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A new, improved implementation of the scenario for the chaotic inflation of the Universe is 
proposed within the framework of models based on N = 1 supergravity. This scenario ensures 
both sufficient inflation of the Universe and the required amplitude of density perturbations that 
appear after inflation and subsequently lead to the formation of galaxies. The superpotential of 
matter fields in this model can be made as small as desired at the absolute minimum of the 
effective potential, which is a necessary condition for the solution of the gauge hierarchy problem 
in such models. 

One of the most interesting implementations of the in- 
flating Universe ~cenariol-~ is based on the cosmological 
consequences of N = 1 supergravity interacting with mat- 
ter."7 This invariant of the inflating Universe scenario has 
become particularly attractive since the r e s o l ~ t i o n ~ * ~  of its 
basic difficulty, namely, the problem of primordial mono- 
p o l e ~ . ~  

On the other hand, the scenario has been incomplete to 
some extent. It was implemented by introducing into the 
theory a certain additional chiral superfield @ and by study- 
ing the effective potential V(z,z*) in terms of the first (scalar) 
component of the superfield z (Ref. 8): 

V (z, z') [ 2  I g,' (z) +'/,z*g ('-3 1 g l 2 1 ,  (1) 
where g(z) is an arbitrary superpotential, g: (z)=dg/dz, 

,u is a factor with dimensions of mass, and f (z) is an arbitrary 
function of the field z. In all these expressions, we used the 
system of units in which ~ , / ( 8 a ) " ~  = 1 (Ref. 8). 

Since f (z) is arbitrary, the form of V(z,z*) has also re- 
mained arbitrary to a considerable extent. For example, the 
superpotential f (z) was chosen in Refs. 4 and 5 in the form of 
the series 

where it was assumed that A0>0, A ,  > 0. The effective poten- 
tial in terms of the real part q, of the field z then assumes the 
form 

where a ,  8, y, 6 are certain combinations of A,. The coeffi- 
cients A, are chosen so as to ensure that the function V(p  ) 
has a minimum at q, = q,, = 1 and, at the same time, 
V(q, = 1) = 0. The latter condition is necessary to ensure 
that the vacuum energy (cosmological term) turns out to be 
zero after symmetry-breaking. 

In our previous  paper^,^.^ the effective potential was 
taken in the form 

The minimum of V(p ) was then at p = p, = 2'"/a, which 

which of these potentials is the more natural is, at present, 
largely academic since we have practically no idea what the 
form of the function f (z) should be (see, however, the account 
given below). We shall therefore confine our attention, for 
the moment, to the identification of the basic features of the 
inflation scenario in supergravity, which may not be very 
dependent on some of the details of the behavior of f(z). 
Moreover, one would at least like to verify that this scenario 
can be implemented, if only in principle, for some particular 
form off (z). 

The most important restriction on the form off (z) is due 
to the fact that the gravitino mass m ,  is proportional to g(z) 
in these theories. However, if we try to solve the hierarchy 
problem and explain the scale of symmetry breaking in 
weak-interaction theory in terms of supergravity effects, we 
find that, as shown in Ref. 9, the gravitino mass must be 
m ,  - 100 GeV or, in units  of^, /(877)1'2, mG - 10-16. This 
means that, in this type of theory, the quantity g(z) must be 
closely equal to zero at the minimum of V (z). In our previous 

it was not our aim to achieve this because the low 
gravitino mass gives rise to cosmological difficulties1° that 
can be ~ve rcome ' ' ~~  but lead to considerable restrictions on 
the structure of the theory." Nevertheless, it was important 
to elucidate the question as to whether the scenario of pri- 
mordial inflation can, in fact, be implemented under the con- 
dition g(po) = 0, the satisfaction of which was demanded in, 
for example, Refs. 4 and 5. This question seems trivial at first 
sight because of the functional freedom in the choice of g(z) 
but, in reality, it conceals a certain danger. 

