
Higher orders of perturbation theory in classical mechanics 
E. B. Bogomol'ny'i 

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
(Submitted 13 October 1983) 
Zh. Eksp. Teor. Fiz. 86, 1569-1593 (May 1984) 

It is well known that the perturbation theory series in classical mechanics are asymptotic series, 
i.e., the nth coefficient of perturbation theory increases rapidly as n - + m  For a number of prob- 
lems, information about the behavior of this coefficient at large n is of interest. The present paper 
investigates a general method for calculating the asymptotic behavior of the higher orders of 
perturbation theory in classical mechanics. As an example, detailed calculations are made of the 
higher perturbation orders for the supplementary integral in the HCnon-Heiles model, which is a 
Hamiltonian with two degrees of freedom and describes the motion of galaxies in a magnetic field. 

I. INTRODUCTION 

The problems of classical mechanics can be divided nat- 
urally into two groups-integrable and nonintegrable, de- 
pending on whether or not the classical equations admit gen- 
eral analytic solution. It is well known' that an autonomous 
Hamiltonian system with n degrees of freedom is integrable 
if there exist n - 1 single-valued functions I,  (p,  x) of the 
coordinates and momenta, called supplementary integrals, 
which together with the Hamiltonian H ( p, x) form a family 
of n independent functions whose Poisson brackets with one 
another vanish. 

A simple example of integrable models is provided by 
the system with the Hamiltonian2 

1 
H ( p ,  x )  = - ( p , 2 + p : + a ~ 2 ~ i 2 S a 9 2 ~ ~  +((x?+x:)~) 

2 (1) 

with arbitrary frequencies w, and w,, which has the supple- 
mentary integral 

One of the best known examples of nonintegrable systems is 
the problem of three gravitating bodies3 

The theory of integrable systems has by now been deep- 
ly studied and the inverse scattering method4 makes it possi- 
ble to construct numerous examples of such systems. Much 
less is known about nonintegrable systems. 

In the investigation of nonintegrable problems, much 
importance attaches to the various approximate methods, 
among which perturbation theory is one of the most reliable 
and popular. For this method to be applicable, the Hamil- 
tonian of the problem must decompose into two parts, 

where H,(p, x) is the unperturbed Hamiltonian, for which 
the solutions of the equations of motion are assumed known, 
/ZH,(p, x;  A ) is the Hamiltonian of the perturbation, and A is 
the expansion parameter (coupling constant). If A is small, 
then any (or almost any) quantity I of interest can be repre- 
sented in the form of a perturbation series in A: 

and in each particular case one can give an algorithm for the 
successive calculation of the coefficients I,. 

The calculation of the finite orders of perturbation the- 
ory is almost identical for integrable and nonintegrable 
problems. However, it is well k n o ~ n ~ * ~ - ~  that for nonintegra- 
ble problems the series obtaind by such a perturbation the- 
ory are only asymptotic series, i.e., the coefficients I,  in- 
crease with increasing n faster than a" with any fixed a. 

For some problems, it is of interest to know the asymp- 
totic behavior of these coefficients as n+m. The most natu- 
ral of these problems is the problem of extending the region 
of applicability of perturbation theory. This problem is inti- 
mately related to the problem of summing perturbation se- 
ries and in the simplest variant can be formulated as follows: 
Suppose the first few terms of the perturbation series for 
some quantity are known; using information about the be- 
havior of the higher orders of perturbation theory, the prob- 
lem is to construct a function that approximates the required 
quantity for values of the coupling constant as large as possi- 
ble. 

In the analogous (simpler) problems of quantum me- 
chanics and quantum field theory (see Refs. 9 and literature 
quoted there), the use of asymptotic expressions for I, at 
large n made it possible to increase by one or two orders of 
magnitude the range of coupling constants in which pertur- 
bation theory gives good results. For problems of classical 
mechanics, in which the coupling constant is usually fixed, 
extension of the region of applicability of perturbation the- 
ory means that the time during which the motion can be 
described by perturbation theory can be significantly in- 
creased. 

In Ref. 10, a method was proposed for calculating the 
higher orders of perturbation theory for the simplest nontri- 
vial case of nonintegrable models of classical mechanics- 
two-dimensional area-preserving mappings.'' As an illustra- 
tion of the method, asymptotic estimates were obtained in 
Ref. 10 for the perturbation theory coefficients for a map- 
ping of the form 

As usual in problems of classical mechanics, the results of 
the calculations depend strongly on the arithmetic nature of 
the frequencies of the unperturbed motion. To study this 
dependence, the proposed method was used in Ref. 12 to 
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determine the higher orders of perturbation theory for a for- 
mal integral of a more general two-dimensional area-pre- 
serving mapping: 
xf=cos a ( x +  y 3 )  -y s i n  a ,  yf=sin a (x+ y 3 )  + y cos u (6 )  

for different a. 
The aim of the present paper is to generalize the pro- 

posed method to the more interesting case of Hamiltonian 
systems with several degrees of freedom. 

The method to be discussed below applies in principle to 
all nonintegrable problems of classical mechanics with a 
small parameter in which a large number of terms of pertur- 
bation theory is important. In the first place, these include 
various problems in celestial mechanics, the physics of col- 
liding-beam accelerators, and plasma physics, for which it is 
necessary to take into account many coefficients of the per- 
turbation series in order to achieve the required accuracy 
over a long time interval (for a discussion of analytic pro- 
grams for calculating the coefficients of the perturbation se- 
ries in these and other theories, see the review of Ref. 13). 

To avoid additional technical difficulties, we shall con- 
sider the model Henon-Heiles system14 as an example in this 
paper. This model was originally proposed to describe the 
motion of galaxies in a magnetic field and has been the sub- 
ject of numerous numerical and analytic investigations (see 
Refs. 5, 14, and 15-19 and the literature in them). 

The Henon-Heiles model is a Hamiltonian system with 
two degrees of freedom and Hamiltonian 

its equations of motion having the form 

The unperturbed part of the Henon-Heiles Hamiltonian de- 
scribes two noninteracting oscillators with equal frequen- 
cies, and cubic powers of the coordinates give the perturba- 
tion. If a coupling constant is introduced in front of these 
terms, it can be eliminated from the equations of motion by a 
simple scale transformation of the coordinates and the mo- 
menta, so that the role of a coupling constant in this model is 
played by powers of the coordinates and momenta, or 

as must be for perturbation theory around a point of equilib- 
rium. Note also that the region of perturbation theory for the 
model (7) corresponds to the region E-0, where E is the 
energy of the system. 

As in Refs. 10 and 12, we restrict the discussion to the 
perturbation theory for the supplementary integral. It is 
knoWn5,15-17.20 that for any Hamiltonian system of the type 

(7) with arbitrary relationship between the frequencies of the 
unperturbed Hamiltonian the supplementary integral can be 
represented in the form of a series with respect to homogen- 
eous polynomials: 

where 

The results of a numerical calculation of the first five terms 
of this expansion for the HCnon-Heiles model (with n = 4,5, 
6,7,8) are given in Ref. 16. For integrable systems, an expan- 
sion of the type is convergent or frequently even finite, as in 
(2). For nonintegrable problems, the coefficients I, increase 
rapidly as n- a .  It is precisely the behavior of I ,  at large n 
that will interest us in what follows. 

