in (20) reflects none other but the fact of 
analytic continuation that takes the pole of theSmatrix from 
the pointp = ix t o p  = - ix. Since f (q) in (21) is even, the 
modified normalizing integral can be written in the form 

i?=N+2in Res f ( q )  1 ,,,res. (22) 

This expression is available for any even function f (q) (it is 
also given in Ref. 23 without derivation) and N is the usual 
integral. It is clear that all that we have said so far is also 
valid for a resonance when x is complex (I # 0) and the trajec- 
tory of the pole has a different shape (see Fig. 2b). Equation 
(14) can be used in practical calculations of the residues in 
(20) and (22). integrals evaluated with the aid of (20) or (22) 
are finite, independently of the position of the pole. It is 
known (see, for example, Ref. 19) that the method of regular- 
ization in r-space depends on the position of the pole. For 
example, the Zel'dovich regularization procedure,24 which 
uses the factor exp( - E?) (with passage to the limit as E-0 
after evaluation), is valid only for resonances for which 
IReq,, I > IIm 9,l. 

4. MULTICHANNEL PROBLEM. STRONG CHANNEL 
COUPLING 

The rule for the analytic continuation of the Lippmann- 
Schwinger equation can readily be generalized to the set of 
integral equations in the so-called strong channel coupling 
method for the matrix elements of the T operator 

In other words, we have obtained the well-known Gamow where Qa = ma - m~ is the threshold of the (1, a) reaction 

asymptotic formula with an exponential increase at infinity and ma is the total mass in channel a .  The lightest-particle 

[the use of(16) would have resulted in bound-state asympto- channel is labeled with the index 1. Only binary channels are 

tic behavior]. Any matrix element containing the wave func- considered in the method of strong channel 0, 

tion of a virtual or resonance state can be transformed in a the energy surface* 

similar way. Modification of the matrix element ka2/2pa=z-Qa, 
m 

(24) 

F= J f ( q ) d q  wherep, is the reduced mass and z is the energy. 
o According to (23), the functions T,., have n cuts along 

(see Fig. 2) reduces to the real z axis, beginning with the thresholds z = Q,, and, 

P=F+in [Res f ( q )  I ,=-,-Res f ( q )  I q=ixI  . correspondingly, 2" sheets of the Riemann surface. The 
(20) channel indices on the operators Yare omitted for the sake of 

This expression must also be used for normalization. In that brevity (the angular momentum indices are also omitted). 
case, The additivity of the different cuts in (23) enables us to pass 

f ( 4 )  = q 2 g z ( ~ ) / ( q 2 + ~ 2 ) z .  (21) to the nonphysical sheet relative to any of them. Let (P  J 

FIG. 2. Contour of integration for the evaluation of a matrix 
element containing a Gamow function: a-virtual state, b 
resonance state. 
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represent the set of channels for which (23) is to be analyti- 
cally continued to the nonphysical sheets. We can then use 
matrix algebra to show that the result of this continuation is 
equivalent to the replacement of the potential matrix 
V (k,, ,k, ) with the following expression: 

where W - ' is the inverse of W: 

Just as in the single-channel case, the additional term in (25) 
is nonlocal (takes the form of a sum of separable terms) and 
depends on the energy z. Restriction to binary channels is 
not fundamental, as can be seen by considering the Faddeev 
equations. 

5. FADDEEV EQUATIONS. TWO-PARTICLE CUT 

We shall now consider a simple example of the Faddeev 
equation for three identical spinless particles whose interac- 
tion is described by the separable potential2' 

< p f  I V 1 p") =AX (p') X* (p") . (28) 

The problem of scattering of a particle by the bound 
subsystem reduces to the solution of the one-dimensional 
integral equation for the particle amplitude XL (q,ql;E + i ~ )  
(see, for example, Ref. 27): 

XL ( q ,  q'; E+ie) =2ZL (q,  q'; E+ie) 

OI 

+gn Jq"2 d q " L  ( q ,  q';  E f  i e )  
0 

)xi (q", q'; E f i e )  . (29) 

Here, we use the notation defined in Ref. 27: L is the total 
angular momentum of the system, 

Z ( q ,  q'; E+ie)  --; 
x' ( q f + q / 2 )  x ( - q f / 2 - q )  

