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The jump of the conductivity anisotropy in a transition from a Peierls dielectric into a domain 
phase is investigated. It is shown that in the domain phase the conductivity-anisotropy parameter 
can reach anomalously large values a = u,/uil % 1. The collective contribution made to the con- 
ductivity by the domain superstructure is considered. It turns out that the electrons participating 
in the collective conductivity constitute a fraction A,/E, of the total. 

INTRODUCTION 

The possible existence of solitons, unique quasiparticles 
with charge 0, e and spin + 1/2, 0 in quasi-one-dimen- 
sional organic conductors has recently attracted much inter- 
est and study.lW3 This problem was investigated in most 
theoretical papers in a purely one-dimensional formulation 
(an isolated conducting chain). The mathematical formalism 
developed within the framework of the one-dimensional ap- 

in detail the features of the behavior of the conductivity of 
the new phase in a constant electric field (both longitudinal 
ull and transverse u, .) At low temperature we find a jump- 
like behavior of the conductivity anisotropy parameter 
a = u,/ull following a (pressure) transition into a new 
phase, as described qualitatively in Ref. 8, and discuss also 
the dragging of the investigated domain superstructure by 
the electric field. 

proach3 has made possible the solution of essentially nonlin- 
ear problems. I. THE MODEL 

This mathematical formalism was generalized in a nat- 
ural manner in Ref. 4 to include the more realistic case of 
quasi-one-dimensional conductors in which, on the one 
hand, an incommensurate superstructure is made possible 
by the incomplete superposition of the curved Fermi sur- 
faces (tunnel ~ve r l ap ) ,~  and on the other hand, as shown in 
Ref. 4, this structure can take the form of domain (soliton) 
walls. In contrast to the purely one-dimensional 
this structure corresponds in the quasi-one-dimensional case 
to a new thermodynamically stable phase in addition to the 
usual possible phases (metal, insulator). Although the only 
case investigated theoretically to date is that close to com- 
mensurate (1:2), there are arguments in favor of the assump- 
tion that a domain phase can exist also in incommensurate 
quasi-one-dimensional semiconductors. As for the purely 
one-dimensional result, as applied to polyacetylene (CH), 
they point to the correct direction in the treatment of the 
experimental facts.6 Many unanswered questions, however, 
still remain, particularly that of the role of the "three-dimen- 
sionality" of the electron spectrum. We consider below, just 
as in Refs. 4 and 5, the problem with a weakly three-dimen- 
sional electron dispersion and expect therefore a domain (so- 
liton) superstructure to be feasible as a phase in thermody- 
namic equilibrium. We repeat once more that for 
mathematical reasons we investigate hereafter only the com- 
mensurate case. The observations already made, however, 
point to the existence of an analogous domain superstruc- 
ture in an incommensurate charge-density wave.' The phys- 
ical applications of our results will be discussed at the end of 
the article. 

Our primary purpose is to study the possible physical 
manifestations of the domain superstructure that appears in 
quasi-one-dimensional semiconductors. Principal attention 
will be paid below to transport phenomena. We investigate 

We use in all the calculations that follow the previously 
i n t r o d u ~ e d ~ . ~ ~ ' ~  simplified physical model. We assume thus 
that in the metallic state the electron spectrum is character- 
ized by almost flat Fermi surfaces near & p  ,, curved as a 
result of the finite value of the tunnel overlap integral on 
neighboring chains: 

where the form of the function t ( p,) = t f ( p,) is not speci- 
fied, and t = maxl t ( p,)j. In other words, this means that we 
assume the presence besides the one-dimensional electron 
motion along the chains that make up the quasi-one-dimen- 
sional conductor, of a small but finite probability of electron 
hopping from one chain to another ( t(E,, where E F  is the 
Fermi energy). 

