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We investigate theoretically static bound states of the magnetic flux in long Josephson junctions 
with local inhomogeneities. We show that for a qualitative and quantitative investigation of 
bound states it suffices to determine them at the bifurcation points that occur upon variation of 
the external parameters and are analogous to phase-transition points. Outside the bifurcation 
points, the bound states can be obtained with the aid of a special bifurcation perturbation theory. 
We analyze in detail the exactly solvable problems of physical interest, and propose to use for an 
approximate determination of the states and of their bifurcations an elementarily solvable 
piecewise-linear approximation of the sine-Gordon equation with inhomogeneities. We discuss 
the possibility of a direct experimental observation of the bound states and their bifurcations 
when the external magnetic field and the inhomogeneity locations are changed. 

1. INTRODUCTION 

Phenomena connected with the formation and propa- 
gation of solitons in unbounded homogeneous systems have 
been thoroughly investigated. The prospects of observing so- 
litons and of their eventual applications will be determined 
by their interactions with inhomogeneities of the internal 
structure and with the boundaries of real physical systems. 
Of particular interest from this point of view are inhomogen- 
eous long ("one-dimensional") Josephson junctions (LJJ, see 
e.g., Refs. 1 4 ) .  One reason is that the soliton propagation in 
such junctions, known also as fluxons or Josephson vortices, 
is described with sufficient accuracy by a relatively simple 
nonlinear equation. Another reason is that the LJJ are con- 
venient for experimental observation of  soliton^.'.^ In- 
deed,there is an ample choice of methods of observing phys- 
ical soliton effects in Josephson junctions, viz., singularities 
produced in the current-voltage characteristics by fluxon 
production, radiation produced at the edge of the junction 
upon reflection of a moving fluxon, the unusual dependence 
of the maximum current flowing through the junction on the 
external magnetic field, and others (see, e.g., Refs. 6-10, with 
additional bibliography cited in Refs. 9 and 10). In addition, 
a new method was developed quite recently for a direct ex- 
perimental study of the static distributions of a current in an 
LJJ by laser scanning. "*12 This method permits direct obser- 
vation of interactions between fluxons and inhomogeneities. 

The possibilities of using solitons in LJJ with inhomo- 
geneities as computer memory and switching devices were 
discussed many times, and the potential advantages of such 
elements are well k n ~ w n . ~ , ~  However, attempts at a concrete 
realization of these advantages will be possible only after a 
detailed theoretical and experimental study is made of the 
physical phenomena that take place in inhomogeneous LJJ. 
Until recently, the main obstacles to the experimental inves- 
tigation of solitons in LJJ were the technological difficulties 
in the production ofjunctions having specified properties. It 
is now possible not only to manufacture homogeneous junc- 
tions of length 1 = (10-20)AJ, where A, is the Josephson 
depth of penetration, but also to produce in them inhomo- 

geneities with prescribed proper tie^.^ Thus an experimental 
investigation of solitons in inhomogeneous LJJ has become 
possible, and a theoretical analysis of the interaction of soli- 
tons with inhomogeneities is indeed essential. 

Up to now, this interaction was studied using different 
variants of perturbation theory in terms of the inhomogene- 
ity.'*2,'3 In this theory the unperturbed states are taken to be 
moving soliton or multisoliton states in a homogeneous infi- 
nite junction. The action of a perturbation on a single soliton 
causes the latter to behave as a weakly deformed particle 
acted upon by conservative forces that depend on the inho- 
mogeneities, as well as by friction forces that describe the 
energy dissipation in the junction; the action of a perturba- 
tion on multisoliton states, sometimes called soliton "pack- 
ets," is described in a similar context. Such a "soliton" per- 
turbation theory (SPT) presents a very clear physical picture 
of the evolving processes and can explain lucidly some of the 
observed phen~mena .~ , ' ~  It becomes inapplicable, however, 
in those cases when the soliton or the multisoliton state is 
strongly deformed by the interaction with the inhomogene- 
ity. Simplest examples of this detachment of a fluxon from 
the edge of an LJJ when the external magnetic field is in- 
creased, and localization of a fluxon on an inhomogeneity 
whose size is smaller than or of the order of the size of the 
fluxon, i.e., SA,. Solution of problems of this type calls for 
analytic and numerical methods capable in principle of 
yielding exact solutions. Thus, exact static distributions of 
the magnetic flux were obtained for a finite LJJ in an exter- 
nal magnetic field,"' and exact solutions for the description 
of fluxon motion in a finite LJJ were obtained with very 
simple boundary conditions.14 Approximate solutions were 
also obtained recently4 to describe the entrance of a vortex 
lattice into a junction on the edge of which the maximum 
Josephson current decreases to zero smoothly, i.e., over a 
length )A,. 

The problem of determining the static states of an LJJ 
with local inhomogeneities was posed in Refs. 15 and 16. The 
exact solution of this problem can be expressed in terms of 
elliptic functions, but the investigation of the properties of 
the exact formal solution is not a trivial task, since the un- 
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known parameters that determine the state satisfy very com- 
plicated transcendental equations. An analysis of certain 
particular solutions has enabled us to reveal two new phe- 
nomena-formation of localized bound states on attracting 
microinhomogeneities, corresponding to a local decrease of 
the maximum Josephson current, and the existence of non- 
trivial bifurcations of these states when the external magnet- 
ic field is varied15.16 (we recall that a bifurcation is defined as 
the generation or vanishing of solutions at certain critical 
values of the external parameters; if the parameters do not go 
through critical values, the number of solutions is con- 
served). 

The present paper is devoted to a systematic study of 
static bound states in LJJ with local inhomogeneities, and 
particularly to their bifurcations. We show that for a qualita- 
tive and quantitative description of all the bound states it 
suffices to find the solutions at the bifurcation points, i.e., the 
critical states. This makes it possible to expand any state in 
powers of the deviation of the parameters from the bifurca- 
tion values; the terms of this series are determined recurrent- 
ly and are explicitly expressed in terms of functions that 
characterize the critical states. This theory obviously differs 
in principle from the soliton perturbation theory, and we 
shall name it bifurcation perturbation theory (BPT). For a 
detailed quantitative study of the bound states and their bi- 
furcations we propose a simple piecewise-linear model that 
can be solved in terms of elementary functions and provides 
good approximations for the exact solutions. We consider in 
detail the exact and approximate solutions of the simplest 
nontrivial problems, viz., an infinite junction with one and 
two inhomogeneities, and a semi-infinite junction with an 
inhomogeneity and a magnetic field at the edge. We discuss 
the possibilities of direct experimental observation of our 
predictions of the bound states of the fluxons and their bifur- 
cations. 