E S i e -  [qa+ ( q f q ' )  2Sq'2)  /2m (32) 

The function r(z) associated with the two-body t matrix 
has a pole at z = - E, (E, is the binding energy of the subsys- 
tem): 

.t ( 2 )  = { ( z f  E ~ )  C (z) I-', z ( q )  =E-3q2/4m, (33) 

Thus, the following two-particle propagator appears in 
(29): 

[ Z  ( q )  + ~ b ]  - '= [E+~E-3q2/4m+&b]  - ' = [ E i Z , 3 + i ~ - 3 q 2 / 4 m ] - i ,  

(35) 
where E ,,, = E + E~ is the energy of relative motion of par- 
ticle 3 about the center of mass of the bound pair ( 12 ] .  Cor- 

respondingly, the functionx, (q,ql;E ) acquires the right root 
cut that begins at E = - E, . By introducing the "potential" 

we obtain the Lippmann-Schwinger equation, whose analyt- 
ic continuation in the variable E 1,,3 gives us an equation of 
the same form as (29), but with a new inhomogeneous term 
(P = [2p(E + E,)]'/~): 

2L(q ,  4'; E ) = Z L ( ~ ,  9'; E ) + F ( q ,  P ;  E ) ~ L ( P ~  q'; E )  (37) 
and potential 

For the same reason as for the Lippmann-Schwinger equa- 
tion, the denominator in (39) is not a pole of the S matrix. 
Similarly, near the zero of the denominator in (39), we must 
consider the equation augmented with the equation at the 
point q = p. The resulting extended equation can be used to 
find virtual and resonance states by standard methods (see 
also Ref. 15). At the point of the corresponding pole, we 
obtain a homogeneous equation for the vertex function of the 
(123)+(12) + 3 decay, similar to equation (4) in the two- 
body problem and, consequently, for the Gamow wave func- 
tion of the resonance (or virtual) state than can also be nor- 
malized when the modification considered above is taken 
into account or the t matrix is employed. 

As in the two-body problem, the analytic properties of 
the solution of the three-particle homogeneous equation are 
determined by the properties of the kernel of the integral 
equation, i.e., the potential (36). In contrast to the two-parti- 
cle potential, whose singularities do depend on the specific 
model, the nearest singularities of the exchange potential 
Z (q,qW;E ) are determined by the real physical properties of 
the three-particle system that are independent of the specific 
form of the short-range pair interaction. The virtual pole 
(zero of the Jost function), that appears as a result of the 
symmetry theorem (Sec. 2) at the point p = - iP, at which 
V(p,p;E ) is singular if a bound-state pole appears at p = iP, 
reflects the dynamic properties of the system, since 
,8 = +(mEb )'I2 [see (4311. 

6. FADDEEV EQUATIONS. THREE-PARTICLE CUT 

The three-particle cut is connected with the three-parti- 
cle propagator that appears in both r(z) and Z, (q,q";E ). The 
right cut of the pair t matrix that appears in r(z), or specifical- 
ly in C(z) given by (34), induces a three-particle cut corre- 
sponding to the so-called direct term in the unitarity relation 
(Fig. 3b). We shall now show that the cross term in the uni- 
tarity relation on the three-particle cut is due to the function 
Z, (q,qn;E ), i.e., the projection onto the L th partial wave of 
the exchange potential describing the interaction between 
the bound pair ( 121 and the spectator particle 3, shown in 
Fig. 4. In contrast to the two-body problem, the potential ZL 
is an explicit function of energy. Its singularities are deter- 
mined by the Legendre function of the second kind QL @) (if 
we ignore the singularities of the vertex functionsx that do 
not lead to a right cut in E ), where 
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FIG. 3. Feynman diagram for the scattering of a particle by a bound pair, 
illustrating the appearance of the two-particle cut (a) and three-particle 
cuts corresponding to direct (b) and cross (c) terms in the unitarity rela- 
tion. 

