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We show that the low-temperature phase of a three-dimensional magnet with an easy plane type 
anisotropy is a spin-glass kind of disordered phase when there are weak random fields or random 
anisotropies present. This phase is characterized by a finite correlation length (larger in weak 
random fields) and a finite spin rigidity which is the same as the rigidity of the ferromagnetic 
phase of a pure magnet. We study the critical behavior of the system near the phase transition 
point. We find the critical exponents of the static susceptibility of the system in a zero external 
field for various orders of anisotropy. We study the behavior of the susceptibility in zero external 
field in the low-temperature phase. We show that there exists a range of fields H for which the 
susceptibility varies as H -3'2.  

1. INTRODUCTION 

In problems connected with the spin glass problem one 
usually considers systems with random spin-spin exchange 
(e.g., the RKKY interaction). However, in real magnets 
there may be present a totally different kind of disorder in 
the form of frozen-in random fields and random anisotro- 
pies.' Systems in which there is an additional random off- 
diagonal exchange between spins can also be considered to 
be magnets with a random anisotropy axis.' It is now already 
well known that in real spin systems of dimensionality d = 2 
and 3 for arbitrarily small magnitude of the random fields 
this kind of disorder destroys the given order.394 It would 
therefore be very interesting to understand the nature of the 
low-temperature state of such systems and also how random 
fields change the critical behavior near the phase transition 
temperature T, . 

The simplest system for studying these problems is the 
XY-model (rather than an Ising magnet for which up to now 
no reliable lower critical dimensionality has been estab- 
lished). Moreover, in a well-defined sense the situation in a 
three-dimensional XY-model turns out to be simpler than in 
the two-dimensional system with this kind of disorder. This 
is connected with the fact that the low-temperature phase in 
a three-dimensional XY-model without random fields is fer- 
romagnetic and there exists a scale R, (the size of the core of 
the vortex line) beyond which the system is described by a 
single free scalar field. 

In previous papers by we described the properties 
of a two-dimensional or quasi-two-dimensional (layered) 
planar magnet with random anisotropies. We noted that a 
layered magnet displays when the temperature is lowered 
essentially three-dimensional properties and a "tendency" 
to form a spin glass when there is an arbitrarily weak cou- 
pling between the layem6 

In the present paper we consider a real three-dimen- 
sional magnet with random anisotropies of any order: 

%=%,,+gD s i t i .  (x) hi, (x) . . .h< (x) , (1.2) 

where 2Yo is the Hamiltonian of the pure magnet. We shall 
study a Heisenberg magnet in which there is an easy plane 
type anisotropy. 

go = p [J , s  (xi. s (x + + .\ (sz (x))']. (1.3) 

Here 0 = 1/T and J is the constant of the interaction 
between nearest neighbors. Spins of unit length are given in 
the sites of the three-dimensional lattice and B are the unit 
vectors of the three-dimensional lattice. 

The second term in the Hamiltonian (1.2) describes a . . 
random n-th order anisotropy. Here s"""" is an nth order 
irreducible tensor composed out of the vectors siand h(x) is a 
unit vector which is directed randomly in different points: 

1 
H0= - ps Jd3x(vT)' .  (1.1) In a magnet with random fields the second term in the Ha- 

2 miltonian (1.2) has the form 
The perturbation-theory expansion in corrections connected 
with random fields relative to H,,{p) looks comparatively PD ( s (x ) ,h (x ) ) ;  (1.5) 
simple in contrast to the two-dimensional case where in such I 

an expansion there is a difficulty connected with the diver- 
gence of the quantity $d 'k  ( p k p  - ). 

in a magnet with a random axis of a second order anisotro- 

In an Ising magnet there is also a ferromagnetic state PY- 

but here the perturbation of that ground state is described by ~ D X  (st (x) s1 (x) -i/3h'') h, (x) h, (XI ; 
perturbations-the domain walls-which are non-linear in 

(1.6) 

an essential way. The properties of these domain walls in the 
presence of random fields remains so far unexplained. in a magnet with a random axis of a third order anisotropy- 
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s' (x) S' (x) sk (x) -'lg6'jsk (x) -i/56'k~j (x) & 

and so on. The random fields are assumed to be weak: D(J. 
The fact that even for an arbitrarily small magnitude of 

the random forces there is no long-range order in the system 
considered is clear already from the following qualitative 
considerations. Let the characteristic length over which the 
long-range order is destroyed be equal to L. In a volume of 
linear size L the exchange energy connected with deforma- 
tions of the structure will then be of the order of L 3/L -L  
while the gain in energy in the same volume due to the inter- 
action with the random field will be of the order of the mean- 
square quantity (D 2L 3 ) 1 ' 2 .  Therefore for sufficiently large L 
the gain in energy from the adjustment to the random field is 
larger than the loss in exchange energy. The formation of a 
randomly-inhomogeneous structure with a characteristic 
correlation range L -D - 2  is therefore advantageous. 