As for the other lattice properties, we assume them to be 
essentially three-dimensional, i.e., we assume that in the ini- 
tial phonon spectrum 

coo2 (k) =mO2(2p , ,  0) + A 0 0 2  ( 2 ~ 3 ,  k ~ )  

the dispersion is not small Am: - m i .  It is clear further that 
at low temperatures T and at a sufficiently small three-di- 
mensionality of the electron spectrum t the conductor con- 
sidered should be in the Peierls dielectric state. The three- 
dimensionality of the phonon spectrum ensures in this case, 
according to Ref. 11, smallness of the fluctuations and the 
possibility of neglecting specific one-dimensional effects 
outside the vicinity of the phase transition, 

1 A T I T ,  I > g 4 m 0 2 1 A c o o 2 ~ 1 .  

The results of Refs. 4 and 5 show, however, that the metallic 
and dielectric phases are not the only ones possible in the 
model considered here. At T = 0, in particular, a (pressure) 
phase transition is possible from the dielectric to the domain 
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FIG. 1. Dependence of a soliton structure A,(x)  on the coordinate x along 
the chains of a quasi-one-dimensional conductor. 

phase. Let us dwell here briefly on the main properties of the 
latter, the more so since this will be needed subsequently. 

In contrast to a Peierls dielectric, the lattice deforma- 
tion in the domain phase is inhomogeneous 

D (r) ad, (x)sin(2p Fx), 

where 

A, (5) = (E+-E-)sn[ (E+- tE- )  (x-xo), 

is the so-called "inhomogeneous gap" of the one-dimension- 
a1 problem3 and E * are the band parameters (see Fig. 2). 

The spatial dependence (2) of the gap on the coordinate 
x along the chains of a quasi-one-dimensional conductor is 
in essence a periodic incommensurate structure of solitons 
and antisolitons (Fig. 1). We note that in the plane perpen- 
dicular to the chain the lattice is not deformed, as a result of 
the strong dispersion of the electron-phonon interaction 
constant -g(O) - g(k, ) > 0. 

As for the electron spectrum of the domain phase, in the 
presence of the lattice deformation (2) it can be represented 
as the sum 

E (P) = E ( p , , )  -t(pJ, (3) 

where E is the spectrum of the purely one-dimensional 
motion in the field of the indicated deformation3 (Fig. 2). It is 
assumed next that the electron bands (3) do not contain elec- 
tron-hole pockets (in other words, the lower band 
E < - E + lies entirely below the chemical potentialp, and 
the upper E > E + , respectively, entirely above). The central 
band - E- < E < E- should, since the number of particles 
is the same in the dielectric and domain phases, be on the 
average half-filled (Fig. 3): 

FIG. 2. Electron spectrum of one-dimensional soliton structure A,(x);  the 
wave vector is shifted by 2p,. 

FIG. 3. Filling of the central band of the spectrum at a finite band width 
2E-;  the doubly filled states are shaded. 

We present now the main  result^^,^ concerning the fea- 
sibility of a transition from the dielectric to the domain 
phase. In the limit of widely spaced domain walls v .N<A, at 
T = 0 the energy of the domain phase relative to the energy 
of a homogeneous dielectric was found there to be 

2Ao A W=NWd+ Cd exp - - ( N u p ) !  

where N = Ao/ln(4A,/E-) is the density of such walls, A, is 
the gap in the dielectric, S, is the cross section area of the 
Brillouin zone, and Cd is a certain coefficient. The energy 
Wd of one domain wall contains, besides the positive soliton- 
creation energy 2A,/a (Ref. 3), also a negative integral con- 
tribution from the function f ( p,), due to the three-dimen- 
sional character of the electron motion. In fact, owing to the 
hopping of the electrons between the chains, the soliton en- 
ergy levels make up a band in p, and the system energy is 
lowered by the redistribution of the electron energies (Fig. 3). 

At a certain value of the parameter t = t * -A, the do- 
main-wall formation energy vanishes. For a wide class of 
functions f ( p,), the domain walls are exponentially repelled 
at t = t * (C, > 0). In this case, as will hereafter be assumed, a 
second order phase transition takes place at t = t *. 