This function has a logarithmic cut along the real axis of y 
between - 1 and + 1, which induces cuts in ZL (q,qV;E) on 
the complex plane of q". The positions of these cuts are de- 
termined from the condition that the denominator in (32) is 
zero: 

q"2+qyq"- (mE+ie-q2)  =0, (41) 

from which we have 
q"--qy/2& ( q 2 y 2 / 4 + B Z + i ~ ) ' 1 2 r  B2=mE-q2. (42) 

The cuts join the branch points in pairs: 

q:),=-q/2+ (qZ/4+B2+i&) '", q ~ ~ ~ = q / 2 +  ( q 2 / 4 + ~ 2 + i ~ )  '[z; 

( 2 )  
(434 

q,i,=-q/2- (q2/4+BZ+i&) Ih ,  42Lz=q/2- ( q 2 / 4 + B 2 + i ~ ) " ,  

(43'3) 
where we take into account the sign of the imaginary addi- 
tional term for real E ( > 0). The cuts are illustrated schemati- 
cally2' in Figs. 5a, b, and c for 

a ) O<q< (mE) '" ,  b) V ~ E < ~ G  ( 4 m ~ / 3 ) ' " ,  

c )  q> (4mE13)'h. (44) 

In region (b), the cuts clamp down the contour of integration 
with respect to q" (at the point q" = R = (q2 - m~ )'I2), 
which leads to the appearance of the logarithmic cut in E (for 
real E>O). Since there is no mirror symmetry in the position 
of the cuts in region (b), a change in the sign of i~ that is 
equivalent to the reflection of the cuts in the real axis of q" 
leads to a discontinuity in X,  on the three-particle cut in 
E ( > 0). The initial momentum q on X,  (q,ql;E ) can assume 
any positive value in the equation [because of integration 
with respect to q" in (29)], so that (44b) can be satisfied from 

FIG. 4. Feynman graph for the exchange potential Z(q,q ' ;E) in the Fad- 
deev equations. 

E = 0 onward. The resulting cut corresponds to the cross 
term in the unitarity relation (see Fig. 3c). 

So far, we have examined the region of real positive E. 
We shall now perform the analytic continuation in E into the 
neighboring nonphysical sheet relative to the threshold 
E = 0, using the method of constrained contour deforma- 
tion. Figure 1 illustrates this for the Lippmann-Schwinger 
equation. In contrast to the case ofthe Lippmann-Schwinger 
equation, we now have the displacement not of one point 
(propagator pole in the Lippmann-Schwinger equation), but 
a whole line (logarithmic cut of the integral containing the 
three-particle propagator). We shall move in the plane of the 
complex variable E on the nonphysical sheet through the 
point E = 0 and along a certain ray at the angle - 2p. This 
will correspond to a ray (at the angle - p) on the q" plane, 
passing through the point p = (mE )'I2. Suppose that the 
point q lies on this ray. The cuts ofZL (q,qW;E ) on the plane of 
q" will differ from those shown in Fig. 5 only by the rotation 
of the coordinate axes through the angle p in the anticlock- 
wise direction. This is why the above motion of the point E 
toward the ray containing the segment [o,-] will be ac- 
companied by the emergence on the q" plane of the logarith- 
mic cut of the function ZL (q,qW;E) connecting the branch 
points (43a). The result of this will be that, in addition to the 
integral along the real axis of q" we shall have a further 
integral over the contour L (E) around this cut (see Fig. 6, 
lqI2 < ImE I). In fact, the region C(q,E), where disc ZL #O, 
will provide a contribution. As the point q moves along the 
ray between q = 0 and q = ( m ~  )'I2, the segment C (q,E ) is 
displaced along this ray, and its length varies. The branch 
points of Z, corresponding to (a) y = + 1 and (b) y = - 1 
occupy the lower and upper parts of the ellipse, which are 
separated by the points (q2 = 0,ij2 = m E )  on the q2ij2 plane 
(see Fig. 7). The regions C (q,E ) in this figure correspond to 
the vertical arrows. It is clear that C (q,E) contracts to the 
point ij = (mE )'I2 as 9-0. Moreover, C (q,E ) does not cross 
the cut of r(z), which is located on positivez>O. The position 
of the latter [K (E ) in Fig. 61 does not depend on q and is given 
by 

Im (E-3quZ/4m) =0, Re (E-3qUz/4m) 20. (45) 

It is only for q2 = mE/3 that the C and K curves have one 
common point: ij2 = 4mE/3. The analytic continuation of 
the Faddeev equation in E requires, generally speaking, the 
elucidation of the analytic properties of XL(q,ql;E) 
EX,  (q,E ) as a function of the complex variables q and E. 