2. STATIC STATES AND THEIR BIFURCATIONS. 
BIFURCATION PERTURBATION THEORY 

We consider the junction shown schematically in Fig. 1. 
In the general case the width w of the junction and the thick- 
ness d of the dielectric layer between the upper and lower 
superconductors depend on x. We regard the junction as 
one-dimensional, i.e., its dimensions must satisfy the condi- 
tions w(A, (1. All the quantities depend here only onx, and 
the magnetic and electric fields are directed along the x and z 
axes, respectively. We k n ~ w ' , ~ , ~  that the propagation of elec- 
tromagnetic waves, and particularly of solitons, in such an 

LJJ can be described by the equation (p, = ap/ax, 
pt = ap /at 1. 
L (L-l~),-LCq,*-hj-~ (I) sin rp (x, t )  =aqt,  OGxGl. 

(2.1) 
Herep = 2n-@ (x, t )/@,, @ (x, t )is the magnetic flux through 
the segment (0, x), @, is the magnetic flux quantum, 
A ; '(x) = 2.d-'LI, ; L, C, I, are respectively the induc- 
tance, capacitance, and critical Josephson current per unit 
junction length. The right-hand side of the equation de- 
scribes dissipative effects connected with the tunneling of 
normal electrons through the insulating layer. The junction 
geometry can be chosen such that the inductance is constant 
and A, (x) changes noticeably only over small sections of size 
Ax <,I,, where A, is the constant value of the Josephson 
length on the homogeneous segments. In fact, the tunnel 
current I, decreases exponentially with increasing barrier 
thickness d, and L = ,LL,(U, + d )w-', wherel, is the Lon- 
don depth of penetration. Since d(A, (A,, we can, by in- 
creasing d on the segment Ax, decrease I, to zero while 
maintaining the inductance practically constant (see Fig. 1). 
We choose the units of length and time to be the quantities 
A, and w; ' = A,(L,C,)"~, where L,,C,, and I, are the val- 
ues of L, C, and I, on the homogeneous intervals, and repre- 
sent approximately the changes of the critical Josephson 
current at the inhomogeneities with the aid of S functions. 
Equation (2.1) can then be written in the form 
(x, = o <  . . . <Xi <Xi+ 1 < . . . <X, + 1 = I )  

9,-rp,,- [ l- f: pi6 (x-xi) sin p (2, t )  =apt, 0 ~ x 4 1 .  I 
Since we shall be interested in the static distributions of p(x), 
we neglect the fact that the damping a = EA :w, and the 
signal propagation velocity (LC)-'/' can also depend on x .  
In addition, to describe a real junction it would be necessary 
to introduce in Eqs. (2.1) and (2.2) terms proportional top,,, 
and top,  cos p (Ref. 1). We disregard these terms, too, since 
they do not influence the static state and do not alter the 
qualitative picture of the temporal evolution of the states. At 
any rate, (2.2) can be regarded as a zeroth-approximation 
equation, and all the corrections, including those for the fin- 
ite width of the inhomogeneity, can be regarded as a pertur- 
bation. 

The energy concentrated inside the junction in a layer of 
thickness U, + d is the sum of the energies of the electro- 
magnetic field and of the Josephson currents. The units for 
the electric and magnetic fields can be chosen such that 
e(x, t ) = p, and h (x, t ) = p, . Then, expressing the energy in 
units of L d i ,  we represent in standard fashion 

(2.3) 
where & = p, , p ' = p, . From (2.2) it follows that 

. . 
8=IrPir-'pa'pa1-J d ~ a $ .  (2.4) 

Here and elsewhere we use the notation p i  = p (x,, t ), FIG. 1. 
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p [ = e, '(xi, t ). Equation (2.2) must be supplemented with 
boundary conditions at x = 0 and x = I. For an LJJ it is 
natural to specify the boundary values of the magnetic field 

cp' (0, t )  I rp(=h,, cp' ( 1 ,  t )  --cplf=hi, (2.5) 

and we shall regard h, and hl as external parameters (see 
Refs. 1, 5-8, and 10 concerning various realizations of the 
boundary conditions). Using the expression for the energy 
we can easily construct, in standard fashion, the Lagrangian 
and the dissipative function that lead to Eqs. (2.2). However, 
to obtain from the variational principle also the boundary 
conditions, it is necessary to choose another expression for 
the energy (Hamiltonian), in which account is taken of the 
energy of the external sources needed to maintain the field at 
the edges of the junction. In accord with the general pre- 
scription'' we choose as the generalized Hamiltonian 

f=8+h,cp,-h,cp1. (2.6) 

It is easy to verify that 

and at constant values of h, and hl the change off is deter- 
mined only by the dissipative terms. If h, = h, = ha, the 
increment to the energy in (2.6) is of the form 
- (p, - po)h,, , where p, - p, = 27~@ /@, is proportional 

to the total magnetization of the junction. Thus,the relation 
between f and $ is similar to the relation between the ther- 
modynamic potential and the free energy of the system in a 
magnetic field. Even though at h, = h, the generalized Ha- 
miltonian f has a different physical meaning from the 
"genuine" thermodynamic potential used to describe the 
thermodynamics of a homogeneous LJJ in a magnetic field,5 
the analogy employed is useful. 

In particular, the equation for the static states of the LJJ 

'7" ( x )  = [ 1 - z p i 8  (x-xi) 1 sin 9 ( x )  , O < X < ~ ,  (2.8) 

and the boundary conditions (2.5) follows from the vari- 
ational principle S f ( p  ) = 0, and the requirement that the 
second variation be positive-definite, S 2 f ( p  ) >O, is 

to be equivalent to the requirement that the 
boundary-value problem 

be positive definite, where p(x) is the solution of the problem 
Sf = 0. The same condition can be obtained by substituting 
in (2.2) and in the boundary condition (2.5) the perturbed 
solution 

cp ( x ,  t )  =cp ( x )  +e-"'ra (x) (a,e-'~~t+a,'e'w~t) + . . . , (2.10) $I 
where la, I, la: I.( 1 and Sf ( p ) = 0. In the linear approxi- 
mation we find that $, are the eigenfunctions of the bound- 
ary-value problem (2.9) with eigenvalues w: = Z: + a2/4. It 
can be seen from (2.10) that the perturbed solution will not 
increase, i.e., will be stable, only if the lowest eigenvalue o:is 
positive. In addition, the expansion (2.10) describes the time 

evolution of any small perturbation; it suffices to express a, 
and a,* in terms ofp(x, O), p, (x, O), and the known eigenfunc- 
tions $, . If o; > 0 and 4wia-2) 1, then w, determines the 
frequency of the response of the system in the state p(x) to an 
arbitrary small perturbation. If wi < 0, the state is unstable, 
but at I = / m i  I + 1/4a2.(1 one can speak of its "life- 
time" r -' - (li3,j - a/2)- '. Thus, for a complete descrip- 
tion of the static state it is necessary to find also its natural 
frequencies w, . 