2. LONGITUDINAL CONDUCTIVITY 

The question of the conductivity of commensurate qua- 
si-one-dimensional conductors in the domain phase can be 
posed in simplest fashion at low temperatures (T = 0), where 
the impurity mechanism of resistivity predominates. We 
consider in this section the conductivity all along the chains 
in a weak electric field, and assume that the domain super- 
structure is "pinned' by impurities [i.e., the pinning forces 
fix the origin xo = const in (2)]. We note that at an arbitrary 
form of the function t ( p,) of (3) the problem is quite compli- 
cated. The physically simplest and most interesting case cor- 
responds to the conditions at the threshold: starting from the 
side of the dielectric phase (E-  = 0) and varying the param- 
eter t (e.g., using external pressure), we create conditions for 
a transition from a dielectric to the domain phase. In the 
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FIG. 4. "Crossing" corrections to the Green's functions for scattering by 
impurities. 

vicinity of the transition point we have E-(A, and the do- 
main walls are separated by large distances Lo. A qualitative- 
ly new phenomenon appears in this region, viz., an anoma- 
lously large jump of the conductivity anisotropy parameter 
a = ul /uI, . The anomalous behavior of the ratio a, /all 
might be used in principle to observe experimentally the in- 
vestigated phase transition. 

Thus, if the superstructure is fixed, the electric resis- 
tance is due to scattering of the electrons of the central band 
- E- < E ( pl l  ) < E- by impurities. The possible corrections 
to the electron Green's function, necessitated by this scatter- 
ing, are shown in Figs. 4 and 5. We shall consider the limiting 
case of a very pure quasi-one-dimensional conductor, name- 
ly the case when the reciprocal scattering time satisfies the 
condition l/r,(E-. This condition leaves out a large region 
of variation of the central electron band, 1/r0(E - (A,, but 
simplifies the problem substantially. Thus, first, we can ne- 
glect the "crossing" corrections of Fig. 4 (they are of relative 
order l/rOt - 1/74,), and hence neglect all the specific one- 
dimensional effects connected with localization. Second, we 
can neglect the distortion and smearing of the band structure 
of Fig. 2 due to the presence of impurities, and calculate the 
conductivity in principal order in T. This has reduced the 
problem to a determination of the damping time T(E ) of the 
central-band electrons, a procedure corresponding to the ki- 
netic-equation approximation. At small E(A, the damping 
time T(E ) depends little on the energy E, and we shall calcu- 
late T below for a single domain wall. According to the dia- 
.grams of Fig. 5, the damping time is expressed in this case by 
the formula (the mathematical details of the derivation are 
given below): 

FIG. 6 .  Simplest diagrams for the current. 

and integrating with respect to x and p, , we obtain ultimate- 
ly 

1  2nAo 
-=- uo2 $ dl 

z 3vp , 2nIvL(pL) l ' 

We have introduced in (5) the transverse velocity of the elec- 
trons on the three-dimensional Fermi surface, and the inte- 
gration is along a contour I defined by the condition 

We note that since the phase transition takes place at t-A,, 
the damping time of the electrons in the central band is of the 
same order as in an anisotropic metal: 7-7,. 

We proceed now to calculate the longitudinal conduc- 
tivity. Thus calls, in principle, for summation of a ladder 
diagram series whose first terms are shown in Figs. 6 and 7 in 
the coordinate representation. Since only the poles of the 
Green's function are significant, the calculation of these dia- 
grams differs little mathematically from the procedure of 
calculating T(E ). Here and above, in the derivation of (5), we 
have used the fact that if there are no impurities the wave 
functions of the electrons in the central band are known3 and 
can be written in the standard form 

= $ ( + ) E ( x )  exp ( i p F x )  + $ c - ) E ( x )  exp ( - i p F x ) ,  

We shall need also equations1' that relate the functions u, 

~ P . L  and v, : fir=-4nu.' Jdxl$.(x) l 4  In1 {J - i i ;E j ; [ t (PL) f  is]-'}, 

where n is the impurity density and u, is the amplitude of the 
+ + -  + +-- scattering by the impurities (we assume for simplicity that /T1'4 