To achieve maximum simplification of our problem, we 
confine our attention to the homogeneous equation for the 
eigenvalues A (E) of the kernel of the Faddeev equation, 
which has the following form on the physical sheet (we omit 
the index L and use a system of units in which 
f i = m = c =  1) 

A - i ( E ) X ( q , E ) = R ( q , E ) ,  (46) 

R ( q ,  E )  =8n J q Y z d q " ~ ( ~ - 3 q f f z / 4 )  ~ ( q ,  q"; E ) X ( q r f ;  E ) .  
0 (47) 

In accordance with the foregoing, Eq. (46) changes in two 
respects as E moves onto the nonphysical sheet: 
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1. Instead of r(E - 3qtt2/4), we have r- (E - 3q'I2/4), 
i.e., the t matrix in the kernel of the equation must be taken 
on the nonphysical sheet of the subsystem energy. 

2. The right-hand side of (46) acquires an additional 
term in the form ofan integral ofdisc2 (q,Q;E )with respect to 
C (q,E ). Hence, on the nonphysical sheet, we obtain 

A - ' ( E ) X - ( 9 ,  E )  =R- ( q ,  E ) + S ( q ,  E ) ,  (48) 

where R- differs from R since the substitution r-tr- has 
been introduced, and 

3 
S ( q ,  E )  =8n I3 d@- ( E  - - g )  disc Z(p, P ;  E )  X- ((, E )  . 

C ( 9 . E )  
4 

(49) 

In deriving (48), we have naturally confined our attention to 
values of q and E for which X-(Q,E ) does not have singulari- 
ties on C (q,E ). The singularities of X-(q,E ) manifest them- 
selves in S(q,E), just as in the case of the Lippmann- 
Schwinger equation. It is striking that disc Z(q,Q,E) is 
separable in q and ij, since the argument of the vertex func- 
t i o n s ~  (p,) andx  *(p2), i.e., 

P , ( Y )  =['Is(qZ/4+gz+qgy)1 ", 
pz ( y )  = [ 'I3  (q2+i2/4+qPy I"', (50) 

appear in disc Z (q,Q;E ) for y = J  = (E - q2 - Q2)/qij, for 
which the denominator of the three-particle propagator is 
found to vanish, and the variablesp,@) andp2@) are given by 

P ~ = [ ' / J  (E-3q2/4)  1 I h ,  pa= [ ' I ,  (E-36'14) ] I h ,  (51) 

i.e., they are expressed in terms of the pair energies z(q) and 
z(ij) for the spectator momenta q and Q. For L #O,  the func- 
tion disc ZL (q,Q;E) will also contain the Legendre polyno- 
mial PL @), i.e., the sum of the product of different powers of 
q and Q. The function S(q,E)  will then explicitly contain 
x [+(E - 3q2/4)] ' I 2  as a factor, i.e., it will have distant (in 

the case of short-range forces) potential singularities, and 
can be written as the sum of integrals whose singularities in q 
are determined by the position of the cut C (q,E ) itself, since 
the functions under the integral signs do not depend on q. 
Nonpotential singularities ofS (q,E )appear when the subsys- 
tem has a virtual or resonance pole, i.e., r-(z) has a pole at 
z = v, , that generates the two-particle propagator of the res- 
onance-plus-particle system. S (q,E ) is then a Cauchy-type 
integral whose logarithmic singularities2' (see below) for 
q3,, and qbb,!, correspond to the pole of r-(z) at one of the 
ends ofintegrati~n.~)Finall~, S (q,E )has aroot cut in the pair 
energy z(q) = E - 3q2/4, since $ appears in the limits 
q'") ,q(b ) of integration along the curve C (q,E ) (43): 

q'". b ' = ~ q / 2 +  ( z ( q )  )'", (52)  

although C (q,E ) does not, in fact, lie on the root cut of ~ ( z )  
(z > 0, and real), which has already been noted above. It is 
convenient to introduce the replacement Q-+y in the integral 
(49) for S (q,E ), using the relation 

q ( y )  =-qy/2+ (q2yZ/4+E-q2)"2.  