To examine this question, it will be convenient to trans- 
form from the function f (z) to $(z), given by 

$ (2) =eZzt1f  (z) . (6) 
The convenience of this form becomes clear if we write 
v(Z, Z*) =pfie-( r - r ' )Z/4  [21$z'(z)+i/z(~*-~)$12-3/~121, (7) 

where $;d$/dz. We then have on the real axis (z = p ) 

v(cp)=~fi[21$,112-31~121. (8) 

We now note that, from the condition f (q,,) = 0, it also fol- 
lows that $(pO) = 0, and (6) leads to 

automatically ensures that V(qo) = 0. The question as to Suppose, for example, that the superpotential f (z) is givenby 
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the series (3) with A,>O, A, > 0, in accordance with Refs. 4 
and 5. Hence, it follows that, in the theories examined in 
Refs. 4 and 5, 

It is readily seen that, in this case, the condition $(p,) = 0 
can be satisfied only if $(p,) vanishes at some point p* lying 
between p = 0 and p = p,, where $(p*) #O. However, this 
would mean that, according to (8), the quantity V(p*) is neg- 
ative, i.e., the absolute minimum of V(p ) does not lie at 
p = p,, as was suggested in Refs. 4 and 5, but somewhere in 
the range 0 < p < p,, and the vacuum energy at this mini- 
mum is negative. This produces a considerable complication 
in the implementation of the primordial inflation scenario 
with superpotentials g(z) of the above type. 

Thus, it is not entirely clear whether it will be possible to 
construct the theory with the required type of effective po- 
tential when g(p,) = 0, and the first attempts in this direc- 
tion have not been entirely successful. The aim of this paper 
is to propose a superpotential that would lead to a theory 
with all the properties necessary for the implementation of 
the primordial inflation scenario, including the property 
g(p,) = 0. We emphasize that it is not our aim to propose the 
"prettiest" superpotential, since we have no criterion for this 
choice. We merely wish to show that superpotentials of the 
required type do actually exist, and to exhibit the basic fea- 
tures of our scenario. 

As an example of a superpotential with all the necessary 
properties, let us consider the function 

where 

and p, is some real number (see below). It is clear that 
$(z) = 0 at z = p,, as required. In terms of the new variables, 
the effective potential takes the form 

Using the superpotential (9), we find that, on the real axis 
2 

It is clear that the effective potential has a minimum at 6 = 0 
(p = pO) with V(0) = 0, and asymptotically reaches a con- 
stant as 16 /-+ m: V(( ) -P  9,u6. Analysis of the behavior of 
V(c,( *) in the complex plane has shown that the quantity 
V (5,g *)is positive semi-definite forallg; V (5,c *) = Oonly for 
g = i m , n = O ,  + 1, + 2  ,.... 

Because of the presence ofthe factor exp { 2(Im 5 )'/3 j in 
(1 I), the quantity V(<,[ *) is exponentially large (it exceeds 
the Planck energy by many orders of magnitude) every- 
where outside a narrow band of width of the order of 4-5 
units of M, /(8r)11' near the real axis. The only exception to 
this rule is provided by exponentially narrow (widths 
-expi - 2(Im 5)'/3) ) wells lying close to the above points 
J= i rn ,n=O,  + 1, + 2  ,.... 

The above potential is ideally suited to the implementa- 

tion of the inflating Universe scenario. Actually, it is shown 
in Ref. 7 that inflation occurs in supergravity not within the 
framework of the standard scenario, based on the theory of 
high-temperature phase transitions, but only within the 
framework of the chaotic inflation ~cenar io .~  It is assumed in 
the latter that the Universe was initially filled with some 
field distributionz(x) such that V (z,z*) 5 M ; ,  and all the field 
values for which V(z,z*) 5 M ;  (i.e., V(z,z*) S 1 in our units) 
were more or less equally probable. 