By definition, nonintegrable models do not admit sin- 
gle-valued supplementary integrals. It was shown in Ref. 10 
that, nevertheless, for nonintegrable systems one can for- 
mally construct a function which does not change under the 
influence of the equations of motion and whose perturbation 
theory expansion is identical to the ordinary expansion ob- 
tained from recursion relations, as in Refs. 15-17 and 20. 
However, the function constructed in this way will have a 
singularity of the type of the square root of some quadratic 
form near each periodic trajectory of the considered prob- 
lem. To determine the nature ofthis singularity (i.e., the qua- 
dratic form in the radicand), it is necessary to linearize the 
equations of motion near the given periodic trajectory and 
find the monodromy matrix of the linearized equations. To 
the r-0 region of perturbation theory there correspond tra- 
jectories with period T+ w . Since the set of such trajectories 
is dense, the supplementary integral has singularities on a 
dense set, which leads to divergence of the series (10). 

The most complicated problem when this scheme is ap- 
plied to real problems is the finding of an expression for the 
monodromy matrix for long periodic trajectories. As is 
shown in Ref. 10, in the limit T-+a the quantities in which 
we are interested decrease faster than any fixed power of the 
coupling constant, and it is a difficult problem to find them 
analytically. 

The paper is arranged as follows. 
In Sec. 2, we briefly discuss the general properties of the 

HCnon-Heiles model and the construction of the perturba- 
tion theory for it. 

Section 3 is devoted to the application of perturbation 
theory to the construction of long periodic solutions. 

In Sec. 4, we determine the supplementary integral out- 
side the framework of perturbation theory, and in Sec. 5 we 
find the explicit form of its singularity near a given periodic 
trajectory. 

In Sec. 6, we construct a function that has given singu- 
larities near all periodic trajectories of the considered prob- 
lem and, expanding it in a perturbation theory series, find 
the asymptotic expressions that we seek for the higher orders 
of the supplementary integral. 

In Appendix A, we recall the definition of the mono- 
dromy matrix for the solutions of linearized equations and 
give without proof an expression that relates the trace of the 
monodromy matrix to the exact Fourier components of the 
considered periodic trajectory. Unfortunately, periodic so- 
lutions of Hamiltonian systems of general form have been 
little studied, and we limit ourselves to rough estimates for 
the higher Fourier components, on the basis of which we 
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obtain an approximate expression for the trace of the mono- 
dromy matrix of the long periodic trajectories. 

In Appendix B, we give explicit expressions for the first 
three coefficients in the expansion of the solution of the 
HCnon-Heiles equations (8) in the perturbation theory series. 

2. GENERAL PROPERTIES OF THE HENON-HEILES MODEL 

In discussing the HCnon-Heiles model, it is convenient 
to introduce the complex coordinate z = x, - ix,, and then 
the equations of motion (8) become 

here and below, ? denotes the complex conjugate. The well- 
known C, symmetry of the model (see, for example, Ref. 19 
and the references in it) is obvious from (1 1). Namely, ifz(t ) is 
a solution of (I 1), then 

z' ( t )  =eiwz ( t )  , (12) 
where w = 2n-/3, is also a solution of these equations with 
the same energy. We note one further simple symmetry. If 
z(t ) is a solution of Eqs. (1 I), then - 

z ' ( t )  =z ( - t )  (13) 

satisfies the same equations. 
The HCnon-Heiles Hamiltonian describes finite motion 

for 0 < E< 1/6. To describe the nature of the trajectories in 
this model (as in any model with two degrees of freedom), it is 
convenient to introduce the standard plot of the PoincarC 
inter~ection~.'"~ of the phase space with the planex, = 0. If 
we eliminatep, by using the equation H (p ,  x) = E, where H 
is given by Eq. (7), and set x ,  = 0, then as coordinates on the 
resulting two-dimensional surface we can usex, andp, = x,. 
This means that any trajectory will be determined by its 
point of intersection with the chosen plane. Figure 1 shows 
the Poincart plot in the Htnon-Heiles model for E = 1/11. 
The boundary of the admissible region, which for small E is 
an oval determined by the condition E = (x: + x: 
- 2x:/3)/2 is the projection of the simple periodic solution 

We shall denote this periodic trajectory by the letter n-,. The 
letters n-, and r3 in Fig. 1 are the images of this trajectory 
under the transformation (12). For small E, all these three 
trajectories are stable; q, T,, and n-, are the hyperbolic part- 
ners corresponding to these elliptic trajectories. All these six 
trajectories arise (as we shall see below) as a result of break up 
of the resonance torus with N, = N, = 1. It follows from 
Birkhoff s theoremz0 that when the resonance torus breaks 
up elliptic and hyperbolic trajectories alternate, and the exis- 
tence of the supplementary symmetry (12) has the conse- 
quence that from the one resonance torus six trajectories are 
formed. It is also easy to prove the existence of the periodic 
trajectories n-, and T,, which are stable at small E. 

The trajectories a,-T, are the simplest periodic trajec- 
tories in the HCnon-Heiles model. There exist more compli- 
cated trajectories. We shall be interested in periodic trajec- 
tories surrounding the points n-, and n-,. Figure 1 shows some 
of these trajectories. These trajectories are characterized by 
two integers: the number of intersections with the PoincarC 

FIG. 1. The Poincart plot for the Henon-Heiles model for E = 1/11. 
Shown are the positions of the simplest periodic trajectories n-,-T, and the 
two trajectories with ( N , ,  N,) = ( 5 ,  4 )  and (8, 7). The continuous curves 
show schematically the separatrices of the trajectories .rr,-r6. The true 
picture of the separatrices, including their splittings, is complicated and 
we do not give it. The broken curves show schematically the section of the 
(nonexist) resonance tori in perturbation theory: the crosses represent hy- 
perbolic trajectories, and the open circles elliptic trajectories. 

plane and the number of revolutions around the point T ,  (or 
n-,). Below, we shall relate these numbers to the numbers N ,  
and Nz that characterize the resonance torus in perturbation 
theory. 

The mapping induced on the PoincarC plane by the tra- 
jectories of the Hamiltonian system are very similar to the 
explicit two-dimensional area-preserving mappings of the 
type (6), and the method used in Refs. 10 and 12 to calculate a 
formal integral for these mappings will be used to calculate 
the higher orders of perturbation theory for the supplemen- 
tary integral of Hamiltonian systems with two degrees of 
freedom. 

There exist different but related variants of perturba- 
tion theory in Hamiltonian The most popular 
perturbation theory, which can be used for any ratio of the 
frequencies of the unperturbed H a m i l t ~ n i a n , ' ~ ~ , ~  consists of 
using a sequence of canonical transformations 

with xi dp, + li dvi = d& ( p, 7) to reduce the considered 
Hamiltonain H (p ,  x) to the simplest possible form, the so- 
called normal form H (7, { ). 