I - 
I the scattering is isotropic, i.e., the amplitude does not de- 

+ 

pend on the wave vector p). Substituting in this expression -+ 

the wave function of the soliton 

FIG. 5. Possible corrections, in scattering by impurities, to the diagonal FIG. 7. First terms of the "ladder" series of diagrams corresponding to: 
( G + + ,  G - - )  and off-diagonal (G +-, G  - + )  Green's functions that de- a-scattering by 2p,, &scattering with umklapp processes, c-scatter- 
scribe an electron subsystem in the presence of the superstructure (2).  ing by 0. 
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uE ( x )  =uE ( x )  [ - iEAs ( x )  *r" ( E )  1 [p ( x )  -E2]  - I ,  (6 ' )  

and expressions for the moduli of the wave functions 

In (6 ' )  and ( 6 " )  we have put 

r ( E )  = (E+2-E2)  (E- ' -E2) ,  

E + Z + E - 2 - 2 y ( ~ )  = A s 2 ( x )  +ASr  ( x ) ,  A ( E )  = (E2-Y  ( x )  >, 

where (...) denotes the mean value of a function and L is the 
length of the system. It is obvious from the diagrams of Figs. 
6 and 7 that the problem consists of simplifying the products 
of four wave functions of the central-band electrons, some- 
thing already done when T ( E )  was determined in ( 5 )  for a 
particular case. 

We return now to diagrams 7a, b, and c. We note that 
they contain combinations of electron Green's functions of 
the type G + + G + +  - G + - G - +  or 
G - - ~ - -  - G-+G+-. When summing over the energies 

in the Green's functions only terms corresponding to the 
same energy need to be retained, so that the indicated combi- 
nations can be easily calculated with the aid of (6 ' ) .  As a 
result we have 

G++ ( x f )  G++ ( f  x) -G+-  ( x Z )  G - +  (51)  =G- -  ( x f )  
XG-- ( Z x )  -G-+ ( x Z )  G + -  ( E x )  =constmE-', 

i.e., they do not depend on the coordinates and are small to 
the extent that E '- is small. Consequently, the diagrams 
considered are small as E 2- and contain no dependences on 
the external coordinate x .  The diagrams of Fig. 6 ,  in turn, 
also contain the small parameter E '- , i.e., they are of the 
same order as the diagrams of Figs. 7a, b, and c. For a correct 
calculation of the longitudinal conductivity we must there- 
fore sum an infinite ladder-diagram series. It is nonetheless 
physically clear that this summation will lead only to re- 
placement of the damping time T from (5) by the transport 
time 7,. Moreover, at the amplitude u( p)=uo chosen by us 
for electron scattering by impurities, the diagrams of Figs. 
7a, b, c vanish at any rates, and we confine ourselves below to 
calculation of the simplest "loops" of Fig. 6 :  

X [G,++ ( x f ,  p,) GA++ ( f x ,  P I )  

+GR-- ( I%,  pL)  GA-- ( E X ,  pL) -G,+- ( x E  p,) 
X Ga-+ ( 5 5 ,  pL) -Ga-+ ( x Z ,  P I )  G A + -  (Exr  P I )  1, (7) 

where G, and G, are respectively the retarded and ad- 
vanced Green's functions, and En is the external electric 
field. We now substitute in ( 7 )  the expressions for the Green's 
functions in terms of the wave functions: 

e2 dp ,  [uEa  ( x )  V E  ( x )  +vEa ( x )  U E  ( 5 )  ] [ uEW ( 5 )  V E  ( 5 )  + V E .  (2) uE(E) ] j l l ( x )=zuR2  JwJ 
[ -E+ t (p , )  + y + i / 2 z ]  [ : ~ + t  (p , )  S y - i / 2 z ]  (7 ' )  

-E-<E<E. 

It is easy to show with the aid of (6 ' )  that Thus, near the transition from the dielectric to the domain 

UE* ( x )  V E  ( x )  +VE* ( 5 )  U E  ( x )  = VEILVF, phase (T = 0) the longitudinal conductivity is exponentially 
small, and if the soliton density N were increased to A ~ v ,  

where v~ = v ~ r " 2 ( E  ) / A  (E ) the longitudinal of this conductivity would reach the usual values a,-e2rov,S, 
the central-band electrons, so that after integrating the a quasi-one-dimens~onal metal. substituting in ( 8 )  the 
expression (7 ' )  with respect top, we obtain for the conductiv- expression for E- ,  we get 
ity 

which reduces, as usual, to integrating the square of the cor- 
responding velocity projection over the Fermi surface. The 
state density in the central band is3 

dp l l l dE=A ( E )  lnvFr'" ( E )  , 
so that we obtain ultimately 

where T is given by ( 5 ) .  
We note that ( 8 )  contains a very strong dependence on 

the domain-wall density N. According to Ref. 3, the band 
parameter E -  decreases exponentially as N -+ 0: 

E-=4Ao e s p  (-Ao/uFN). 