For our potential V(z,z*), this means that most of the 
Universe was initially in the state in which the field 5 was 
somewhere within the band I Img I 5 5, and typical values of 
Re < = 6 could be as large as desired. The field then rapidly 
rolled down into the "rut" on the real axis, and continued to 
roll very slowly and for a long time toward the minimum of 
V (p )at p = p, (5 = 0). During this roll-over period, the Uni- 
verse continued to expand in accordance with the law 

whereZis the logarithm of the scale factor a(t  ), i.e., Z = In a, 
and the evolution of the field p was described by 

In the region of high values of the field p in which we are 
interested, the evolution of this field occurs exceedingly 
slowly, and the terms (p)' and @ in (13) and (14), respectively, 
can be negle~ted.~ For large p,  the function V (p ) is given by 
the asymptotic expression, 

v=9p6[ I-y exp (-1/61~(9-~(90() I, (15) 
where y = 4. We must now determine the factor by which 
the Universe expands as the field p falls to the minimum of 
V (p ). We have 

It is clear that expansion by a factor in excess of e70, which is 
necessary for the inflating Universe scenario, will occur if 
the rolling process begins for fields lp - pol 2 2. These ini- 
tial conditions are completely natural within the framework 
of the chaotic inflation scenario with the potential given by 
(15), and should occur in most parts of the Universe. 

In other words, according to the chaotic inflation sce- 
n a r i ~ , ~  the Universe should contain many regions filled with 
the field p such that /p  - pol 2 2. In the course of subse- 
quent expansion, all such regions with initial size I2 2H -' 
assume dimensions exceeding the size of the observable part 
of the Universe [ I -  loz8 cm (Ref. 3)]. 

The superpotential that leads asymptotically to a slow- 
ly-varying potential on the real axis is not unique. All super- 
potentials that tend asymptotically (as (-+ a,) to sh (, lead 
to the desired result. In point of fact, the asymptotic form of 
g(6 ) for (i m should be 
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g ( E ) + ( l - A e - 2 f )  sh E .  
E-rM 

(17) 

This property is exhibited, for example, by the superpoten- 
tial 

To ensure that g(c ) = 0 , c  = 0, the coefficients must satisfy 
the obvious relation 

ea - 
a,,=l. (19) 

n-0 

It is readily verified that all superpotentials of the form (17)- 
(19) are zero at the points { = im (n = 0, f 1, + 2...), and 
so are their derivatives. This obviously leads to zero poten- 
tial at these points, just as for the potential generated by the 
superpotential (9). Computer calculations have shown in ad- 
dition that the (positive semidefinite) potentials correspond- 
ing to (17)-(19) have generally similar form in the complex 
plane of c, which we have described in connection with the 
superpotential (9). The clear difference as compared with the 
superpotential (9) is that, as f+ - cc , the potential will now 
grow exponentially, so that the above scenario can be imple- 
mented only for a fall on the side of large positive 6. This is, 
of course, quite adequate for the implementation of our sce- 
nario. The factor 1 - Ae - 2c in (17) is important. The super- 
potential is asymptotically (as f+ + cc ) equal to 

and, for A< 2 leads to an exponentially growing potential. 
For A > 2, the potential again reaches a constant, but from 
above, in accordance with the expression 1 + Ae-(A-2). It 
must therefore pass through a maximum at 

The field can also evolve in this potential in the direction of 
increasing 16 I, but this does not suit our purposes. For A 
approaching A = 2, and for values of I f  I that are not too 
high, the effective potential will be close to that correspond- 
ing to A = 2, depending on lA - 21. (In other words, the po- 
tential VA (q, ) tends to VA =,  (q, ), but it does not do so uni- 
formly.) Since only limited regions of the field c are 
important (such that V(c,c *) 5 M ; ) ,  the above scenario will 
obtain even for A 2 2 ,  but close to this value. Moreover, all 
the results will be close to those obtained for A = 2 precisely 
because the two potentials are close to one another. We shall 
therefore suppose that A = 2., 

With the exception of the essential n = 1 term, expres- 
sion (18) need not contain any other term. Moreover, we can 
add terms such as e - 36 ,  etc., which fall more rapidly than 
e - 2P as 6- + cc . The addition of terms of the form of e - 3c 

can, for example, remove some of the zeros of V. All the 
potentials V (q, ) obtained from the above superpotentials are 
given by (15) for large p-p,. For g, - q,,) 1, for which the 
asymptotic expression (1 5) is valid, the conditions I V '(4 V 
and ( V " ( 4 V, will be satisfied. These conditions are necessary 
to allow us to neglect the terms 4 and k2/2 in (13) and (14). 