For an irrational ratio of the frequencies,20 the normal 
form is a function of (7: + 6 : ) and (7: + 6 :), which is equi- 
valent to expanding the solutions of the equations of motion 
in a series of almost periodic functions: 

For a rational ratio of the frequencies, the normal form 
is more complicated, but for n = 2 is always integrable. We 
emphasize that the transformation (1 5), which reduces the 
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Hamiltonian to normal form, is itself specified in the form of 
formal asymptotic series, and it therefore does not follow 
from integrability of the Hamiltonian in normal form that 
the original Hamiltonian is integrable. The general theory of 
the reduction of a Hamiltonian to normal form is discussed 
in detail in Ref. 16. We give the result only for the HCnon- 
Heiles model (for which the unperturbed frequencies are 
equal). By means of polynomial canonical transformations 
of the type (IS), the HCnon-Heiles Hamiltonian (7) can be 
reduced to a normal form that is a function of the three varia- 
bles I,, I,, I, (and not four: T,, 77,, 11, 12): 

~ ( n ,  a )  = ~ ( 1 ~ .  I , , I , )  = C H . ( ~ .  E) 
n 

and 

where 
I,=r112fE12, 12=n22+E227 13=q1E2-q2E1. [I 8, 

To simplify the expressions, it is also convenient to introduce 
two further variables: 

11=qlq2+E1E2 and h2='12 (qlZ+ElZ+q22+E22), (19) 

which are related to I,, I,, I, by 

'1' (I l-12) "I,~+I,"='/~ ( I , + I ~ ) ~ = ~ ~ .  (20) 

It is readily verified that the Poisson brackets 
{Ii, h2) =O (21) 

for i = 1, 2, 3, 4. Therefore, any function H (I,, I,, I,) com- 
mutes with h ', and, therefore, h is an explicit supplemen- 
tary integral for the Hamiltonian in the normal form (17). In 
other words, the Hamiltonian in the normal form is integra- 
ble. 

There exists16 a simple algorithm for successive deter- 
mination of the coefficients of the canonical transformations 
(15) and all terms of the normal form. Some of the first terms 
of this expansion, obtained from the results of Ref. 16, are 
given in Appendix B [Eqs. (Bl) and (B2)]. In Ref, 16, the 
following definition is chosen for the supplementary inte- 
gral: 

I (p ,  x) =E-hZ. (22) 

We shall also follow this definition, although sometimes oth- 
er definitions are more convenient (see Refs. 15 and 17). If we 
express h in terms of the old variables, then for it it is suffi- 
cient to substitute li and 77i in the form of the expansions 
(Bl) in h = (v12 + + qZ2 + lZ2)/2, and we obtain an ex- 
pansion of the supplementary integral in a perturbation se- 
ries. The first three terms of this expansion are given in (B3). 

Since the Hamiltonian in the normal form (17) is inte- 
grable, it is in principle not difficult to find explicit solutions 
of the equations of motion and, in particular, expressions for 
action-angle variables. The corresponding expressions for 
the Htnon-Heiles model are given in (B6)-(B8). 

3. PERTURBATION THEORY FOR PERIODIC TRAJECTORIES 

The expressions of perturbation theory are formally 
valid for any ratio of the exact frequencies 0, and 0, [cf. 

(B8)]. According to these expressions, the trajectories of the 
considered problem always lie on two-dimensional tori de- 
termined by the conditions H = const and I = const. The 
question of whether such a perturbation theory is conver- 
gent (and meaningful) is more complicated. It is knowr~"~.~ 
that for the majority of Hamiltonians the series of this per- 
turbation theory are only asymptotic series. In accordance 
with the well-known Kolmogorov-Arnol'd-Moser 
the~rem, ' .~,~ it is possible to construct a convergent variant 
ofperturbation theory by ensuring, through the choice of the 
initial conditions, that the ratio 01/02 of the frequencies is a 
"good" irrational number for which 

for all m and n. Here, c and y > 2 are certain constants. This 
means that the irrational tori [tori on which 01/02 = irra- 
tional number satisfying (23)] are only slightly deformed by a 
small perturbation, and the trajectories on them are de- 
scribed as before by almost periodic functions of the type 
(16). The resonance tori, i.e., tori on which 

Q1=NtS2o, Qz=NzQo, (24) 

where N, and N, are mutually prime integers, are in the 
general case broken up, in accordance with Birkhoffs 
theorem,20 leaving only a finite number of periodic trajector- 
ies. The fate of the remaining tori for which O1/0, is an 
irrational number not satisfying (23) has been studied very 
little. 

Thus, for a rational ratio of the frequencies the expres- 
sions of perturbation theory describe a nonexist object-the 
resonance torus. Therefore, for periodic trajectories pertur- 
bation theory must be used with care. 

On the basis of the existence of the symmetry (12) of the 
Htnon-Heiles system, one can show that for sufficiently 
large N, and N2 this system has periodic trajectories satisfy- 
ing the initial conditions 

x, ( 0 )  =o, i, ( 0 )  =o. (25) 

On the PoincarC section we have chosen (see Fig. 1) these 
trajectories are represented by points passing through the 
abscissa. Using this property, we arrive at the following per- 
turbation theory scheme for periodic trajectories. We fix the 
value of the energy. We require that the initial values always 
satisfy the conditions (25). We construct the perturbation 
theory series by the manner described above. By the choice 
of x,(O) we attempt to satisfy the resonance condition 0,/ 
0, = N,/N,. Thus, we describe an actually existing periodic 
trajectory (and not a complete resonance torus); it is natural 
to assume that the perturbation theory (or some modifica- 
tion of it such as Newton's method7z8) applies and makes it 
possible to obtain convergent expressions for such a trajec- 
tory. Unfortunately, the author does not know of rigorous 
results on convergent approximations for periodic trajector- 
ies (in this connection, see Ref. 18). At the least, the method 
of successive canonical transformations used in the proof of 
the Kolmogorov-Arnol'd-Moser t h e ~ r e r n ~ , ~ . ~  cannot be as- 
sumed to hold for the description of periodic trajectories. 

The question of periodic trajectories is of interest in its 
own right and requires further investigations. 
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We use this scheme (for want of a better) to describe the 
periodic trajectories satisfying (25). For fixed energy we 
must, to satisfy the resonance condition (24), choose in a 
definite manner the value of the supplementary integral or 
the associated quantity R (p ,  x )  [see (B9)]. Using (B8) and 
(B7), we find that for this R must be equal to R,, where 

The conditions R = R,, E = const determine a two-dimen- 
sional resonance torus. As we said above, we shall seek only a 
periodic trajectory satisfying the condition (25). Using the 
explicit expressions for R [see (B7)] and E, we can readily 
find its approximate position. 

We denote by x,, and x,, the coordinates of the initial 
point of this trajectory (we recall that the other two coordi- 
nates vanish). Then in the lowest order, we obtain from (B6) 
and (B7) 

where 

[ (E+R,) / 2 ]  '", pz= [ (E-R,) / 2 ]  '". 

If necessary, it is not difficult to write down the following 
terms in the expansion of these quantities in a perturbation 
theory series using (44) and (45) for p, = p2 = 0. 

There exist different types of periodic trajectory. They 
differ from one another in their position on the Poincart 
plane. Some trajectories surround the elliptic (at low ener- 
gies) trajectories n-, and n-, (see Fig. 1). Others surround n-,, 
n-,, and n-,. In the following sections, we shall see that the 
most important for our purposes are the trajectories of the 
first type surrounding n-, and n-,. One can show that the 
difference N, - N, determines the number of revolutions 
around the point n-, (and n-,). The main contribution to the 
asymptotic estimates of the perturbation theory coefficients 
will be given, as for area-preserving mappings of the type (6) 
(see Refs. 10 and 12), by the trajectories that go round these 
points once. Such trajectories correspond to 

Nl-N,=*l .  (28) 
The number of intersections of such a periodic trajectory 
with the PoincarC plane is equal to the larger of the numbers 
N, and N,. 