We see that the low-temperature phase of such a system 
is a spin glass kind of phase (section 2). This phase is charac- 
terized by a finite correlation length and a finite spin rigidity 
which is the same as the rigidity of the ferromagnetic phase 
of the pure magnet. 

We study in section 3 the critical region near the phase 
transition point. At temperatures not too close to Tc the 
phase transition in the spin glass is described by the expo- 
nents of the ferromagnetic phase transition in the pure mag- 
net. However, in the cases n = 1 and 2 (random field and 
random second-order anisotropy axis) there is near the tran- 
sition temperature Tc a narrow region r:(D) in which the 
critical behavior is changed and which is not described by 
the indexes of the pure magnet. 

We find in section 4 for various orders of anisotropy 
(outside the temperature interval r:(D)) the critical expo- 
nents of the static susceptibility in zero external field. We 
also study the behavior of the susceptibility in a non-zero 
external field. We show that when the external field is 
strengthened before reaching the lawx a H - ' I 2  characteris- 
tic for a pure magnet there is an intermediate region where 
the susceptibility behaves as H - 3 1 2 .  

2. LOW-TEMPERATURE PHASE 

Because of the presence of an easy-plane type anisotro- 
py at dimensions LA - A  - ' I 2  the spins "lie down" in the 
plane and therefore, if the length at which the destruction of 
the long-range order occurs L - D - 2  is much longer than LA 
the system can effectively be described by the XY-model: 

where R,, is the Hamiltonian of the pure 3 0  XY-model: 

Heres, is the planar spin with a direction described by the 
phase p(x) (O<p<2~) .  The frozen-in fields t9 (x) which with 
equal probability are distributed over the interval 0<0<2n 
describe the directions of the random anisotropy fields. The 
parameter n = 1,2, 3, ... is the order of the anisotropy, n = 1 

corresponds to a random magnetic field, n = 2 to a random 
axis type anisotropy. 

The free energy of the system has the form 

where the partition function 
2n 

z{e)= J ~ t p ~ e x p ( - ~ { q .  01). 
0 

We consider the low-temperature region, i.e., that region 
where the correlation radius R, of a pure 3 0  XY-model, 
determined by the size of vortex excitations is small com- 
pared to the length of the spin-spin correlations L-D - 2  

arising due to the presence of random  field^.^,^ 
When we expand the partition function (2.4) in a pertur- 

bation theory series in PDEcos(np + t9 ) in N th  order there 
arise averages of the form 

(exp  {in qip (x?) }) 
(q, = + I )  where the averaging is performed using the Ha- 
miltonian (2.2) of the pure 3 0  XY-model. One easily under- 
stands that if all distances Ixi - xj I)R, in the correlator 
(2.5) we can rewrite it in the form 

where the averaging is performed using the Hamiltonian of 
the free field 

%i='lzPp.(T) S d3x(Vsp(x) ) '  (2.7) 

and where we have introduced the notation 

K ,  ( T )  =(COS (nq) )a (2.8) 

At low temperatures far from the phase transition point 
R,(T)=:l,p,(T)-J,  K,(T)=:l. On the other hand, in the 
scaling region near the transition point (r=(T, - T)/T, 
(1): 

and neglecting the anomalous critical dimensionality 
7-0.02 for the 3D XY-model7 we get 

Thanks to having written the correlator (2.5) in the form 
(2.16) we can instead of the Hamiltonian (2.1) use the Hamil- 
tonian 

1 
1. = pp. d3x(Vq (x) )'+pDK. (T) 5 d3x oos (nrp(x) +@I,  

in which all length scales are assumed to be much larger than 
Rc. 
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In terms of the Hamiltonian (2.12) one can prove the 
following exact results: 

One can obtain Eqs. (2.13) and (2.14) by a direct summation 
of the perturbation theory series using the method proposed 
by Efetov and Larkin.' One can then show that only the first 
order correction gives a contribution to the correlator (2.13) 
and the correlator (2.14) therefore remains the same as in a 
pure system. Near T ,  the results (2.13)  and (2.14) can also be 
proved using the supersymmetric Lagrangian description of 
systems with random fields, proposed by Parisi and Sour- 
1as.9 

Using the results (2.13) and (2.14) we easily obtain 
asymptotic expressions for the spin-spin correlation func- 
tions 

( I x  - xlI>Rc)  where the correlation length 

On the other hand, the result (2.14) enables us to find the 
spin rigidity of the system with respect to spatially inhomo- 
geneous perturbations: 

The free energy 3 ( a  J is given by Eq. (2.3)  and the Hamil- 
tonian (2.12) in which we have made the substitution 
Vp(x ) -Vp(x )  + a(x) .  One easily verifies that 

GLFISa, (k) Ga, (-k) I .=, 

((kl <R ; '). The spin rigidity p , ( T )  of our spatially disor- 
dered system is thus the same as the rigidity of the ferromag- 
netic phase of a pure 3D XY-model. 