When the parametersp = (h,, hl , xi ,  pi) are varied, the 
states p(x)=p (x; p)  themselves and the frequencies 
w, =w, ( p )  vary continuously, but their number changes 
jumpwise when one of the frequencies goes through zero." 
The points p = p, in the space of the parameters in which 
one of the eigenvalues n( p)  vanishes will henceforth be iden- 
tified with the bifurcation points, and the surface defined by 
the equation w, ( p) = 0 will be called the bifurcation surface 
of the catastrophe surface of the family of states p(x; p). 
Knowledge of the bifurcation surfaces makes it possible to 
obtain a qualitative idea of the LJJ states, and near these 
surfaces we can construct simple expansions of the solution 
p(x; p)  itself, of its energy f (  p), and of its natural frequen- 
cies w, ( p) in powers ofp - p, . Although such a bifurcation 
perturbation theory is quite general, we shall not dwell on 
the general procedure, and construct the needed expansion 
in terms of the deviation of the boundary magnetic field h, 
from the critical value h, at which a certain natural frequen- 
cy vanishes, e.g., w,(h,) = 0. In this casep (x; h,), f(h,) and 
02(ho) can be expanded in powers of the parameter 
E = (h, - h, )'I2, and this corresponds to creation or annihil- 
ation of two solutions at the bifurcation point (cf. Refs. 20- 
23). Representing p(x; h,) in the form - 

m (I: hi) =PC (3)  + &.x1 (2). (2.1 1) 
n-i 

where p, (x) = p (x; h, ), we can find the functions X, (x) by 
substituting (2.11) in (2.8) and (2.5). To simplify the notation 
we put h, = 0 and introduce for the energy of the Josephson 
currents the notation 

I -  'F - x i  ( I  - eos cp)=V(cp; X I ,  I (2.12) 
& 

which emphasizes the general character of the formulas that 
follow. Equation (2.8) can then be represented in the form 
p "  = v"', where V(") = d" V/dpn, and (2.9) takes the form 

R+=-Q" + V ( " $ = ~ ~ Q .  (2.9a) 

It is easy to verify that the functionsx, satisfy the equations 

where VF' = V(") (p, ; x), as well as the boundary conditions 

x,' (0) =0, nZ2; x2' (0)  = I ;  x,,' ( 1 )  =O. (2.14) 

We note that the functions f, can be easily calculated, e.g., 

f2=-1/2vdS'X12, fg=-  ( ~ e ( ~ ) ~ ~ ~ ~ + ~ / ~ v ~ ( ~ ) ~ ~ ~ ) .  
Since (?.9) has a solution at w2 = 0, there exists for the equa- 
tion Kx, = 0 a solution that satisfies the conditions 
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x ; (0) = X; (I ) = 0 and is definite apart from the normaliza- 
tion. Choosing the second solution i ,  of this equation with 
normalization x (0) = 1, we can write the solutions of Eqs. 
(2.13) at n>2 in the form 

X n  (5) = ~ n ~ i  (2) -xi-' (0 )  

x j d y ~ X 1 ~ x ~ ~ ~ y ~ - ~ i ~ r ~ X i ~ y ~ ~ f . ~ y ~ .  (2.15) 
T 

The conditionx; (I ) = 0 holds for this equation, and the con- 
ditions x;(O) = 1, X; (0) = 0, n > 2, enable us to fix the nor- 
malization ofx,  and obtain in succession the unknown con- 
stants c, . From the condition x ; (0) = 1 follows the relation 

I 
1 ( 3 )  xi (0 )  = d r f 2 ( x )  ( x )  = ( ~ ~ h ) = -  - t V.  xi3),  (2.16) 
2 

0 

which fixes the real functions x,(x) apart from the sign. The 
two choices of the sign ofx,(O) correspond to the two solu- 
tions that appear at the bifurcation point and merge as E-0. 

It is now easy to get, with the aid of the obtained expan- 
sion ofp, the series for m2 and f in terms of E .  To obtain the 
expansion of w2 we represent $, V'2' and w2 in (2.9a) in the 
form of series in powers of E :  

It is easy to obtain for $(,, integral representations that are 
perfectly analogous to (2.15), and from the conditions 
$[n) (0) = 0 we can find in succession wf,, . In first-order ap- 
proximation we get 

02=-2cxi ( 0 )  (xiz)-',  (2.17) 

so that the solution, for which x,(O) > 0, is always unstable. 
An expansion for f can be obtained by substituting 

(2.1 1) in (2.6) and using (2.13) and (2.14). It is simpler, how- 
ever, to use the general properties of the function f(h,, h, ), 
which we rewrite, taking the notation (2.12) into account, in 
the form 

Differentiating this expression with respect to h, (or hi), with 
account taken of the equation p "  = V"' and of the boundary 
conditions, we easily find that 

af/aho=qo, af/ah,=-cpl. (2.19) 

If h, = h, = hex, then df/dh, = - (p, - p,), in full ac- 
cord with the thermodynamic analogy. With the aid of (2.19) 
and (2.11) we now obtain 

hc 
2 a=f.+ ~dhorp0=f.+e2cp. (0 )  + - evXi (0). (2.20) 

h, 
3 

We see hence that the derivative df/dh, is continuous, 
while d '//ah : becomes infinite as h,-+h,, so that this bi- 
furcation point is analogous to a second-order phase-transi- 
tion point. Comparison of (2.20) and (2.17) shows that the 

state with higher energy Cy,(O) > 0) is always unstable, inas- 
much as w2 < 0 for this state. Moreover, as h,+h, we have 
d2f/dh: <0  for the state with lower energy and 
d '//ah > 0 for the state with higher energy. 

For a qualitative analysis of the energy spectrum of the 
bound states and for an approximate estimate of their ener- 
gies, a more useful property is that the function f(h,, h,) is 
convex in all of its branches corresponding to stable states. 
To prove this it suffices to recall that Sf = 0, S2f > 0 for 
any variation of the function p,  and in particular for 
Sp  = p,dp /ah, + p,dp /ah,, where p, and p,  are indepen- 
dent infinitely small parameters. With the aid of the equa- 
tion and the boundary conditions for p we easily find that 

Since this expression is positive, we have2) 

d2f/dho2=d~cpa/dho<0, a2f/dh12=dq,/8hl>0. (2.22) 

According to (2.19), 

Using this condition, we can easily show that (2.21) and 
(2.22) lead to the inequality 

(arpoldhl) '= (dcp~/dho)~<- (a~olaho) ( a ~ i l a b ) .  (2.24) 

When (2.22) and (2.23) are taken into account, this demon- 
strates in fact that f(h,, h,) is convex. 