Knowing one periodic trajectory, we can in general ob- 
tain two other trajectories by means of the transformation 
(12). Among the periodic trajectories are some for which the 
transformation (12) reduces to a shift in time: 

eimz ( t )  =z ( t+6) .  (29) 
In the following sections we shall see that precisely these 
trajectories are of interest to us. It is easy to show that if the 
property (29) is to hold it is necessary that 

wherep is an integer. Combining these conditions with the 
condition (28), we find that for the trajectories in which we 
are interested the number p must be odd. As we shall see 
below, the remaining trajectories will make an exponentially 
small contribution to the higher orders of perturbation the- 
ory, and we shall not discuss them. 

FIG. 2. Dependence of / A  I on the energy for various periodic trajectories 
in the Henon-Heiles model. The numbers give the values of (N, ,  N,) for the 
corresponding periodic trajectories. For (N, ,  N,) = ( 5 ,  4 )  we have given 
the value of A  for the elliptic ( - ) and hyperbolic ( + ) trajectories. 

In accordance with Birkhoffs theorem,,' the break up 
of a resonance torus with fixed N, and N2 gives rise to two 
types of trajectory-elliptic and hyperbolic. The arguments 
given in Appendix A and the results of numerical calculation 
for the HCnon-Heiles system (see Fig. 2) and for the area- 
preserving mappings (5), (6) (Refs. 10 and 12) show that for 
smallA wehave Id(+, +A(- , I  SA2 ,  whereA(-, andA(+,  
are the values ofA for the elliptic and hyperbolic trajectories, 
respectively. Therefore, for small A we can assume that the 
equation A, + , (E ) = - A ( _ , (E ) holds. 

We calculated A numerically for the periodic trajector- 
ies satisfying (28) and (30) with (N,, N2) = (2, I), (5,4), (8, 7), 
(1 1, lo), (14, 13). The results of the calculations are given in 
Fig. 2, in which we have plotted the dependence of log lA I on 
the energy for the HCnon-Heiles system. Some comments on 
the figure are appropriate. If at a certain energy there exists a 
periodic trajectory with fixed N, and N2, then with decreas- 
ing energy this trajectory will approach closer and closer to 
the trajectories n-, and rg (see Fig. 1). At the energy deter- 
mined by the condition P, = 0, where P, is the action type 
variable defined in (B7), this trajectory disappears, and A 
tends to zero, as predicted by Eq. (A14). This explains the 
logarithmic poles in Fig. 2. In accordance with what we have 
said above, we have given only the absolute magnitude ofA. 
When A is small, the difference between /A( + , / and lA( - , I is 
very small. In Fig. 2, we have given as an illustration lA( + , / 
and lA, _ , / for the trajectory (5,4) for fairly high energies. To 
determine the sign ofA, we calculate the monodromy matrix 
at a point on the abscissa (see Fig. 1) lying between the points 
714 and n-,. Then it is found numerically that the signs of A 
alternate, as is shown in Fig. 1 for two neighboring trajector- 
ies, and for the trajectory (5, 4) at low energies A > 0. 

For the numerical calculation of A we used the follow- 
ing procedure. Fixing the energy, we sought an initial point 
satisfying the conditions (25) whose trajectory intersects the 
PoincarC plane N, times (N, > N,) and passes once around 
the point n-,. 

Knowing this periodic trajectory, we solved numerical- 
ly the linearized equations (A2) with different initial condi- 
tions, and then determined the monodromy matrix in accor- 
dance with (A4). Since the quantities in which we are 
interested are small, the calculations must be made with high 
accuracy, which makes the calculations at large N, and N, 
difficult. 
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4. DETERMINATION OF THE SUPPLEMENTARY INTEGRAL 
OUTSIDE THE FRAMEWORK OF PERTURBATION THEORY 

To be able to speak meaningfully of the singularities of 
the supplementary integral, it is first necessary to determine 
it outside the framework of perturbation theory. There are 
various ways in which this can be done. We shall basically 
follow the arguments of Refs. 10 and 12. We note first that 
there is an obvious lack of uniqueness in a calculation of the 
supplementary integral by perturbation theory. Indeed, if 
I (p,  x) is some supplementary integral determined in the 
form of the series (lo), then F (I, E ), where E is the energy and 
F(u,  v)  is an arbitrary function of two variables that can be 
represented in the form of a double series in u and v, will also 
be a supplementry integral. One of the convenient methods 
of eliminating this nonuniqueness is to fix the value of the 
integral on the plane x,  = O,p, = 0, i.e., the function 

I(p1,0,xz, 0) = I 0  (pi, xz) (31) 

is assumed known. 
It is readily seen that, specifying the function I,( p,, x,), 

we thereby completely eliminate the above nonuniqueness. 
This means that any method of calculating I ( p, x) perturba- 
tively leads to a quite definite function I,( p,, x,) and, conver- 
sely, choosing a function Io(p,,  x,) compatible with pertur- 
bation theory, we can, in principle, uniquely determine all 
the remaining coefficients of the series (10). 

Now suppose we know the function Io(p,,  x,), i.e., we 
know the value of the supplementary integral on the plane 
x, = O,p, = 0. We consider the set of trajectories of the giv- 
en system that begin on this plane: 

and we set 
( 0 )  (0 )  

I (p ,x)=~o(p1 ,xz ). 

The function I (p, x) constructed in this way is defined at the 
points of the phase space that are the images of the plane we 
have chosen, and it is obviously an integral of the considered 
problem. Of course, there exist regions of the phase space 
that are inaccessible from the plane x,  = 0, p, = 0. Among 
them are, for example, trivial regions near a, and a, in Fig. 
1, these being associated with the existence of the C, symme- 
try (12) of the HCnon-Heiles system. To determine the inte- 
gral in these regions, we shall consider not only the trajector- 
ies (32) that occur in the definition (33) but also their partners 
obtained from (32) by the transformation (12). In additiorl, 
near some hyperbolic trajectories there exist regions that are 
not reached by the trajectories (32) for real x?' and pi0'. To 
determine the integral in these regions it is necessary to as- 
sume thatpy' and xr '  in (32) are complex numbers. Since we 
consider polynomial equations of motion, this complexifica- 
tion does not give rise to difficulties. 

By its construction, the function I (p ,  x) is, on the one 
hand, an integral of the problem and, on the other, its expan- 
sion in the series (10) is identical to the expansion obtained 
from the ordinary recursion relations [because the fixing of 
the function Io(pl ,  x,) uniquely determines all the coeffi- 

cients of the perturbation series]. However, nonintegrable , 
problems do not admit supplementary integrals with "rea- 
sonable" analytic properties, and we shall see below that the 
integral defined in (33) has singularities of a known form 
near every periodic trajectory of the Hamiltonian system. 
Since the set of such trajectories in the region of applicability 
r-0 (or E-+O) of perturbation theory is dense, the integral 
has singularities on a dense set, which leads to divergence of 
series of the type (10). 

The reason for these singularities is the intersection of 
the images of different points of the plane x,  = 0, p, = 0 
under the influence of the equations of motion of the consid- 
ered problem. One might think that the existence of such 
singularities is due to our definition (32), (33). However, be- 
cause an analytic supplementary integral does not exist in 
nonintegrable problems, all redefinitions of it outside the 
framework of perturbation theory must lead to a complicat- 
ed structure of singularities. A minimal requirement on all 
redefinitions is that the expansion of the integral in the per- 
turbation series should be identical to the ordinary expan- 
sion obtained from the recursion relations. It seems that our 
choice (32), (33) is one of the simplest and most natural. 