Ao' 
oll=32ezz - exp 

dl 
N (8 ' )  

This drastic behavior of a,, has a simple physical cause: 
at low domain-wall density N the bound soliton states de- 
crease exponentially, 

$s ( ~ ) - ( A O / ~ U F ) ' ~  exp (-Aox/z; ,) ,  

therefore the conductivity is proportional to the square of 
the overlap of the wave functions and decreases exponential- 
1yasN-0. 

3. JUMP OF CONDUCTIVITY ANISOTROPY 

It was shown in the preceding section that the longitudi- 
nal conductivity depends strongly on the domain-wall den- 
sity N near the phase transition. As for the transverse con- 
ductivity a,, it contains no exponential factors, since it is 
determined by the conductivity inside the domain walls and 
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depends little on the overlap of the soliton states. In band 
language this means simply that the transverse component 
of the electron velocity on the Fermi surface 

V L ( P L )  =-grad, t ( p L )  1 ,(,A,--, 
depends weakly on the exponential band parameter E-. 

Thus, to find a, it suffices to know the value of the total 
current I, inside an individual domain wall and then multi- 
ply it by the density of such'walls. We note that at the scatter- 
ing amplitude chosen by us, which does not depend on p, , 
there is no need for summing a ladder diagram, and the den- 
sity of the transverse current is given by 

X GAS ( 5 5 ,  plj, (9) 

where v, is the projection of the electron velocity on the 
external field E n .  Rewriting the Green's function 
G (, , (x2, p, ) of a single soliton in terms of its wave function 
$,(x) and integrating with respect to p, and 2, we obtain 

Next, integrating the current density (9') with respect to x 
and multiplying the result by the density N of the domain 
walls, we obtain ultimately 

It can be seen from (10) that near the phase transition we 
have 

ol-NvpoollAa- ( t l E r )  ' 0 0 ,  

where a,, is the transverse conductivity of a quasi-one-di- 
mensional metal. For a developed domain superstructure, 
when N-Adv,, the transverse conductivity a, could again 
have the same value as in the metallic phase. 

From the results (7)' and (10) follows a certain qualita- 
tively new phenomenon that might help observe the dielec- 
tric-domain phase transition. At low but finite temperature 
the dielectric phase contains only thermally activated elec- 
trons, and although both conductivities (aL and a,, ) have 
additional smallness, their ratio is of the usual order of mag- 
nitude: 

ad= (olio,,) d- (tIEF) '- ( AOIEF) '. 
Assume now that the dielectric is subjected to an external 
action (pressure) such that at a certain value of the external 
parameter the condition for spontaneous production of do- 
main walls sets in.4 With further change of pressure, a loose 
periodic structure of domain walls is produced. The conduc- 
tivity anisotropy in the new phase, near the transition point, 
is according to (8') and (10') 

a ( N )  - (NuF/EF) '  esp  ( ~ & / N U F ) .  (11) 

A feature of Eq. (1 1) is that as N -t 0 the conductivity-an- 
isotropy parameter a ( N )  -t cc . In other words, at the phase- 
transition point (N = 0) the conductivity anisotropy under- 
goes a jump from its value a, -(AdEF)2 in the dielectric 
phase to an anomalously large value. 

FIG. 8. Dependence of the anisotropy parameter a = u,/u, on the pres- 
surep; a phase transition takes place at the pointp* and the parameter a 
jumps abruptly. 

Our equations are quantitatively valid if l / r o (E~(Ao  
(we did not consider the case E- 5 l /~ ' .  We then obtain for 
the conductivity-anisotropy jump the estimate 
a(0) > A :ro2/E :) 1 for sufficiently pure quasi-one-dimen- 
sional conductors. It is physically obvious, however, that the 
phenomenon itself does not depend on this approximation. 
None of the unaccounted-for mechanisms prevents a from 
being large as T, N + 0. 

The behavior of the conductivity anisotropy as a func- 
tion of an external parameter (pressure) is shown schemati- 
cally in Fig. 8, and in a developed domain structure we have 
a -ad - (AdE,)'. 