As noted above, the bifurcation perturbation theory has 
an entirely different character. In Ref. 24, for example (see 
also Ref. 19), analogous expansions were used to analyze 
Abrikosov vortices. It can be stated that the BPT is a gener- 
alization of expansions in the order parameter near phase 
transition points. The analysis performed shows that for a 
qualitative understanding of the arrangement of the bound 
states in an inhomogeneous system it suffices to determine 
the bifurcation points and the corresponding state p,. We 
can then use the BPT for the quantitative calculations. 

All the foregoing is obviously valid not only for inho- 
mogeneous LJJ, but also for any system described by a scalar 
field p(x, t ) with a potential V(p; x )  satisfying natural phys- 
ical restrictions (cf. Refs. 18, 19, 22, and 23). The remaining 
analysis pertains to LJJ with inhomogeneities, i.e., the po- 
tential is defined by relation (2.12). 

3. BOUND STATES AND BIFURCATIONS IN LJJ WITH 
MICROINHOMOGENEITIES 

It is clear from the foregoing that the qualitative struc- 
ture of the static states is the following. Given the values of 
the magnetic field at the edges, there exist usually several 
states with different values and distributions of the magnetic 
flux and with different energies f .  Some of these states may 
turn out to be locally stable, and in principle more than one 
stable state can exist for given values of the edge fields. It will 
be shown below that this situaton, which is of general-phys- 
ics and applied interest, is realized already for a semi-infinite 
LJJ with one microinhomogeneity and lends itself to a com- 
plete investigation. 
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The solutions of Eq. (2.8) with boundary conditions 
(2.5) are easiest to obtain using the first integrals on the ho- 
mogeneous sections 

~p'~/4=k,2-~0s~ (cp/2), X ~ < X < X ~ + ~ ,  (3.1) 

where ki are integration constants. It follows from (3.1) that 
the general solution on any homogeneous interval can be 
written in the form 

cos ((p/2) =-ki sn (x+lil k i )  , (3.2) 
where sn is the Jacobi elliptic sinez5 and Ii are constants. The 
unknowns ki , li (i = 0, 1, . . . ., n) are determined from the n 
conditions for the continuity of&) at the pointsx,, from the 
n conditions for the jump of the magnetic field 

cp' (xi+O) -q' (xi-0) =-pi sin cp ( x i )  (3.3) 
and from the two boundary conditions (2.5). 

An equation for the states of the LJJ can be obtianed in 
the following manner. At any given 47, the value of k $ is 
determined from (3.1): 

ko2=~02+hoZ/4, (3.4) 

where we use the notation ci = cos(pi/2), si = sin(pi/2), 
i = O , l , .  . . , andn+l .Fromtheknownpi  andk3wecan 
determine p i+ ,  and k :+,. Indeed, it follows from (3.2) 
thatz5 

~i+l-xt=F (Arcsin (ci/ki) I ki) -F (Arcsin (ci+,/ki) I k i )  , (3.5) 

where F is  an elliptic integral of the first kind. From (3.5) we 
can find ci + , from the known ci and ki . At ki > 1 it is more 
convenient to use the relation 
xi+i-xi=ki-'[F( (n-9;)  12 1 ki-') -F ( (n-vi+t) 12 1 ki-l) ] 9 

(3.5a) 

which is obtained from (3.5) by the knownz5 transformation 
of the function F. Equation (3.5a) can be obtained also direct- 
ly from (3.1): 

which is equal to (3.5a) in accord with the definition of F 
(Ref. 25). Representation ofx, + , - xi in the form of an inte- 
gral with respect to c is usually more convenient for numeri- 
cal calculations and for a qualitative analysis, and will be 
frequently used below. The value of k 3, , is now determined 
from the conditions (3.1) and (3.3) 

2 2 
(ki+l-ci+,) '"= (k?-ci2+i) "'-p+si+l~i+i, (3.7) 

where the square root in the right-hand side must be under- 
stood in its algebraic sense. It is easy in practice to track the 
sign reversals. 

Using relations (3.4), (3.5), and (3.7) we can ultimately 
express k and p, + , in terms of the free parameter p,. 
Substituting these values in the boundary condition 

kn2-c,;,=hL2/4, (3.8) 

we obtain for p, an equation that yields all the possible 
states. It is convenient to plot them on a diagram in the (p, p') 

FIG. 2. 

plane, Fig. 2. Corresponding to each state is a piecewise- 
continuous curve that starts at (p,, h,), ends at (p,, h, ) and is 
made up of pieces described by Eqs. (3.1). The values of pi 
should satisfy relations (3.5), and the values of ki are deter- 
mined from (3.7) 

Let us investigate the simplest bound states. For an infi- 
nite junction with one microinhomogeneity (x, = - a ,  
x, = 0, x,  = + a )  there exist only two static solutions cor- 
responding to a fluxon or an antifluxon localized in the in- 
homogeneity. In fact, the energy can be finite only under the 
conditions cos p( f a )  = 1, q,'( + a)  = 0 i.e., 
(p( f a ),pf( f 43 )) = (277N* , O), where N, are integers. 
Since only lines corresponding to k, = k, = 1 enter these 
points, we should have N+ - N- = f 1, where we can 
choose N - = 0 and N+ = 1 or N- = 1 and N+ = 0; the 
solutions obtained by making the shift q,--tg, + 277N are phy- 
sically identical. The first solution corresponds in Fig. 2 to 
the curve OF0 ', and the second to its mirror image relative 
to the q, axis. It follows from the condition k, = k, = 1 that 
the jump of p' at the point x ,  = 0 is equal to zero, and ac- 
cording to (3.3) we have p, = 77. From (3.2) we easily find 
that 

cp ( x )  =2 arc cos ( ~ t h  x )  =4 arc tg e'", (3.9) 

where the upper sign pertains to the bound fluxon. The beam 
distribution (3.9) coincides with the known distribution for a 
free fluxon at rest in a homogeneous junction,' but its ener- 
gy, as can be easily found from (2.3), is equal to f9 = 8 - 2p,. 
At p, > 0 this is less than the minimum energy f9, = 8 of a 
free fluxon in a homogeneous junction, and it is this which 
allows us to speak of a bound state and of attraction of a 
fluxon by its inhomogeneity. The state (3.9) exists at any 
value ofp ,, including also a tp ,  < 0, but in the latter case it is 
unstable. Indeed, for the distribution (3.9) we have cosq 
= 1 - 2 sech2x and Eq. (2.9) can be solved exactly by reduc- 
ing it, using the substitution $ =  ( [exp( -p lx) ) ]~)  
X (tanhlxl) to the Jacobi equation for the function u.  A sim- 
ple investigation yields the single eigenvalue belonging to the 
discrete spectrum and corresponding to the eigenfunction 