5. THE SINGULARITY OF THE SUPPLEMENTARY INTEGRAL 
NEAR A PERIODIC TRAJECTORY 

We consider a small neighborhood of a periodic trajec- 
tory to which there corresponds in perturbation theory the 
resonance torus (24) with certain N ,  and N,. If I (p ,  x) is an 
integral of the considered system of equations, it must, of 
course, remain an integral near this periodic trajectory as 
well. This means that it must also be an integral for solutions 
of the linearized equations of motion (A2). Knowing the 
monodromy matrix (A4), we can readily write down the gen- 
eral form of the integral of the linearized system. 

Indeed, let us consider in more detail the monodromy 
matrix for trajectories satisfying the initial conditions (32). 
The general form of the monodromy matrix determined at 
the point satisfying (25) is given in (B10). To investigate this 
matrix, it is convenient to go over to the variables 

ul=qi+~Ez, ~ z = p E i + v ~ ,  u~=vT)~+PE~,  ur=qz+'IEiI (34) 

wherep = by  + q, v = cy - b, and the remaining quantities 
are determined in (B10). In the lowest order, we find from 
(B 1 1) that 

In the variables ui, the monodromy matrix (B10) takes the 
form 

whered = Sp M - 4. The monodromy matrix of the period- 
ic trajectories of any Hamiltonian system with two degrees 
of freedom can be reduced to a similar form. It can be seen 
from (36) that there exist two simple invariants of the matrix 
M: 
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the trivial 

and the nontrivial 

For the two-dimensional area-preserving mappings of the 
type (5), (6) considered in Refs. 10 and 12, the first integral 
did not exist but only the second. 

The first integral has a very simple meaning. Since the 
energy for autonomous Hamiltonian systems is, of course, 
an integral of the motion, 

is an integral for the linearized system. For the Htnon- 
Heiles model, E is determined in (7),  and for trajectories sa- 
tisfying the conditions (25) this expression is equivalent to 
(37). 

The supplementary integral depends formally on four 
variables. However, because of the energy conservation it 
will be a function of E and three variables. Below, we shall 
consider it on an isoenergy surface, i.e., we shall admit only 
those variations for which SE in (39) is equal to zero. 

Like perturbation theory for Hamiltonian systems near 
a position of equilibrium, it is possible to construct a pertur- 
bation theory near a periodic trajectory. The nature of the 
series of this perturbation theory will depend on the eigen- 
values of the monodromy matrix, but in all cases when we 
are on an isoenergy surface the first term in the expansion of 
any formal integral in a series in the deviations from the 
initial point of the chosen periodic trajectory will be a func- 
tion of the quadratic form h ((7) defined in (38): 

If we take I (p ,  x) in this equation to be the supplemen- 
tary integral defined in (32), (33), we can readily find the form 
ofthe function f (h ). Indeed, on our chosen plane I ( p, x) is the 
fixed function I,( p,, x,) [see (33)l. Therefore, near any point 
on this plane we must have 

where 

in which 1:) = I,(x,,, x,,) is the value of the integral on the 
periodic trajectory. If we assume that I ( p ,  x) is defined in 
(22), then from (35) we find the value of k in the lowest order: 

Comparing (41) with (38) and (40), we find that 

Using the explicit form of the monodromy matrix around 
other points of the given periodic trajectory or simply using 
the invariance of I ( p, x) under translation along the trajec- 
tory, we can find the form of the singularity of the supple- 
mentary integral near an arbitrary point of the periodic tra- 
jectory on the isoenergy surface. 

To do this, we note that in perturbation theory each 
periodic trajectory lies on the two-dimensional torus deter- 
mined by the equations E = const and I ( p, x) = I, = const. 
Let (p!?), x!?') be some point of a periodic trajectory. On the 
three-dimensional equal-energy surface E = const, we intro- 
duce a triplet of mutually perpendicular vectors. We take the 
first parallel to the tangent to the periodic trajectory at the 
point, the second parallel to the I ( p, x )  gradient vector calcu- 
lated by perturbation theory, and the third vector to lie on 
the torus and be perpendicular to the other two. Then from 
(37) we can find that the singular part of the supplementary 
integral has the form 

where S,I is proportional to the distance to the periodic 
trajectory calculated along the second vector, and SS is the 
distance along the third vector normalized in such a way that 
for points satisfying the condition (25) we have SS = ku,, 
where k is given by (41). It is easy to find the first terms in the 
perturbation expansion of SS. If for the periodic trajectory 
N, and N, are large, then in the lowest order 

wherep, andp, are determined in (27), and @, and @, are 
angle type variables obtained by solving the equations of mo- 
tion by perturbation theory and they are normalized such 
that @, = @, = 0 for points satisfying (25). The lowest or- 
ders of perturbation theory for Qi are given in (B6); 
I, = I, (E) is a constant, specific to each periodic trajectory. 
For the correct description of the singularity, I, must be 
equal to 1. We introduced this additional constant to de- 
scribe the arbitrariness in the determination of the supple- 
mentary integral (see below). If we expand @, and @, near 
the periodic trajectory determined by the condition 
cos(N,@, - N,@,) = 1, we readily see that we obtain a cor- 
rectly normalized (as),. 

Note that cos(N,@,-N,@,) in (45) is a so-called reso- 
nance integral. It is a single-valued function of the coordi- 
nates and momenta and does not change under the influence 
ofthe equations ofmotion (since &, = a , ,  &, = a , ,  and.Q,/ 
a, = N,/N,). As a result, (SS), remains invariant under 
translation along the resonance torus. Thus, near every peri- 
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odic trajectory of the Hamiltonian system for which A # O  
the supplementary integral determined outside the frame- 
work of perturbation theory has a singularity of the type of 
the square root of a quadratic form that depends on the de- 
viations from the given periodic trajectory. Knowing A, we 
can explicitly find the coefficients of this quadratic form us- 
ing perturbation theory. 

6. CONSTRUCTION OF ASYMPTOTIC EXPRESSIONS FOR 
THE SUPPLEMENTARY INTEGRAL 

To obtain asymptotic estimates of the perturbation the- 
ory coefficients for the supplementary integral, it is neces- 
sary to construct a function having the above singularities 
near all periodic trajectories of the considered problem. Be- 
cause A is small, we can simplify this problem. We expand 
(44) in powers of A and retain only the first nontrivial term: 

This expression does not mean that near the periodic trajec- 
tory the integral has a pole. The correct singularity is indi- 
cated in (44). However, if we expand the expression (44) in a 
series in the coupling constant, the higher orders of this ex- 
pansion will be identical to the higher orders of the expan- 
sion (46). For our purposes, this is sufficient. Since the func- 
tion (46) has a pole type singularity near the periodic 
trajectory, the function 

I(a8' (p, 2) = - Ap (6s)' 
7 (I-Ip) E ' 

where the summation is extended to all periodic trajectories, 
will have such singularities near each periodic trajectory (A, 
in this expression is the value of A for the given periodic 
trajectory). 