3. PHASE TRANSITION 

The description of our magnet in terms of the contin- 
uous Hamiltonian (2.12) and the results (2.15), (2.16), and 
(2.18) are true only under the condition 

This condition may be violated near the phase transition 
point where R . ( T )  increases and the scaling relations (2.9) to 
(2.11) are realized. The magnitude of the "forbidden" tem- 
perature interval near Tc where condition (3.1)  is violated 
depends on n and is determined by the actual magnitude of 
the critical indexes. 

If we assume that for the 3 D  XY-model the specific heat 
index a = 0 and the anomalous critical dimensionality 

7 = 0,' we have 

Y = ~ / ~ ,  p = ) ~ ~ = ~ / ~ .  

The critical exponents K, (n # 1 )  are determined by the criti- 
cal behavior of the irreducible nth order spin tensors:1° 

~ ~ ~ 0 . 8 ,  ~ ~ ~ 1 . 4  ,... . (3.3)  

It follows from (2.16) that [ r  = (T,  - T ) / T , ]  
L ( ) -D-2z-z(xn-2B). 
n z (3.4)  

Therefore 

Li (T)-D-'r5, 

Lz ( a )  -D-27-0,4, 

L3 ( 7 )  -D-'T-' ,~.  

Comparing these relations with the behavior R, (7) - r-'I3 
one sees easily that for n = 1 and 2 condition (3.1)  is satisfied 
only for temperatures r>r?, where 

T,*-Don, (3.8)  

On = 
2 

v+4p-?c, (3.9)  

On the other hand, for n = 3 (and for all n > 3) condition 
(3.1)  is always satisfied and here the phase transition can thus 
be described using the exponents of the ferromagnetic phase 
transition of the pure 3 D  XY-model. 

4. SUSCEPTIBILITY 

The static susceptibility of a system in zero external 
field is given by the integral 

j d31( ( s  (x) , s (0) ) ), (4.1)  

where in the low-temperature phase the irreducible correla- 
tor 

for 1x1 > R , .  Therefore X, ( T )  - L  ( T )  and in the low-tem- 
perature phase far from the transition point [see (2.16)]  we 
get 

x,'-D-'. (4.3)  

In the critical region close to the transition point 
( T <  T , )  we have, for temperatures r ? < r ( l ,  n = 1 and 2, 

xn ( T )  ND-4Z-4(~n-2P) (4 .4)  

In the paramagnetic phase ( T >  T ,  ),y - R :(r) -r4I3. 

906 Sov. Phys. JETP 59 (4), April 1984 Vik. S. Dotsenko and M. V. Felgelrnan 906 



FIG. 1 .  Qualitative behavior o f  the susceptibility o f  a magnet (a) with 
random fields (n  = 1 ) ~ ~ -  D - 4 , ~  (e)- D -2,  r:- D 3 1 2 ;  (b)  with arandom 
second order anisotropy axis:x,-D -4, x (r:)-D -', .T: - D 6.4; (c) with a 
random third order anisotropy axis. 

The qualitative behavior of the static susceptibility is 
shown in Fig. 1. 

For the spin rigidity (2.18) in the critical region we have 

p s  ( r )  -tl*. (4.8) 

We note that the quantities T: determining the limits of 
the temperature range where we can use the critical expo- 
nents of a pure magnet turn out to be equal to (3.8), (3.9) also 
in the high-temperature phase (T>  T,). One checks that 
easily using the effective dimensionality of the random an- 
isotropy, following Ref. 1 1. 

We now consider the susceptibility of the system in a 
non-zero (weak) external field H. If the spins are mainly di- 
rected along the field, i.e., if the declinations of the spins 
from that direction are small: 

- 
((p2><1, (4.9) 

the magnet can in that case be described by the Hamiltonian 

~ = P ! d 3 x [ ' / 2 p 8  ( V(p)2+1/zp ,m2rpZ+~~,  cos (nrpf0) 1, (4.10) 

where 

We estimate the condition (4.9): 

Hence it follows that 
rn>L,-' (T) ,  

In magnetic fields H 5 H, the spin correlations are destroyed 
over a length L, (T )  and therefore in such fields the suscepti- 
bility of the system is the same as in a zero field (4.3), (4.4). 