1 
002= - 

2 
pi[ (1+(pi /4)2) 'h- (p i /4)  1, 

qo=e-~oI~I (po+thlz l ) ,  (3.10) 

wherepi = 1 - m i .  At wZ> 1 the spectrum is continuous. It 
can be seen from (3.0) that the state (3.9) is stable at p, > 0 
and unstable at p, < 0, i.e., p, = 0 is the bifurcation point of 
the bound states. 
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We note that new bound states can set in at large values 
of Ipi I. For example, if jpll 22, a state of the "fluxon-anti- 
fluxon" type can occur, at which the sign of the magnetic 
field is jumpwise reversed at the point x,. We consider here- 
after only attracting inhomogeneities, for which 0 <p i  < 1. 
The restrictionp, < 1 stems from the fact that a real inhomo- 
geneity is produced by a decrease of the critical Josephson 
current on a segment of finite length Ax (see Fig. 1). Approxi- 
mation of this current by the expression (1 -pi6(x -xi))  
calls for satisfaction of the inequality Ax -pi )O. The 6- 
function approximation is meaningful only at sufficiently 
small Ax, smaller than the fluxon dimension, and hence the 
limit onp,.  A large inhomogeneity can, of course be approxi- 
mated by several closely lying local inhomogeneities. 

A more abundant set of bound states is produced in an 
infinite junction with two inhomogeneities. We consider for 
simplicity the case p, =p, = p  and put x, = - W ,  
x, = - A, x, = A, x, = + w . Just as in the preceding case 
(p( + w ), pf( f w )) = (2aN, , 0), but now the possible val- 
ues of IN+ - N- I depend on A. Using the symmetry of the 
problem under the reflection x+ - x, we can reduce its so- 
lution to an analysis of four cases: l )  p(0) = a ,  
p( + W )  = 2a, p( - W )  = 0, i.e., @ = 0,; 2) p(0) = 0, 
p ( f  W )  = + 2aN, N =  1, 2,. . . , i, e., @ =  2N0,; 3) 
p ( 0 ) =  - a ,  p ( +  w)=2aN,  p ( -  w ) =  -2a (N+  I), 
i.e., @ = (2N + I)@,; 4) p (0) = 2 arccos k,, p ( + w ) = 2a, 
@ = 0. The remaining solutions can be obtained by making 
the substitution p'+ - p' and by a physically immaterial 
shift of p .  It suffices to obtain the solution on the semi-infiite 
interval O<x < + w at a known value of p(0). In Fig. 2 the 
solution of the first type corresponds to the curve 
F$$AO ',the solution of the second type at N = 1 to the 
curve F,D,D;Of, the solution of the fourth type to 
E$$ 60 ', etc. The value of k : is determined from (3.7), 
i.e., 

kt2-1=pz~2 (1-cZ2) (2+p2~2) .  (3.11) 

When c, varies in the range - 1 <c,< + 1, the parameter k : 
takes on values in the interval k ' <k <k 5 , where k '- 
and k : are respectively the minimum and the maximum of 
the function k : (c,). At p, < 1 we can use the approximation 

Instead of solving (3.5), it is convenient to simply spe- 
cify a value of c,, determine from (3.1 1) the value of k t, and 
use (3.5) or (3.6) to calculate A = (x, - x,)/2. The extremal 
values of A correspond to the bifurcation points. It is thus 
easy to verify that states of the first type and states of the 
second type with a flux 2@, exist at all A, whereas the other 
states are produced only at a sufficiently large value3' of A. 
For example, the bound state of a fluxon and antifluxon, i.e., 
solutions of the fourth type (see curve E$$ A0 ' in Fig. 2) 
cannot exist if A < K (k-)=F (a/2I k-). In fact, 

A=F(n/2 I k , )  -F (arcsin ( c 2 / k i )  I k , )  > K ( k i )  >K(k- ) ,  (3.13) 

and the exact value of the minimum of A, which depends on 
p ,  can be easily obtained by numerical means. 

The natural frequencies of the investigated states are 
easiest to calculate in the approximation described in the 
next section, although at p(A ) -aNit is possible to solve also 
the exact equations. The general structure of the bound 
states on two inhomogeneities is simple enough, and we 
leave out the details. The problem of three and more inho- 
mogeneities is substantially more complicated and is worthy 
of a special investigation. 

For a semi-infinite junction (x, = 0, x, > 0, x, = + w ) 
with a given value of h, it is also possible to obtain a complete 
solution of the problem of bound static states on the basis of 
exact equations. Such a junction is physically realized if 
x, = I> 1, 1 - x,)x, and h, = 0. On the right end we put 
p( + w ) = 2a. Although Eq. (2.8) and the boundary condi- 
tion (2.5) are invariant to the shift p--tg, + 2aN, the expres- 
sion (2.6) for the energy is not invariant, f-f + 2aNh0. 
This is why it is necessary to fix the value p( + w ) = 2aN+. 
The observed quantities (energy differences at a given h,, 
magnetic fields, currents) do not depend on the choice ofN+, 
and are continuous functions of h, at a given N,, 

The problem posed can be solved in the same manner as 
the problem of two inhomogeneities in an infinite junction. 
Obviously k, = 1 and k, is determined from the specified 
value of c, by Eq. (3.1 I), in which we must replace, k,, c,, and 
p2 by k,, c,, andp,.  The values of c, are obtained from (3.4), 
after which we calculate x,  from (3.5) or (3.6). Typical states 
are shown in Fig. 2, viz., the curves 
EIDID ; Of ,  E2D2D ;0', E,D,D 0 ' ,  E ;D,D ;O '. At 
h, = 0 and at small values of x ,  there exists only one stable 
statep(x) = 2a. It followsfrom (3.13) in which A, k,, c,-+x,, 
k,, c,, that at x ,  > K (k-) there can appear in a zero field one 
more stable bound state corresponding to the curve 
E$@ 0 ' .  