To conclude this section, we note that the phenomenon 
indicated is quite general and is apparently independent of 
any concrete model assumptions. Moreover, a similar jump 
of the anisotropy should be observed also in a transport 
phenomenon such as the Hall effect. 

4. EFFECT OF AN ELECTRIC FIELD ON A DOMAIN (SOLITON) 
SUPERSTRUCTURE 

We dwell now on the possibility of dragging of the do- 
main structure by a constant electric field. We have assumed 
up to now that the superstructure is pinned by random im- 
purities. This situation corresponds to weak electric fields. It 
will be shown below that an electric field, generally speak- 
ing, can drag the domain structure. We consider a case when 
the electric field is stronger than the pinning farces, which 
can therefore be neglected. In analogy with the homogen- 
eous incommensurate case," when the motion of the Froh- 
lich mode corresponds to a change of phase, the motion of 
domain superstructure corresponds to a change of the coor- 
dinate x, in the inhomogeneous gap (2). 

It is natural to expect the force exerted by the electric 
field on the domain structure to be connected with the 
charge of the latter. We begin therefore with the question of 
the domain-phase charge density, given by the expression 

where the functions u and v are defined by Eq. (5). 
As for the central band of the electron spectrum, it 

shoud as already stated, be on the average half-filled [Eq. 
(4)]. The character of the filling of the central band at finite 
E-  is shown in Fig. 9. If now E- + 0, then u(E-) -+po. 
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FIG. 9. Fragment of Fig. 3, the three-dimensional phase volumes V,, V,, 
and V, are defined in the text. 

Therefore the states with p, such that - t ( p,) <,u, corre- 
spond to solitons with a doubly filled level (charge - e), and 
states with - t (p,)>p,  correspond to solitons with un- 
filled level (charge + e) .  The condition (4) goes over as 
E- + 0 into 

Consequently the resultant charge of an isolated domain 
wall is equal to zero. The spatial density can then be due to 
overlap of the wave functions of neighboring domain walls 
and will be small to the extent that the parameter 
E -A iexp( - 4A,/NvF) is small. Indeed, we express the 
'charge density (12) in the form 

where the phase volumes V,, V,, and V3 are defined as 

The sum of the first two terms in (14) is purely one-dimen- 
sional and equal to zero. It is possible also to rewrite the 
condition (4) in terms of the volumes V, ,  V,, and V,: 

By virtue of (1 5) it is necessary to retain in the combination of 
the functions I u , ( x )  1' + I U , ( X ) ~ ~  in (14) only the part that 
depends on the energy E. At small E we obtain 

From (15) and (16) we can easily estimate the charge density 
p(x)-eE 4 /A A ,  inasmuch the volumes in (15) are small to 
the extent that E '- is small. For simplicity we present here a 
solution of (15), (16) only for the case when the function 
t ( p, ) depends on the single variable py ( - p, <py <po) 

It can thus be seen from (16) and (17) that at small E- the 
maxima of the charge of the domain superstructure for an 
arbitrary form of the functions t ( p, ) are always concentrat- 
ed on the domain walls (p(x)  + 0 far from the walls). Their 
absolute value, however, is small as eE 4- /A A because of the 
weak overlap of the soliton states. The sign of the domain- 
wall charge (positive or negative) depends on the concrete 
form of the function t ( p,). The small compensating charge 
will in this case be dispersed between the walls. 

The appearance of a nonuniform charge density in the 
system calls for a separate examination of the energy contri- 
bution due to the electrostatic interaction. If E- (A,, i.e., 
the conductor is near the (pressure) phase transition, the 
electrostatic energy W,,(E-) is small as E '- and can be ne- 
glected even compared with the domain-wall interaction en- 
ergy, which is proportional to E '- . 

With increasing distance from the phase-transition 
point, the electrostatic energy increases and should, general- 
ly speaking, be taken into account when the energy func- 
tional is minimized. To estimate the Coulomb contribution 
it is necessary, however, to know the dielectric constant,13 
which has a strong spatial dispersion. The period of the de- 
veloped domain superstructure is Lo - uF/Ao, and the dielec- 
tric constant for such values of the wave vector is close to its 
value in the quasi-one-dimensional metal: ~ (Adv , )  - 1. As a 
result, at uF/Lo-A,-E- we obtain for the ratio of the elec- 
tric energy to the energy of the Peierls state the estimate 

W,IIW,- (EFlA,)2 (bla)', 
where b /a  is the ratio of the distances between the molecules 
inside the chain and between the chains themselves. 