In principle, the expression (47) solves the posed prob- 
lem. It has the correct singularities (in this connection, see 
the remark above) near each periodic trajectory and its ex- 
pansion with respect to the coupling constant gives us the 
asymptotic estimates in which we are interested. Before we 
turn to the explicit expressions, let us consider the normali- 
zation of the integral. As we mentioned in Sec. 4, the integral 
is determined up to an arbitrary function of two variables. 
We recover the integral from knowledge of the singularities 
with respect to the coupling constant. In such an approach, 
the arbitrariness in I (p,  x) is manifested as the possibility of 
adding to the function (47) some polynomial (or an entire 
function) in the coupling constant. Since this additional 
function does not have singularities at finite values of the 
coupling constant, the coefficients of its expansion in a pe- 
turbation theory series decrease with increasing order of the 
perturbation theory. Therefore, in this case nothing need be 
added to the function (47). However, since the function 
Io(pl ,  x,) in (32), (33) is to a large degree arbitrary, it could be 
that the suplementary integral will have "redundant" singu- 
larities due to the singularities of the function I,( p,, x,), i.e., 
the perturbation series for I,( p,, x,) will be only an asympto- 
tic series. An example of such a case is given in Ref. 12. It was 
to take into account this possibility that we introduced the 

additional constant I, (E ) in the definition of (SS )' in (45). We 
choose a constant I,, since the residue at the pole for I = I, 
must be the same along an entire periodic trajectory. 

To obtain asymptotic expressions for the perturbation 
theory coefficients, it is necessary to expand (47) in a series 
with respect to the coupling constant (in a series in homogen- 
eous polynomials). Only I ( p, x) in the denominators in (47) 
depends on the coupling constant. In what follows, it is con- 
venient to go over from the variables (p, ,  p,, x , ,  x,) to the 
variables (r, 8, p,, p,) in accordance with 

xi=pl sin cpl+pz sin cp2; p,=p, cos cpl+ ,pz cos cp,, (48) 
x2=p1 cos cpt-p2 cos cpz, pz=-pi sin cp,+p2 sin cp,, 

where p ,  = rcos8, p, = rsin8 [cf. (9)]. It is obvious that r 
plays the part of a coupling constant. 

We calculate first the difference (I-I, )E: 

where r,(B, p )  is the value r at which (I-I,), = 0 (or 
R = R, ). Using the expressions (26) and (B7), we obtain 

where 

up2 (0) = 
6 (Ni-N,) 

7 (N,+Nz) cos 20 ' 

gll  cos2 0-gzl sin2 0 
ri (0, cp) = - cos 20 

glz cos2 0-gzz sinz 0 5 3 
r2 (0, cp) = - +-r,2(0,cp)--. 

cos 20 2 8 

The quantities gU (8, p ) are determined in (B7). Note that 
there exist two values of r, corresponding to the two differ- 
ent signs of a,. Below, we shall label by the indices ( + ) and 
( - ) the quantities corresponding to the two signs of a,. For 
(a1 /&), , the lowest order of perturbation theory is suffi- 
cient: (aI/ar), = 7a:cos228 /3. Fixing the values of the an- 
gles 8, p,, and p,, we simultaneously fix the value of the 
resonance energy E, : 

where E,(8, p ) is given by (B5). 
As is clear from the derivation of (43) and (44), the resi- 

due at the pole for I = I, must be calculated on the periodic 
trajectory nearest the given point ( p ,  x) .  The conditions de- 
termining the periodic trajectory E = const, I = I, (or 
R = R, ) and N2@, - N,@, = 2rk, where k is an integer, fix 
p ,  andp, (or r, and 8 ) in the lowest order and give relations 
between p, and p,: N2p1 - N,p, = 277-k. To satisfy the last 
relation, we must add to p, and p, certain terms of order 
1/N K a;. Since a dependence on pi arises only in the higher 
terms in the perturbation theory expansion of h and E, the 
additional terms will have a higher order of smallness than 
the terms retained in (50) and (5 I), and they can be ignored in 
the obtaining of the principal term of the asymptotic expres- 
sions (see below). Therefore, by pi in (50) and (51) we can 
understand the given p, and p,. 

924 Sov. Phys. JETP 59 (5), May 1984 



It follows from (50) that a, is the real expansion param- 
eter for the periodic trajectories. For la, 1 to be small, two 
conditions must be satisfied: 

1) For fixed value of the difference N, - N2, the sum 
N, + N2 must be large; 

2) cos 28 must not be very small. 
The second condition eliminates the region of phase 

space near the periodic trajectories n - , a ,  (see Fig. I), which 
is natural, since we have not taken into account the periodic 
trajectories surrounding the elliptic points n-,*,. In addi- 
tion, we note that the third terms in the expansion of the 
action-angle variables (B6) and (B7) contain terms which in- 
crease on the approach to the trajectories n-, and n-,. There- 
fore, the expression (52) given below for I jf") applies in the 
complete phase space except for small (for small a, ) regions 
near the periodic trajectories n-,-T,. When obtaining an 
asymptotic expression for the supplementary integral in 
these regions, it is necessary to use other expansion param- 
eters. Thus, to describe the regions around the trajectories 
n-,-a, (a,-n-,) it is necessary to assume that cos 28 (respec- 
tively, sin 28 ) is small and instead of the series (10) to consid- 
er series with respect to these parameters. 

Note that for the model (1 1), using the transformation 
z(t )- z(t, we can always construct from one periodic trajec- 
tory another with interchanged N, and N,. To these two 
trajectories there correspond real and imaginary values of a, 
in (50). 

Taking into account Eqs. (49), (50), and (45), we find 

I?' ( p ,  r )  =C rnz?" (e, rp), (52) 
n 

where 

and a, (8 ) and rb* )(8, p ) were determined in (50). The two 
terms in the square brackets correspond to the two different 
signs ofa, in (50). The minus sign in front of the second term 
is due to the fact that in accordance with (A14), (A13), and 
(B7) the quantity A transforms under a, -+ - a, as follows: 

A (E;+') + (-1) N ~ + N 2  A (E;-) ) . 
Since we consider periodic trajectories for which N, and N, 
satisfy the conditions (28) and (30), the sum N, + N2 is an 
odd number, and ( - = - 1, i.e., the two different 
values of r, in (50) in this case correspond to two different 
types of trajectory-elliptic and hyperbolic (see Fig. 1). The 
@ (,'I and @ I* ) in (52) are angle type variables determined by 
perturbation theory. The first terms of their series expan- 
sions are given in (B6). In the calculations, one must substi- 
tute in place of r in these expressions the quantities rb* ) de- 

termined in (50). Equation (52) gives the explicit dependence 
of A on the energy. Namely, for the resonance values of the 
energy Eb* determined in (45) the traces of the monodromy 
matrix in (52) must be calculated. Knowing A for a given 
periodic trajectory as a function of the energy, calculated, 
for example, numerically as in Fig. 2, we can readily find 
directly from (52) the contribution of this trajectory to the 
higher perturbation orders. 

In principle, Eq. (52) solves the problem we have posed 
of calculating the higher orders of perturbation theory for 
the supplementary integral. However, the sum in (52) is tak- 
en over all periodic trajectories, and we must therefore con- 
sider what trajectories make the main contribution at large 
N l ,  N2 (and small a, ). 

For an estimate, we use the expression (A14) for A .  
Omitting all the correction factors, we find that the trajec- 
tory corresponding to N, and N2 makes a contribution to I jfs) 
proportional to 

Sn= (dP,)  N 2  (dP,) N l a , - n ,  (53) 
where in the lowest order [see (B7)] PI = a, cos 8, 
P2 = upsine. Bearing in mind that for the trajectories in 
which we are interested N, z N2 a N and a; = c/N, where 
c = 1 3(N, - N2)/(7cos28 ) 1, we find 

Sn(N) =exp (U(N) ), (54) 

where 

The function S, attains a maximum at N = N, deter- 
mined from the condition dU/dN = 0, from which we ob- 
tain a rough estimate for N, and S, (N, ): 

(55) 
It can be seen from these expressions that when q is of order 
unity the dependence of N, and S,, (N, ) on q is weak and the 
main contribution to the sum over the periodic trajectories 
in (52) is made by one trajectory, for which N = N, . 