The solutions with I k i - 1 I < 1, particularly all soh- 
tions at p, ( 1, can be expressed in terms of elementary func- 
tions by expanding the integral in (3.6) in powers of (k i - 1). 
In the general case they are represented by rather cumber- 
some formulas and we present the results only for states with 
small /sol and lsll as h,+O. If 12a - pll < 1237 -pol,  we 
have 

~n=llzho cth (x ,+v-)  + . . . , 

f=2nh,-'/2h,2 cth ( X , + Y - )  + o ( h o 2 ) ,  

and at 1~01, l ~ l l 4 l  

so=-'12ho th (xi-v+)  + . . . , 

where Y ,  = 1/21n( & 1 + 2/p). We recall that to calculate 
f we need not know p(x), and it suffices to replace with the 
aid of (3.1) the integration with respect to x by integration 
with respect to cos(p /2) or sin(p/2) [cf. (3.6)], after which 
(3.14) and (3.15) are easily obtained. 

Simple and useful analytic expressions exist also for 
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states similar to a bound fluxon in an infinite junction, i.e., at 
Ic,l(l, Iki - 1141.. Withthe aidof(3.4), (3.6), and(3.11) it 
is easy to calculate expansions of c, and ho in powers of c,. If 
we stipulate dhddc, = 0 at c, = 0, we can obtain a bifurca- 
tion point whose all characteristics can be expressed in terms 
of elementary functions. The condition dh,/dc, = 0 at 
c, = 0 yields the relation betweenp, and x,: 

In this case h, = 2 sech x, and 

ho2-hoZ=p1ci2 [3 sh x1 ~ h - ~  xi 

With the aid of (3.14) and (3.1 1) it is easy now to obtain the 
first terms of the expansions of p(0) and f in powers of 
E = (h, - h, )'I2 [see (2.1 1) and (2.201 and verify that the so- 
lution at c, > 0 has the lower energy. Since p, (x) = 2 arccos- 
( - tanh (x - x,)), Eq. (2.9) reduces to a Jacobi equation, 

and it can be shown that the smallest eigenvalue w i  at 
p = p, is zero. Thus, the solution with the lower energy at 
E # O  is stable. If E = 0 (i.e., c, = O), the energy of the bound 
state is equal to 

f,=4 [l+th x,+sech (x i )  arccos (th x,) - l / , ~ , ] ,  (3.18) 

where p, is determined from (3.16). When p, and x,  do not 
satisfy this relation, the bifurcation takes place at c, f 0. Nu- 
merical calculation with the aid of (3.4), (3.6), and (3.11) 
shows that for the typical valuep, - 1/2 at 0.5 5 x,  5 1.5 the 
bifurcation does indeed take place at small c, and at 
h, - 2 sech x,. 

We examine now the general picture of the evolution of 
the static states when c, is varied from - 1 to + 1, without 
fixing the value of x, but calculating it from (3.5) or (3.6). It is 
convenient to represent the states on the (x,, h,) plane by 
curves corresponding to a constant c,, Fig. 3. The shapes of 
these curves can be easily interpreted with the aid of Eq. 
(3.6), which in this case takes the form 

Given c,, the parameter k is determined from (3.1 I), where 
k,, c,, p2-+ko, c,, p, ,  with co= + ( k i  -6)112 , ro  
= hd2=hdhm [see (3.4)]. Differentiating (3.6a) with re- 
spect to r, we easily verify that at a fixed c, 

i.e., these curves have a maximum at i$ = k 2, and a mini- 
mum at 4 = k ; - 1. Putting in (3.6a) c, = 0 and c, = + 1, 
we determine the trajectories of the maxima and of the mini- 
ma. They are shown dashed in Fig. 3, and the direction of 
motion with increasing c, is indicated by arrows. The thin 
solid lines are typical plots ofconstant c,, wherein the curves 
with the maxima M, and M, correspond to c, < 0 (states 
E,D,D ; 0 ', E2D2D ; 0 ' in Fig. 2), while the curves with the 
minima M,, M ;  , and M4 correspond to c, > O(E3D,D ; 0 ' or 
E ; D,D ; 0'). It is easy to show that the curve c, = c- has the 
smallest maximum and the curve c, = c+ has the largest 

FIG. 3. 

minimum. It can now be readily understood that the family 
of the c+ = const curves has three envelopes shown by the 
thick lines. The envelope BIB ; corresponds to small c,, 
while the value of c, is close to c- for B2B; and to c+ for 
B,B ; . The curves B,B ; and B3B ; have minima M, and M, 
at x, - 1. The envelopes described are in fact the bifurcation 
curves. At fixedx, there are two states below BIB ; (intersec- 
tion of the curves M4 and MI, two more states appear 
between BIB ; and B2B ; (intersection of the curves M, and 
M,), and two states remain between B2B ; and B,B ;. It can 
be easily discerned which of the states are stable, As h,+O 
the state described by the equations in (3.14) has the lowest 
possible energy and is obviously stable. Therefore the states 
on the left-hand branch of the M, curve are stable up to the 
point of tangency with the envelope, while the states to the 
right of the tangency point, in accord with the general the- 
ory, are unstable. It was shown above that the states on the 
curves of type M2 and M ;  are stable up to the points of 
tangency with BIB ; or B,B ;. It follows from the general 
theory that the states on the shown sections of the curves, of 
type Mi and M4, are unstable. To show the dependence off 
on ho at a given x,  it suflices now to find the values of 
ho = h,,, calculate f c i  = f(hci),  and use Eqs. (3.14) and 
(3.15) as well as the general conditions (2.19), (2.20), and 
(2.22). As a result we obtain the typical (u,- 1/2) curve 
shown in Fig. 4, where a deformation was introduced to pre- 
serve the signs of f f(h0)  and fo(hO)  and the sequence of the 
points h,, . As shown above, the curves OB, and B,B, in Fig. 
4 correspond to locally stable states, and B2Bl and B,O ' to 
unstable ones. The energy of the states on OCand CB, has an 

FIG. 4. 
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absolute minimum, so that they are absoutely (globally) sta- 
ble. The states on BIC and CB2 correspond only to a local 
minimum of the energy, so that generally speaking they are 
metastable. Transitions from the states BIC and B2Cinto the 
states OC and B3C, at which the total flux changes by an 
amount - (1/2)@,, can result from large quantum-mechani- 
cal or temperature fluctuations. Although processes of this 
type were investigated in homogeneous systems, the elucida- 
tion of all the transition mechanisms and the determination 
of the corresponding lifetimes in an inhomogeneous system 
constitute a separate and still unsolved problem. We note in 
conclusion that the peculiar dependence off on h, is simi- 
lar to the pressure dependence of the thermodynamic poten- 
tial of a Van der Waals gas at T <  Tc , with the states corre- 
sponding to stable phases on the sections OC and B3C and to 
metastable ones on CB2 and CB,. 