The limits of integration are then constants (for /ql<@ on 
the segment [o,@] and real q): - 1 <y( 1, and the depen- 
dence on q becomes explicit. The result is 

1 

S(q, E )  =inx(pl ( q )  ) I d y  W-"((912-wth)  .)r- ( n ( y )  )x' 
- 1 

x(p2 (q" )  )PL (y)X- (q", E ) ,  (53) 
where 

~ = q ' y ' / 4 + E - q ~ ,  q"=-qy/2+11 w , z ( @ )  =E-3g2/4. 

The singularities ofS (q,E )in q that are nearest to the physical 
region are determined as indicated abovt, by the pole of 
r-(z(Q)) at z = v,, i.e., by the function QL Cv,), where 

FIG. 7. Regions of integration C(q,E) with respect to the variable ij in 
FIG. 6. Scheme of singularities in q" of the kernel of the Faddeev equation S (q,E) for fixed complex E for points q on the segment [O,(mE )li2]. In the 
on the neighboring nonphysical sheet of E relative to the threshold at region bounded by the broken curve, the logarithmic cut of 2, departs 
E = 0. from the ray containing this segment (see Fig. 5b). 
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The resulting logarithmic branch points 

[ (E-v , )  / 3 ] ' " . t ~ ~ ' ~ ' ,  q$',\=- [ (E-vp)/3]"'* vplk (55) 

connect the cuts corresponding to the curve C (q,E ), i.e., the 
variation of y from - 1 to + 1, for which 

The analogous singularities of X (q,E ) for Im > 0 are 
found in Ref. 30 by a method that seems to us less clear. 

It has been assumed above that X-(q,E ) does not have 
singularities on C (q,E). Once the nearest singularities of 
S(q,E)  connected directly with the kernel of the equation 
have been obtained, we can find the remaining singularities 
in q by successively substituting into S(q,E)  the terms of 
X- (q,E )with the known singularities ofS (q,E ). In each case, 
the problem reduces to analyzing an integral of a known 
function between finite limits. 

We are now in a position to write down the analytic 
representation for X-(q,E ) that explicitly takes into account 
the nearest singularities found above: 

where Zp indicates summation over the poles. The basis of 
the expansion in (57) is constructed on the basis of the vertex 
functionx (P,,P), wherex (P1,~)=x(P1), andP character- 
izes the interaction range. This ensures that X- (q,E ) de- 
creases with increasing q for large q. Similarly to the number 
of quadrature nodes in the integral equation, the number of 
basis functions in the sum over n is determined by the re- 
quired precision. An analogous basis arises in a natural man- 
ner, for example, when the two-body problem is solved by 
the spectral method described by Mar th3 '  When the finite 
sums over n are used, the substitution ofX-(q,E ) in the form 
given by (57) into (48) gives a set of linear algebraic equations 
for the parameters a, and b t), which can be solved in the 
usual way. Since the position of the three-particle pole in the 
energy is independent of q, the simplest way is to expand the 
left- and right-hand sides of (48) into power series around the 
point q = 0. The number of terms in the expansion in qk is 
then determined by the number of unknown linear param- 
eters a, and b for a fixed maximum number of terms in the 
sum over n. In the limit as q+O, the cut C (q,E ) contracts to 
the point ij = q, as already noted. The function X-(@,E ) 
then appears on the right-hand side of (48) and has singulari- 
ties in E that are connected with the singularities ofS (q,E ) in 
the variable q. Substituting qZb) = @in (55), we obtain the 
logarithmic cut in E for the first term of the expansion of 
X- (q,E ) in powers of q along the segment between the points 
E = vp and E = 4vp. In addition, the function r-(E /4) that 
appears in S ( a , ~  ) has a pole at E = 4vp. The next terms of 
the expansion in powers of q contain the derivatives at the 
point q = a. This means that the position of the singulari- 
ties does not change but they become stronger (instead of 
logarithm, we have a pole and, instead of a pole of order K, 
we have a pole of order K + 1, and so on). Thus, the segment 
on the plane between the points vp and 4vp is a forbidden 

FIG. 8. Structureofnearest singularitiesofS(q,E ) (a)andR-(q,E ) (b)in the 
variable E. 