Thus, for uF/Lo-A,-E-, i.e., in a developed domain 
superstructure, we would have We, % W, , so that the electro- 
static interaction becomes substantial even at E- 2 E % , 
with E % <Ao. In this region the ratio 

We, /W,- (EplAo)' (bla)' (E-8/~A08) 

is somewhat difficult to estimate, since its dependence on the 
wave vector is of importance in the dielectric constant E.  

Nonetheless, the estimates presented offer evidence that the 
Coulomb interaction allows the existence of a domain super- 
structure only in the form of relatively widely spaced walls 
(vF/LO(AO). 

Returning to the question of the possibility of dragging 
of the domain superstructure (2) by an electric field, we note 
that for this purpose, generally speaking, it is necessary to 
calculate the force exerted directly on the superstructure by 
the electric field. Such a formulation of the problem, how- 
ever, is too elaborate. We confine ourselves here to a differ- 
ent formulation, which nevertheless leads to a clear physical 
result. 
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In fact, assume that the superstructure itself moves with - ~ b , ;  p,) ~ o f o ;  ( f x ,  p,) -G,: ( x f ,  p,)  G;: ( f x ,  p,) 
velocity Uand ascertain whether a current is connected with 
this motion. To this end we write down in the general expres- 

+Go:; (x?, p,) G ~ I  ( Z x ,  pL) 1 [A;:, ( Z o )  ( Z o )  1 ,  (I8) 
sion for the current at T = 0 the contribution due to arbi- 
trary small changes of the functions A , ,,,: where E * = E * 0/2, and G $ * are the corresponding 

Feynman Green's functions in the presence of the structure 
de. ++ 

j. ( x )  =2e j dp ,  j d~ I [ G o .  + ( x f ,  p,) G;: ( f  X .  P L )  (2). Substituting now in (18) the explicit expressions for the 
4n unperturbed Green's functions, we obtain 

 fa^, (5) ~ E , E *  (x\[Ai& (Pa' t- A I ? ~ ~  ( F a ) ]  
j ( ' -  e d p L  dP- -' 5 S I: E I&+ - El  + t ( p - )  -+ p + is sign r + l [ ~ -  - E, + t ( p L /  + p + is sign E-J ' 

EIE. 
(1 8') 

where 

We expand (18') in powers of the frequency o up to first 
inclusive (it can be shown that there is no zeroth order). The 
displacement of the superstructure as a whole is 

A::: ( x ,  w )  ( x ,  o) = - d 8 h s  ( x ) / a x ,  

and the frequency o has the meaning of differentiation of the 
shift coordinate d with respect to time, - iwd -+ d /  
at d = U. We have therefore 

Both summations over the energies in (18") are over states 
with like quasimomenta p (E,) - p (El) = 2mp, (with ac- 
count taken of the "umklapp processes"), including also 
over states with equal energy E, = E,. With the aid of (67, 
however, it is easy to show that the matrix element 

i.e., it vanishes at El = E2. Thus, the double integral over 
the quasimomenta, which corresponds to the sums over the 
energies in (18"), does not contain any singularities. We now 
integrate (18") with respect to the frequency E and use the 
following properties of the wave functions u,(x) and u,(x) 
under the transformations E -t - E, ppll -+ - pll  : 

u - ~ ( p l l  ) (x) = U E ( P ; ,  ) ( 5 )  U - E ( P  ) ( x )  = - U E ( ~ )  (x), 

As a result we obtain for the current 

where 8 (x) is the Heaviside step function. 
We recall that the electron spectrum of our problem has 

no "pockets" (the chemical potential intersects only the cen- 
tral band). The contribution to the current differs from zero 
only for states such that one of the energies (for the sake of 
argument, El) lies in the central band, while the other (E,), is 
outside it. From (19) it is seen next that an isolated domain 
wall makes no contribution to the electric current. Indeed, at 
El = 0 we get from (19) by virtue of the condition (13) 

i (x ) - J  ~ P ~ { ~ ~ [ ~ ( P , ) + F ~ I - I ) = O .  