4. PIECEWISE-LINEAR APPROXIMATION 

To calculate the natural frequencies of the bound states 
obtained above and to solve more complicated problems, we 
propose here a simple approximation in which all the equa- 
tions contain only elementary functions. We assume for the 
energy of the Josephson currents the continuously differen- 
tiable approximation 

I-cos c p ~ ' / ~  ( - 1 )  (r . -dN)Z+l/snZ[l-  ( -1)  N ]  (4.1) 

on the intervals I, : (N - 1/2)r;<p<(N + 1/2)r;, with N an 
integer. We then obtain for the Josephson current, by differ- 
entiating with respect to p,  a piecewise-linear ("sawtooth") 
approximation, and for cosp in (2.9) we obtain after one 
more differentiation the piecewise continuous approxima- 
tion cospz(  - I),. We assume for simplicity that the 
sought solution p(x) increases monotonically, and put 
~ ( 2 , )  - = (N - 1/2)n-, p (?,+, ) = (N + - 1/2)77. Denoting by 
I, theintervalofx in which@,, i.e., IN = (2,,2,+, ), we 
replace Eqs. (2.8) and (2.9) by the approximate ones 

The functions p and qh and their first derivatives are contin- 
uous at the points EN, while on the edges of an LJJ they 
satisfy the usual boundary conditions [see (2.5) and (2.9)]. 
The approximation (4.1) can be refined by multiplying the 
right-hand side by a certain number A 2. An obvious renor- 
malization of the values of x, p,, h,, and h, allows us to 
preserve the forms of Eqs. (4.2) and (4.3) and of the boundary 
conditions; it suffices therefore to consider only the case 
A =  1. 

The solutions of Eq. (4.2) on the intervals 7, can be 
represented in the form 

(cp-nN) ='/,n{-ch ( x -SN)  +aN sh ( x - f N ) ) ,  

' I23 l  {ch ( x - Z N + ~ )  +UN' ( x - z ~ t l ) } ,  (4.4) 

(cp-nN) ='/,n {-cos (5-ZN)  +aN sin ( x - f  N ) }  , 
' l2n  {COS ( X - Z ~ + ~ )  +aN' sin ( x - ? N + ~ )  1, (4.5) 

where the parameters a, and a', assume the role of the 
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constants k f i n  (3.1); we can put on the corresponding inter- 
vals k :  - 1 =(a; - 1)7?/16. If there are no inhomogene- 
ities on I,, we have 

a,=a,'=cth [(f N + I - ? N ) / ~ ] )  ~ t g [  (z~+i-Zh.)  121. (4.6) 
If x l d N ,  then a', differs from a,. All the parameters a, 
and a', can be easily expressed in terms of h,, h,, and E N .  
For example, in an LJJ with one inhomogeneity the value of 
a, to the left of the inhomogeneity can be expressed in terms 
of h, and Z, < x,, using the boundary condition and the con- 
tinuity of pf(x)  = ?,. We obtain similary a', to the right of 
the inhomogeneity. The equations for EN are obtained from 
the condition that p(x) be continuous at x = x,, from the 
discontinuity condition 

cp' (xj+O) -cp' (xi-0) =pi (-1) (9 (x i )  -nN) , X F I N  (4.7) 

and from the relations (4.6) for the intervals that do not con- 
tain xi .  The equations for ?, are obviously nonlinear. Our 
approximation leads therefore to linear equations only for 
solutions that are all concentrated on one ofthe?, intervals. 
The approximate solutions (4.4) and (4.5) describe well the 
dependence of the exact solutions on x. If no account is taken 
of the solutions that contain pieces with k f < 1/2 an accura- 
cy to within - 10% is guaranteed for all the observable 
quantities. 

To determine w2 and $(x) from (4.3) it is convenient to 
put f (x) = $'(x)/$(x). We then have at x #xi ,  if N is even 

f=q t h ( q x f  O ) ,  X E ~ , ,  (4.8) 

and if N is odd 

f=-p tg(px+e) ,  x=Pn., (4.9) 

wherep2 = 1 - w2, q2 = 1 + w2. lfxi d , ,  the 8 has different 
values, which we designate 0, and 6' ', , on the left and on the 
right of the homogeneity. The connection between them is 
determined by the condition for the discontinuity of $', i.e., 

f (x,+O) - f  (xi-0) = ( -1 )  "+'pi, x,EJN. (4.10) 

On an interval without inhomogeneities we have 8, = 8 &. 
At the boundary points f (x,) = f (x, + ) = 0; if x, = - ca, 
X, + , = + oo , then f (x,) = q, f (x, + , ) = - q. Using (4.8)- 
(4.10) we can, for given values of?, , eliminate the unknown 
parameters and obtain an equation for w2. I t  is then easy to 
obtain $(x) by integrating (4.8) and (4.9). 

Equations (4.4)-(4.10) together with the boundary con- 
ditions and the continuity requirements enable us thus to 
obtain the bound states, which are now determined by the 
parameters ?,, and calculate their natural frequencies. We 
present simple nontrivial examples. Consider on a semi-infi- 
nite junction states that satisfy the condition p,,p,d,. 
Eliminating all the unknown parameters except 
7 = ?, - x,  + 77/4, we can obtain for 7 the equation 

r,--h,lh,=cos xi  [sin q+(tg xi-pl)cos qj  , (4.11) 

where h, = r;/a is the maximum value of h, at which stat- 
ic states can exist in a homogeneous junction (h, = 2 for the 
exact equations). The bifurcation points 7 = 7, are defined 
by the condition dr,,/dq = 0. Eliminating from this equation 
and from (4.11) the value 7 = vC,  we obtain the equation of 
the bifurcation curve: 
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rC2- (h,/L,) 2 = ~ ~ ~ Z x 1  [I+ ( t g  (4.12) 

This equation describes approximately the curve B2B ; on 
Fig. 3 and yields an approximate value of h,, for different x ,  
and p,. From (4.12) we can also obtain the position of the 
point M ,  on the bifurcation curve: 

t g  xi='/2 [p i+ (4+pi2)Ih] ,  rC=ctg x i .  