It is clear from the expression for S, (N, ) that the main 
contribution for fixed sum Nl + N, is made by the trajector- 
ies with the minimal difference N, - N, = f 1. As we dis- 
cussed in Sec. 3, this condition means that the corresponding 
trajectory passes once around the point n-, (or r8). [Of course, 
the relation (30) must also be satisfied, since it is only in this 
case that the expression (A14) for A holds.] 

It is clear from the same estimates how many perturba- 
tion theory coefficients must be retained to obtain the princi- 
pal term of the asymptotic formula. Since r, a 1/N ' I 2 ,  in @, 
and @, it is necessary to take into account the first three 
terms, and since n a N, , three perturbation coefficients are 
also important in r, . In all the remaining quantities, the low- 
est order of perturbation theory is sufficient. 

The expression (52) is the main result of this paper. It 
relates the parameters of periodic trajectories to the higher 
perturbation theory coefficients for the supplementary inte- 
gral. Some of these quantities, such as r,, @,, @,, can be 
obtained by ordinary perturbation theory. Others, like A ,  
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must either be calculated numerically or estimated by means 
of expressions of the type (A14). 

A rough estimate for I, at large n can be obtained by 
combining (55) and (52): 

where we have taken into account only one periodic trajec- 
tory, for which N, + N,-2N, [and, of course, N ,  and N, 
satisfy (28) and (30)l. It would be interesting to compare the 
asymptotic expression (52) with the results of numerical cal- 
culation. Unfortunately, the results of numerical calcula- 
tions of the perturbation theory coefficients for the supple- 
mentary integral have been published only up to n = 8.16 It 
can be seen from (55) that the saddle point trajectory in this 
case will be the trajectory with (N,, N,) = (2, I ) ,  which ac- 
cording to the estimates lies outside the region of the pertur- 
bation theory (the expansion parameter for it is too large). 
The authors of Refs. 15 and 17 say that the method that they 
developed in these papers makes it possible to calculate the 
first 18 terms of the perturbation theory series, but results 
are not given. 

7. CONCLUSIONS 

In conclusion, we emphasize the following: 
1) The method proposed for calculating the higher or- 

ders of perturbation theory can evidently be used in any 
problem of classical mechanics (at least, with two degrees of 
freedom). We have used it to calculate the higher orders of 
perturbation theory for a supplementary integral, but it can 
be modified to obtain asymptotic estimates for other quanti- 
ties too, for example, to solve the equations of motion. 

2) The success of the method depends to a large degree 
on the possibility of obtaining asymptotic estimates for the 
monodromy matrix or for the higher coefficients of the 
Fourier expansion of the periodic solutions. These questions 
have so far been little studied. Analytic and numerical study 
of the properties of the periodic solutions of Hamiltonian 
systems is undoubtedly of great interest. If we restrict our- 
selves to asymptotic estimates for not too high orders of per- 
turbation theory (for example, n 5 20), the main contribution 
will be made by only a few periodic trajectories, the param- 
eters of which can be found numerically. This has all the 
more point for real Hamiltonian systems, for which the de- 
termination of very high orders of perturbation theory is a 
difficult and tedious task. 

3) It would be interesting to study the higher orders of 
perturbation theory for real problems of celestial mechanics 
and (or) the physics of colliding-beam accelerators, for 
which a large number of perturbation theory coefficients is 
needed. For example, many coefficients of the perturbation 
theory for the motion of the Moon are known (see the review 
of Ref. 13 and the references in it). One would believe that, as 
in simpler  problem^,^ allowance for the higher orders of per- 
turbation theory will make it possible to extend greatly the 
region of applicability of perturbation theory in classical me- 
chanics. For a fixed coupling constant, this means that the 

time during which the description of the motion by perturba- 
tion theory is admissible can be greatly increased. 

I thank V. L. Pokrovskii and Ya. G. Sinai for numerous 
helpful discussions and L. N. Shchur for valuable discus- 
sions and assistance in the numerical calculations. 

APPENDIX A: MONODROMY MATRIX OF PERIODIC 
SOLUTIONS OF A HAMlLTONlAN SYSTEM 

Let x$'(t ) andplO)(t ) be a periodic solution of the Hamil- 
tonian equations of motion (i = 1, ..., n) 

with period T: x$)(t + T )  = xlO'(t ), pj?)(t + T )  = p$)(t ). We 
set 

xi ( t )  = x!O' ( t )  + Ei  ( t )  , pi ( t )  = pcO' ( t )  + qi ( t )  

and linearize Eqs. (Al)  near the chosen periodic solution. 
Retaining the terms linear i n l i  and gi , we obtain a system of 
equations for the deviations from the periodic trajectory 
(equations in variations): 

All the derivatives in these expressions are calculated on the 
chosen periodic solution and are periodic functions with pe- 
riod T. We introduce the quantities !Pa (t )(a = l ,  ..., 2n) such 
that 

Y, ( t )  =gi ( t )  for a=2i-1, Y, ( t )  =q, ( t )  for a=2i. (A3) 

If T is the period of the functions xlO) andp$) and, therefore, 
of the coefficients in (A2), the monodromy matrix M,,(a, 
b = 1, ..., 2n) of the linear equations (A2) is determined by 

By virtue of the conservation of phase space, Det M = 1. The 
main quantity in which we shall be interested is the trace of 
the monodromy matrix or, more precisely, 

One can show that when the period T-+CC the quantity A 
decreases faster than any fixed power of the coupling con- 

- - 

tant, and therefore it is difficult to obtain an asymptotic 
expression for A.  

We expand the given periodic solution in a Fourier se- 
ries: 

where 0, = 2a/T. As was done in Ref. 12 for area-preserv- 
ing mappings, it is possible to related to the Fourier compo- 
nents of the given periodic solution. 

We give without derivation the leading term of the cor- 
responding expression for n = 2: 
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where 

and @(mi, ni) is a polynomial in x i  that is associated with 
the particular form of the potential energy of the considered 
problem. For the HCnon-Heiles model, 

where x!,, =xiN, + ,,,?, and B and C are certain quantities 
that can be calculated by ordinary perturbation theory. For 
the Hinon-Heiles model, the first terms in the expansion of 
these quantities are 

N, and N2 are the integers that characterize the resonance 
torus on which the given periodic trajectory lies in accor- 
dance with perturbation theory (see Sec. 3). Equation (A8) 
withp = + 1 for the HCnon-Heiles model is valid under the 
condition 

N,+N2=0 (mod 3).  (A l l )  

Periodic trajectories for which N, and N2 do not satisfy this 
condition have a A much less than (A7), and they are not 
important for our purposes. Equations (A7)-(A10) enable us, 
if we know the Fourier components of the periodic solution, 
to calculate the trace of the monodromy matrix. Since simple 
iterative methods can be used to determine the Fourier com- 
ponents of the periodic  solution^,'^ this may be the most 
convenient method of numerical calculation of the trace of 
the monodromy matrix. 