region for the analytic continuation in E. The cut [vp , 4vp ] 
(Fig. 8a) is analogous to the cut in E that appears in R - (q,E ) 
and begins at the point E = vp , running to the right along the 
line parallel to the real axis ofE (Fig. 8b). The cut ofS (q,E ) is 
limited because the region C (q,E ) is finite for fixed q and E. It 
is important to emphasize the additivity of the above singu- 
larities ofX- (q,E ) in E, which is due to the form of (48) which 
contains the sum R -(q,E ) + S (q,E ) on the right-hand side. 
We shall illustrate the foregoing by the simple example of the 
Yamaguchi potential acting only in the S state, which has 
the form given by (28) withx (p) = (P' + p2)-'. In this case, 

2in - i 
disc Z. ( q ,  @; E )  = (E+a2 - x) ( E + ~ Z  - x) -' 

44 4 4 .  

(58) 
Hence, the first term in the expansion for S (q,E ) into a series 
in powers of q is 

The fact that this expression is finite for E # O  is due to the 
fact that, although C (q,E ) contracts to a point as 9-0, and 
the length decreases in proportion to q because q, - q ,  = q 
[see (52)], we have disc 2,- l/q [see (58)l. Equation (59) 
shows that the function S (0,E ) has the following singulari- 
ties: (1) a root branch point at E = 0 due to the factor @; (2) 
a logarithmic cut along the segment vp (E<4vp due to the 
singularities ofx-(@,E ) in the first variable (q = @); (3) a 
pole at E = 4vp due to r-(E/4); (4) distant potential singu- 
larities at E = - P ' and E = - 4P ' due to the vertex func- 
tions, and (5) singularities of X-(@,E) in the second vari- 
able (E ). 

As expected, the branches X and X- corresponding to 
different sheets of the Riemann energy surface become iden- 
tical at the branch point at E = 0, where S (q,E) vanishes 
more rapidly than X (q,E ). As noted above, the right-hand 
side will also contain the derivatives ofX-(q,E ) with respect 
to q at the point q = @, which enhances the strength of the 
singularity but has no effect on the region of singularities in 
E. 

Thus, when we consider the analytic continuation of the 
Faddeev equation to the neighboring nonphysical sheet of E 
relative to the three-particle threshold at E = 0, we must 
bypass the ray segments vp (E(4vp. We note, finally, that, 
to cross the neighboring sheet relative to the two-particle cut 
of the function R - (q,E ) which is of the resonance-plus-parti- 
cle type, we must implement the same procedure that was 
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used on the physical sheet of E relative to the two-particle 
cut, where the bound state of the subsystem { 121 appears 
instead of the resonance or the virtual state. 

To conclude this section, we note that, for fixed E and 
varying q, the C (q,E ) curve "floats" on the complex plane of 
q" in a somewhat erratic manner, so that Eq. (48) cannot be 
solved by the usual determinant method, using some kind of 
quadrature, since it turns out to be nonclosed with respect to 
the set of quadrature nodes { qi 1 on the entire contour. This 
means that the method of solution proposed above, which 
explicitly uses the more important analytical properties of 
X-(q,E ), is probably the most natural approach. It can also 
be used in calculations on the physical sheet of E. As shown 
in Ref. 30, the implementation of the determinant method is 
related to the necessity of solving the equations for the two 
auxiliary functions. 

7. VIRTUAL STATES OF THE TRITON 

We have calculated the positions of the virtual pole of 
the nd system for the quantum numbers of the triton (3H) 
with allowance for the modification (38) and (39) of the ker- 
nel of the Faddeev equation during the transition to the non- 
physical sheet relative to the threshold of the n + d channel 
at E = - E ~ ,  where ,cd is the deuteron binding energy. The 
position of this pole was first established in Ref. 32 as a result 
of a fit to the experimental doublet S phase at low energies. 
The N /D method was used for the same purpose in Ref. 10. 
The virtual pole of the triton was found in Refs. 10 and 33 by 
analytic continuation of the t matrix evaluated on the phys- 
ical sheet with the aid of the three-particle equations (the 
authors of Ref. 33 used the method put forward in Ref. 34, 
which is analogous to the Kowalski method35) but, because 
of technical difficulties, the analysis was confined to separa- 
ble potentials. Since the determination of the virtual level 
with the aid of our equations is no more complicated than the 
determination of the binding energy of the triton, we were 
able to perform the calculations for the "realistic" Malfliet- 
Tjon (MT) local potential (variants I and I11 in Ref. 36). The 
starting point was the set of equations for the bound triton 
[Eqs. (8) in Ref. 31, obtained by Bateman's method in which 
the potential was approximated by a sum of separable 
 term^.^' In accordance with (38) and (39), the following sub- 
stitution was made in these equations3 [i, jare the numbers of 
the Bateman cuts and A = s(t ) is a singlet (triplet) in the spin 
of [ 1211: 