At p, = 1/2 and p, = 1 we obtain from this formula 
(x,; r,) = (0.91; 0.78), (0.90; 0.66). The numerical calculation 
of the exact equations yields respectively (0.78; 0.82) and 
(1.02; 0.62). Thus, we obtain a fair approximation even for a 
very weak characteristic of the spectrum of the bound states. 
The method described above yields an equation forp: 

PI=P t g [ p ( Z 2 - x i )  -arccos ( p l f i )  I + p  t g ( p x , ) .  (4.13) 

The state is stable if this equation has no roots 0 < p  < 1. If we 
putp = 1 in (4.13), we obtain the bifurcation curve obtained 
above from the condition drddq  = 0. 

We consider in conclusion a state with x o d o  and xlE?,. 
For the two independent parameters q ,  = x, - 2,  and 
q2  = F2 - x1 + n-/4 we have the equations 

s in  q l  sir1 q2+ (cos  qi+pi s i n  q i )  cos q2=1/1'2, (4.14) 

( r o l ' 2 + s h ~ , ) s i n q 1 = ( 1 ' Z  cos q,+cos q l ) c h  2, .  (4.15) 

The first equation permits COST, to be expressed in terms of 
q,, and we are left with one transcendental equation that 
connects r,, x,, and q p  The bifurcation curve BIB ; on Fig. 3 
is easiest to find in this case from the condition w2 = 0. Cal- 
culation in accord with the scheme described above leads to 
an equation for p: 

pi=p t g [ p ( x i - 2 , )  -arctg(qp-'  t h ( q Z i )  11 

+p t g  [ p  (LFZ-z,) -arccos ( p l ?  5) 1 ,  (4.16) 

where q2 = 1 + w2 = 2 -p2, and the equation for the bifur- 
cation curve is obtained at q = p  = 1. In particular, for the 
state with p1 = n- we have a; = a, = a; = a, = 1 [see (4.4) 
and (4.5)], i.e., 2, - El, = ~ / 2 ,  7, = n-/4, 77, = n/2, and 
from (4.15) it follows that = exp( - x ,  + n-/4). For this 
state we find from (4.16) at q = p  = 1 that x ,  - n-/4 = - 1/ 
2 In p, .  The expressions obtained approximate well the ex- 
act relations r, = sech x, and (3.16). 

The same method can calculate also other states. At low 
values ofx, andp, there can exist only states with a total flux 
5 (3/2)@,. It is easy to calculate that there exist only eight 
different types of such states. The equations that determine 
all the states and their natural frequencies are not more com- 
plicated that (4.13)-(4.16). The problem of a junction of finite 
length involves more complicated equations and calls for a 
special investigation. 

5. CONCLUSION 

It was shown above that the magnetic flux can be local- 
ized on inhomogeneities that attract fluxons (they were 
called in Ref. 15 microresistances, in contrast to micro- 
shorts). In this case bound states of deformed fluxons are 
produced and are stable to small fluctuations, or even abso- 
lutely stable. Such states can be produced in experiment by 
varying the magnetic field at the edge of the junction, and the 

corresponding distributions of the current and of the mag- 
netic field inside the junction might be observable directly by 
the procedure, mentioned in the Introduction, of scanning 
the LJJ with a focused low-power laser beam. 11212 The distri- 
butions of the current and field along the junctions are then 
directly determined by the changes, due to local heating, of 
the maximum total current at zero voltage. If the state is 
rigidly localized, i.e., its binding energy and natural frequen- 
cy are high enough, a perturbation due to illumination of the 
junction will not distort noticeably the investigated current 
distribution, which can be predicted theoretically. 

We note that one might attempt, by locally heating the 
junction with a second more powerful focused laser beam, to 
produce a microinhomogeneity whose position can be easily 
varied. This would uncover a possibility of directly observ- 
ing the evolution of the bound states and of their bifurcations 
while varying simultaneously the position of the microinho- 
mogeneity and of the external magnetic field. 

Scanning of rigidly localized states at different values of 
the edge magnetic field can also be used for diagnostics of 
junctions with inhomogeneities. Indeed, our analysis shows 
that each LJJ has an individual "portrait" of bound states, 
and in principle it is easy to use the abundant set of experi- 
mental distributions to solve the inverse problem, i.e., to find 
the parameters that characterize the inhomogeneities. The 
position of the microinhomogeneities can be observed in this 
case literally "with unaided eye" (see Figs. 3 and 5 in Ref. 
12), and a more detailed theoretical analysis is needed only to 
determine the values ofp, .  A more direct method of finding 
p, is to measure the natual frequencies of the bound states. It 
suffices for this purpose to excite natural oscillations and to 
observe them by one of the methods used to study the motion 
of fluxons in homogeneous LJJ (Refs. 9 and 10). 

We note that bound states can exist also in junctions 
with repelling inhomogeneities (microshorts); for example, a 
soliton may fall into a trap between two microshorts that are 
far enough from each other. Although such states can also 
be found by the methods of the present paper, soliton pertur- 
bation theory is usually sufficient for their description. The 
stable states in the traps are usually weakly localized and 
have low natural frequencies, so that their natural oscilla- 
tions are easily excited and attenuate slowly. For this reason, 
the prospects of using fluxons localized on microresistances 
are more favorable. Furthermore, as shown above, even in a 
very simple system it is possible to realize two stable states 
(bistability). These states can be smoothly controlled by 
varying the magnetic field far from the bifurcations, and an 
abrupt switching (quenching) into a state with lower energy 
is possible at the bifurcation point. For a detailed quantita- 
tive description of these phenomena we must solve a nonsta- 
tionary equation with allowance for the static solutions ob- 
tained above. An investigation of the nonstationary problem 
is needed also for the calculation of the probability of transi- 
ton from a metastable to a stable state. It is quite probable 
that the use of information on static states, including also on 
sufficiently long-lived unstable ones, can provide a simple 
description of the nonstationary processes, similar to the S- 
matrix scattering theory. Bound states and resonances of the 
S matrix will correspond in this case to the stable and unsta- 
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ble static distributions investieated in the present paper. 
The authors thank A. L. Efros for a helpful discussion. 

"This follows from the general theory of stability and bifurcations, origin- 
ated in the papers of A. M. Lyapunov and E. S ~ h m i d t . ~ ~ , ~ ~  In problems 
similar to ours, this phenomenon was recently observed in Refs. 22 and 
23. 

*'At ho = h, = he, it follows hence that d@ /ah,, > 0, i.e., the total flux 
increases with increasing external field. This condition is similar to the 
known thermodynamic relation (dV/dp), < 0, with - he, the analog of 
the prsssure and @ the analog of the volume. 

3'Besides ground states of the first and fourth type, at sufficiently large 
values of A there exist unstable excited states in which 9' reverses sign 
many times in the interval ( - A,A ); these states will not be considered 
here. 
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