To obtain analytic expressions for A, it is necessary to 
know the high (for N,, N,--+CO) Fourier components of the 
considered periodic solution. Unfortunately, little is known 
about the properties of periodic solutions of Hamiltonian 
systems, and we restrict ourselves here to rough estimates. 

One can give arguments that suggest that for xi, ,  the 
following estimate is natural: 

in which the form of the function g")( y,, y,) is fixed and the 
quantities a, are proportional to the action type variables of 
the considered problem: 

where d is a constant. For the HCnon-Heiles model, the first 
terms in the expansion of P, are given by (B7). 

Substituting (A12) and (A13) in (A7), we obtain 

AN, .  N1=DN1N2aiN2a~N1,  ('414) 

where D is a constant. This expression, like (A7), is valid 
when the condition (A1 1) is satisfied. For other N, and N2, as 
in the similar cases for area-preserving mappings,10.12 the 
value of A is much smaller and, roughly speaking, propor- 
tional to the square of (A14). Because of the roughness of our 

estimates, we cannot rule out that D in (A14) and d in (A13) 
are certain slowly varying functions of E and (or) N, and N2. 

For small N, and N2, we can calculate numerically A 
and make a comparison with (A14). Figure 2 gives the results 
of calculation ofA for a number of trajectories. For example, 
for (N,, N2) = (2, 1) it is found numerically that in the range 
of energies for which O< /A2,, 1 < 1 the dependence A (E ) can 
be well approximated by the straight line 

A,,, (E) =-392(E-0.1487), (A 15) 

which does not contradict (A14). 
For large (N,, N2), reasonable agreement between the 

estimate (A14) and the results of numerical calculation can 
be achieved for D z  0.1 and d z 4. 

APPENDIX B: PERTURBATION THEORY FOR THE HENON- 
HEILES MODEL 

Ifp,,  xi (i = 1, 2) satisfy the Hamilton equations with 
the Hamiltonian (7), then the quantities canonically conju- 
gate to them: 

satisfy the Hamilton equations with the Hamiltonian 

where I, and h are determined in (18)-(20).16 (For our pur- 
poses, the terms of higher order in c, 17, and H are not need- 
ed.) 

The first terms in the expansion of the supplementary 
integral (22) in a perturbation series have the following 
form2': 
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where 

The quantities I, are determined in (18)  and (19)  with re- 
placement of (7, & )  by ( p ,  x ) ;  E is the energy: 
E = ( p 1 2  + p 2 2  + x I 2  + x2' + 2x12x2 - 2 ~ ~ ~ / 3 ) / 2 ;  0 (1 7 ,  

means that in (B3) the homogeneous polynomials to sixth 
degree inclusively are correct. 

To solve the HCnon-Heiles equations, it is convenient to 
go over from the variables ( p ,  x )  to the variables (r ,  8, p , ,  p,) 
in accordance with (48) .  We begin by rewriting the energy (7) 
in the new coordinates: 

E = f  +r3E3 (0, rp), (B5) 

where 

E, (0, cp) =-:/, cos2 0 cos 3qi+cos2 0 sin 0 cos (2q,-cp2) 
-cos 0 sin2 0 cos (2rp2-cp,) sin3 0 cos 3 ~ .  

We give without derivation the first three perturbation the- 
ory terms for the action-angle variables. The angle type var- 
iables are 

@l=qi+rfil(07 cp)+1-2f,~(0, cp)* 

@2=cpz+rfzi (0, cp) f r2fz2(0, cp), 
where 

1 
f i i  (0,cp) = f i  cos 0 sin 3cpi-sin 0 sin(2cpi-cp2) 

1 sin2 0 +-- sin(2cp~-cpl), 
2 cos 0 

1 cos2 0 
f2l(O7 cp) = - -- sin(2cpl-cp2) + cos 0 sin(2cp2-cpl) 

2 sin0 
1 -- sin 0 sin 3 ~ 2 ,  
6 

1 1 
f lz  (€49) = - -cos2 0 sin 6cpi +-sin 20 cos 3cpl sin(2cpl-cpz) 

72 6 

cos 3cpt sin(cpi-2cpz) 
2 

sin3 0 
- s i n ( 4 ~ 1 - 2 ~ 2 ) )  - -sin (&pi-p2) cos (p1-2cp2) cos 0 

1 sin28 +-- (11-2 cos2 20-3 cos 20)sin(3cp1-3cp2), 
18 cos2 20 

1 
fzz (0,cp) = cosZ 8 cos 3cp2 sin(cp2-2cpl) 

- sin (4~2-2cpi)) 

1 1 + -sin 20 cos 3~ sin (2cp2-cp*) - - sin2 0 sin 6 ~ 2  
6 72 

c0s3 0 I c0s4 0 +- cos (2cpl-cpz) sin (~1-292) + sin (4cps-2~z) 
sin 0 

1 sin20 
(14-2 cos2 20+3 cos 20) sin (3cp1-3qz). 

18 cos2 20 

The action variables (canonically conjugate to @ ,  and @, are 
P : and P y') are 

where 

1 
gll (0, cp) = - - cos 0 cos 3cpl+sin 0 cos (29-cp2) 

6 

sin2 0 +- cos (cpi-2~2) 7 

2 cos 0 

c0s2 0 
g21(0, cp) = - cos (cp2-2cp1) 

5 1 sin 0 cos 20 
gi2 (0, cp) = - - cos2 0 + - sinz 0 - 

24 2 
cos (cpl+cpZ) 

cos 0 

1 sin4 0 sin3 20 cos (3cpi-3q3,) +-- + 
8 c0s28 12 cos 20 cos2 8 

1 cosbO +cos 8 cos 20 
~ 2 2 ( ~ 1 c p ) = - 7  8 sin 0 

cos (cpl+cp2) 
sin 0 

5 -- I sin3 28 cos (%1-3cp2) 
sinZO+-cos20- 

24 2 12 cos 20 sinz 0 

The equations of motion in the action-angle variables are 

dmildt=Q,, dP,/dt=O, (B8) 

with the frequencies 

and R = P :  - P : ,  h 2 =  P :  + P i  [ h 2  was determined in 
(B.3) ] .  Also helpful is the expression relating I ( p,  x )  in (B3) to 
Eand R :  

We need the general form of the monodromy matrix of 
periodic trajectories satisfying the initial conditions (25) .  Us- 
ing the symmetry (13) ,  we can show that the monodromy 
matrix at this point must have the form 
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where 

in which x,, and x,, are the coordinates of the chosen peri- 
odic trajectory. In the lowest order, they are given by Eqs. 
(27). The parameters b, c, q can be expanded in an ordinary 
perturbation theory series. The first terms of this expansion 
are 

where T is the period of the given trajectory. 
The properties of A = Sp M-4 were discussed in Ap- 

pendix A. 

"We shall not here discuss the connection between Hamiltonian systems 
and area-preserving mappings. For this, see, for example, Ref. 5. We 
merely mention that these theories have much in common but the dimen- 
sion of the phase space at which the phenomenon of nonintegrability 
arises is at least four for autonomous Hamiltonian systems and only two 
for area-preserving mappings. This reduction in the dimension greatly 
simplifies the calculations and is one of the reasons why area-preserving 
mappings are considered as examples. In addition, study of mappings of 
the type (6) is also of independent interest, since such mappings arise in 
the study of the motion of charged particles in colliding-beam accelera- 
tors." 

"The sign of term I (185) in Table IV of Ref. 16 must be changed. 
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