TABLE I. 

where 

The quantities Ri define the residue of the pair t matrix for 
np scattering at the pole corresponding to the bound deu- 
teron [see Ref. 3, Eqs. (10)-(13)l. 

The calculated position B, of the virtual triton level 
below the elastic threshold, i.e., for the three-particle energy 
E, = - cd - B, ( E ~  = 2.31 MeV for the MT potential) is 
given in Table I together with the results of the other calcula- 
t i o n ~ , ' ~ , ~ ~ , ~ ~  cited above. The corresponding triton binding 
energies E, are given for convenience. 

It is clear from Table I that B, is sensitive to the poten- 
tial, and our result for the local central potential containing 
repulsion at short distances is close to the experimental re- 
s ~ l t . ~ ~  

8. CONCLUSION 

We have thus been able to formulate new integral equa- 
tions for the virtual and resonance states, which are based on 
the analytic continuation of the integral equations of the the- 
ory of scattering. This constitutes a direct generalization of 
the bound-state problem to the case of unstable states. It is 
important to note that the method that we have developed 
can also be used to find amplitude singularities that are hid- 
den in the original equation, and this is essential for the prac- 
tical implementation of analytic continuation itself. The 
equations for the three nucleon system have been used for 
the first time to find the energy of the antibound state of the 
triton for a "realistic" potential with repulsion, and the re- 
sult of the calculations is in agreement with experiment. 
There are numerous other possible physical applications of 
the method. They include the discretization of the basis in 
calculations of nuclear-reaction cross sections with 
allowance for the continuous spectrum in the final state. An 
interesting problem for the three-body system is the analysis 
of the trajectories of poles whose nature was established by 
E f i m o ~ . ~ ~  Sufficiently complete and reliable theoretical in- 
formation about the poles of the three-neutron system is not 
as yet available (see Refs. 39 and 40). Further theoretical 
studies of dibaryon resonances will be necessary (see Ref. 13 

B,, MeV 5 1 0,482 1 o.4Ei" 1 0,502 
8,48* 8.48 * 8;23 

*The experimental value of E,  was used in Ref. 10 to find the parameters 
of a separable potential yielding the best fit. 
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and the references therein). Finally, there is considerable in- 
terest in resonances exhibited by nuclear systems containing 
an a n t i n ~ c l e o n , ~ ~ - ~ ~  especially in connection with the experi- 
ments on the antiproton storage ring (LEAR) that began at 
CERN in 1983. The above method of analytic continuation 
of integral equations will probably be useful for the various 
resonance phenomena that are frequently encountered in 
physics generally. Its universality is due to the fact that it can 
be used with any integral equation with a Cauchy kernel. It is 
important that our method provides a recipe for finding not 
only the poles of the S matrix, but also the normalized Ga- 
mow wave functions of quasistationary states,'' and we have 
pointed out the rules for the evaluation of the matrix ele- 
ments involving these functions. 

The authors are greatly indebted to V. B. Belyaev, L. D. 
Blokhintsev, V. N. Efimov, and L. D. Faddeev for fruitful 
discussions. They are particularly indebted to I. S. Shapiro 
for reading this paper in manuscript and for contributing a 
number of valuable suggestions. 
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the extended completeness condition of the so-called biorthogonal sys- 
tem of resonance (Gamow) wave functions (see, for example, Ref. 19). It 
appears in a natural manner in S-matrix theory where this term corre- 
sponds to the Feynman pole diagram in the s channel (see, for example, 
Ref. 20). 
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