Let now the condition/H)H, be satisfied. The suscep- 
tibility is given by the integral 

X= d3x(cor cp ( r )  coa cp (0) )). 

When averaging over q, we now must use the Green func- 
tions 

The result of the averaging has the form 

r ( X ) )  + i /J)Z (.J) (e't(x)-ers(') ~ = p .  J b x { D  ( x )  (er*(')-e 1 1 1  

(4.16) 

where 
D ( x )  =[4zp81xI ]-ie-mlxl, (4.17) 

After integration we get 

~ " 1  /8xp.m+2/Lnrn3 

Therefore under the condition 

I IL,<m< (p,lLn) '", 

which is equivalent to D 4(H(D far from the transition 
point ( T <  T,) 

D4r4yn-7~<<H<<DzrZ""-SB whenrn*<<~< 1, (4.21) 

the susceptibility behaves like 

DZH-" far from the transition point (T< T o ) ,  

2un-~aBH-'l~ when .c,'<<.c< I. 
(4.22) 

For a magnet with a random second-order (n = 2) anisotro- 
py axis we have [see (3.2), (3.3)] 

when D 6.4(7g 1, D 4~0.9(H(D 2r0.6. 
Finally, in a "strong" magnetic field m ) @ , / ~ , ) ' / ~  or 

H s D  far from the transition point ( T <  T,) 

H > D ~ ~ ~ ~ ~ - ~ ~ ,  when r,*<<t<l (4.24) 

the susceptibility behaves just as in a pure magnet: 

The qualitative behavior ofx - ' as function ofH ' I2  is shown 
in Fig. 2. 
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FIG. 2. The reciprocal susceptibility x as function of H"'. For 
D 2<H lI2<D the relation x -I-D -'(H holds; for H '/'$D, 
X - ' - ~ 1 ' 2 .  

5. CONCLUSION 

In the present paper we have considered a three-dimen- 
sional magnet with an easy-plane type anisotropy in which 
there are weak random fields or random anisotropies. We 
showed that the low-temperature phase of such a magnet is a 
spin-glass kind of disordered phase with a large correlation 
range (when there is weak disorder). 

We found for various orders of anisotropy the critical 
exponents of the susceptibility in zero external field using 
near the transition temperature the critical exponents of a 
pure magnet. We showed for the susceptibility in a non-zero 
external field that there exists a range of magnetic fields 
D 4(H(D in which the susceptibility behaves as D 2H -312. 

At the same time a number of problems require further 
study. Although in the immediate vicinity of the transition 
point Tc when T(T: (n = 1 and 2) the critical behavior of the 
system may change, in the case of a magnet with a random 
field (n = 1) one must, apparently, not expect a large change 
in the magnitude of the susceptibility x,(T(T:) as compared 
to its valuex (T-T,) -D -2. On the other hand, in the case of 
a magnet with a random second order anisotropy axis (n = 2) 
the nature of the behavior of the susceptibility x,(T) in the 
region T<T: remains so far completely unexplained. This 
"negative" result is in agreement with the paper by Ahar- 
ony" who demonstrated the absence of a fixed point in the 

renormalization group equations for a magnet with a ran- 
dom second-order anisotropy axis. 

Recently Aharony and Pytte12 have obtained equations 
of state for a degenerate magnet with a random field (n = 1) 
and with a random second order anisotropy axis (n = 2) in a 
weak external field. Their prediction that the susceptibility 
becomes infinite and the asymptotic power law behavior of 
the spin-spin correlation functions in the low-temperature 
phase ( T <  Tc) of a magnet with a random second order an- 
isotropy axis are in contradiction with our results. From the 
exposition in the present paper one understands easily that 
an accuracy of order D to which the calculations in Ref. 12 
were in fact restricted is insufficient to obtain a correct re- 
sult. 

We note that in a real inhomogeneous magnet there also 
may occur effective spatial fluctuations of Tc (e.g., thanks to 
the inhomogeneity of the magnitude of the spin-spin ex- 
change). There may then exist in the system an additional 
correlation length determined by the fluctuations in Tc and 
leading to the appearance of an additional temperature in- 
terval T* around Tc where the critical behavior is no longer 
described by the critical indexes of the pure 3D XY-model. 
In that case the results stated above require an additional 
condition T)T*. 

It is also necessary to note that the low-temperature 
behavior of an isotropic Heisenberg magnet with random 
anisotropies may turn out to be completely different due to 
the possible renormalization of the spin rigidity p, of such a 
magnet. 
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