This conclusion agrees with the previous statement that an 
isolated domain wall has no spatial charge density. The 
expression for the current can be written in a form similar to 
the expression for the charge density (16): 

Just as before, in view of the equality of the phase vol- 
umes (15), that part of the expression in the curly brackets 
which is independent of E ,  is cancelled out. Assuming that 
the indicated expression is analytic in El ,  we expand it in 
terms of the small parameter El up to second order inclusive. 
We ultimately obtain the equation 

j ( x )  =eu7 "'"I (c 1 d p l -  ): j 2 j dp, )  F, 
LA,  E v s  E  vt E Vz PI1 

where B (x) is a coefficient of the order of unity [further sim- 
plification of (21) is difficult, and we present only some esti- 
mates]. 

It follows from (21) that, in contrast to isolated domain 
walls, which carry no charge, a supestructure of widely 
spaced domain walls can contribute to the electric current to 
the extent that the overlap of the soliton states is small: 
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j (x) -eUS,E-L/A,3~,. 

In a developed domain structure (the domain walls are not 
widely spaced, E- -Ao), the electric current would be of the 
order of 

j (x) -eUSLAo/vz, 

which is AdEF  times smaller than the current from a 
charge-density wave in the incommensurate case.'' In other 
words, a small fraction A,,/EF of the band electrons partici- 
pates in the collective charge-transport mechanism. 

Although it is physically obvious from these results that 
in an electric field the domain structure itself is acted upon 
by a force that causes it to move and participate in the con- 
duction, the last statement was verified by us independently. 
The corresponding calculations are fully analogous to the 
preceding ones and are too lengthy to present here. 

CONCLUSION 

We have considered above certain physical properties 
of the domain (soliton) p h a ~ e ~ . ~  of quasi-one-dimensional 
conductors, properties that distinguish them from the usual 
anisotropic metals and dielectrics. Thus, at low tempera- 
tures the conductivity anisotropy can have a narrow peak at 
the (pressure) transition from the dielectric into the domain 
phase. The value of the anisotropy parameter in the domain 
phase near the transition point can become quite large: 
0 1  /u,, < 1. 

It was further shown that such conductors have in the 
domain phase an inhomogeneous charge density. In the limit 
of widely spaced domain walls vFN(Ao this density is expon- 
entially small, 

p (x) -eE-4/uFAo3- (eAo/v,) exp (-4Ao/Nu,),  

and an isolated wall has by itself no charge. The competition 
between the electrostatic energy and the energy of the Peierls 
deformation does not prevent the formation of superstruc- 
tures in the form of widely spaced domain walls, but appar- 
ently hinders the formation of developed domain structures 
(vFN-E- -Ao). 

A domain superstructure can be dragged by an electric 
field and contribute to the electric current. In contrast to the 
charge-density wave in the incommensurate homogeneous 
case," a small fraction of the band electrons participates in 
the indicated collective motion (or the order of E /A A EF 
at E-(A, and of AdE, in a developed domain structure). 

We note that owing to the spatial inhomogeneity of the 
charge a collective contribution of a domain superstructure 
to the conductivity might manifest itself as bursts of poten- 
tial or current at the junctions. It was noted in Ref. 14, how- 
ever, that the imperfect shape of the junctions seems to ex- 
clude the soliton mechanism as a source of generation of 
periodic oscillations in NbSe,. It was also indicated there 
that these oscillations are of local origin. 

In conclusion, a few words concerning incommensurate 
quasi-one-dimensional conductors. In this case, an analo- 
gous domain structure can be formed against the back- 
ground of a sinuosidal charge-density wave. The latter is 
known to contribute to the collective conduction mecha- 
nism." As for the domain structure, its contribution to the 
collective electric current is apparently zero because of the 
absence, in the incommensurate case, of charged solitons. 
The results pertaining to the jump of the conductivity anisot- 
ropy remain naturally in force in the incommensurate case. 

The author is sincerely grateful to L. P. Gor'kov for 
directing the work and to S. A. BrazovskiT for helpful discus- 
sions. 
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