It is important to note that, since the entire observable 

part of the Universe was formed in this scenario whilst the 
field q, was in the region Iq, - q,,( 5 2 (see above), the entire 
scenario can actually be implemented for a wide class of the- 
ories in which the potential V(q, ) is close in form to (15) for 
Iq, - qol 5 2 ,  and increases in an arbitrary manner for 
Iq, - pol > 2, i.e., this is not confined to theories with super- 
potentials (9) and (18). 

We now turn to the spectrum of inhomogeneities that 
arise after the inflation of the Universe. According to Ref. 
12, these inhomogeneities are produced from quanta1 fluctu- 
ations of the field g, which, at q, = p*, have the following 
momentum at the beginning of the inflation process: 

ke2= I V" ((P*) I =VOya2e-aq*=VO/AZi.  (20) 
At the end of the inflation process, this momentum is re- 
duced: 

k2=k Ze-2AZ.= ( V o / A Z * )  e-'"".. PI1 

The spectrum of fluctuations with momentum k is given by l 2  

Galaxies appear as a result of the amplification of fluctu- 
ations with AZ, -- 50 (Ref. 12), so that, on the galactic scale 

Hence, it is clear that Sp/p- lop4 forp3-,3x i.e., for 
p- which seems quite reasonable. In contrast to all 
other theories considered so far, this theory does not demand 
any additional small parameters to ensure substantial infla- 
tion and small Sp/p- lop4. As far as the symmetry-break- 
ing parameter q,, is concerned, the rate of decay of the parti- 
cles q, into other particles r, -p3q,i depends on this 
~a rame te r ,~  so that, by varying this parameter, we can vary 
the temperature Tp of the Universe after the heating-up pro- 
cess, which is important for the gravitino problem. In parti- 
cular, in our scenario Tp = 10'0-10' ' GeV for g,, = 1, and a 
reduction (increase) in q,, leads to a proportional reduction 
(increase) in Tp . The gravitino problem and the generation of 
baryon asymmetry in this scenario is examined in Ref. 11. 

We have thus succeeded in finding a sufficiently wide 
class of superpotentials that lead to an effective potential 
with all the properties necessary for chaotic inflation. 

The attractive feature of the above scenario is that its 
complete implementation within the framework of the above 
class of superpotentials does not demand the introduction of 
any small parameters, other than the parameter p - lop2, 
into the theory. This distinguishes our scenario from all oth- 
er variants of the inflating Universe proposed previously. 

'A. H. Guth, Phys. Rev. D 23, 347 (1981). 
*A. D. Linde, Phys. Lett. B 108, 389 (1982); A. Albrecht and P. J. Stein- 
hardt, Phys. Rev. Lett. 48, 1220 (1982). 

3A. D. Linde, Pis'ma Zh. Eksp. Teor. Fiz. 38, 176 (1983) [JETP Lett. 38, 
149 (1983)l. 
4D. V. Nanopoulos, K. A. Olive, M. Srednicki, and K. Tamvakis, Phys. 
Lett. B 123, 41 (1983). 

932 Sov. Phys. JETP 59 (5), May 1984 A. S .  Goncharov and A. D. Linde 932 



'D. V. Nanopoulos, K. A. Olive, and M. Srednicki, CERN Preprint TH. D. V. Nanopoulos, Phys. Lett. B 118,59 (1982). 
3555, 1983. I'M. Yu. Khlopov and A. D. Linde, Phys. Lett. (1984) (in press). 

6A. D. Linde, Phys. Lett. B 131, 330 (1983). lZS. W. Hawking, Phys. Lett. B 115,295 (1982); A. A. Starobinsky, Phys. 
'A. D. Linde, Phys. Lett. B 132, 317 (1983). Lett. B 117, 175 (1982); A. H. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 
'E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello, and P. 1110 (1982). J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. 
Nieuwenhuizen, Nucl. Phys. B 147, 105 (1979). Rev. D 28, 679 (1983). 

9J. Ellis and D. V. Nanopoulos, Phys. Lett. B 116, 133 (1982). 
'OS. Weinberg, Phys. Rev. Lett. 48, 1303 (1982); J. Ellis, A. D. Linde, and Translated by S. Chomet 

933 Sov. Phys. JETP 59 (5), May 1984 A. S. Goncharov and A. D. Linde 933 


