
Singularities in volt-ampere characteristics of superconductor-semiconductor- 
superconductor junctions 

L. G. Aslamazov and M. V. Fistul' 

Institute of Steel and Alloys, Moscow 
(Submitted 1 September 1983) 
Zh. Eksp. Teor. Fiz. 86, 15 16-1 526 (April 1984) 

It is shown that in superconductor-semiconductor-superconductor unctions the Riedel singular- 
ity in the amplitude of the superconducting current is considerably enhanced as a result of a 
resonance mechanism in the transmission of coherent electrons along special trajectories having a 
periodic arrangement of the impurities. In the asymmetrical case, this mechanism leads to the 
new singularities that appear when the voltage at each of the semiconductor-superconductor 
interfaces is equal to the corresponding value of the gap. 

Josephson junctions in which the superconductors are 
separated by a semiconductor layer (S-Sm-S ) have been in- 
vestigated in a number of publications.'-6 However, theo- 
retical investigations have been carried out only for the static 
properties of the junctions: the critical current and its depen- 
dence on the temperature, thickness of the layer, and the 
parameters of the semiconductor have been calculated. In 
this work we determine the superconducting current in the 
junction as a function of voltage for the case of a nondegener- 
ate semiconductor containing impurity atoms. 

This case is of particular interest, since under certain 
conditions resonance transmission of the electrons through 
the semiconducting layer becomes possible. In the semicon- 
ducting layer there are special trajectories along which there 
is a periodic distribution of impurity atoms and along which 
the coherent electrons, which carry the superconducting 
current, pass with little attenuation. Althoug the probability 
of formation of such trajectories is small, it increases with 
increasing impurity concentration, and well before the point 
of degeneracy the resonance mechanism of transport of the 
superconducting current is favored over the usual tunneling 
mechanism."' 

It turns out that resonance tunneling has a substantial 
effect on the character of the singularities in the supercon- 
ducting current. It is well known that in ordinary tunneling 
the amplitude of the superconducting current depends 
weakly on the applied voltage U,, and only near the value 
U, = 2 4 ,  (where A ,  is the modulus of the order parameter in 
the superconductor), does it have a Riedel logarithmic singu- 
larity.' At specified values of the total current this situation 
should lead to singularities in the volt-ampere (I-V) charac- 
teristic when the capacitance of the junction is small 
e n ~ u g h . ~  However, the fluctuations smear out the weak sin- 
gularity and it has not proved possible to observe it. 

Resonance tunneling leads to an enhancement of the 
singularity: there is a sharper rise in current over a wide 
range of voltage. At the same time, the capacitance of the 
superconductor-semiconductor-superconductor junctions 
is relatively low, because of the large thickness of the semi- 
conductor layer. Therefore, in this case a singularity should 
appear in the I-V characteristic of the junction. 

The band structure of the superconductor-semiconduc- 
tor-superconductor junction is shown in Fig. 1. Schottky 

barriers are formed near the interfaces of the semiconductor 
with the superconductors. The resistance of the barriers is 
usually large and we can assume that all the voltage drop 
occurs at these barriers. The chemical potential p in the se- 
miconductor layer falls below V,, the bottom of the conduc- 
tion band (in the nondegenerate case) and near the impurity 
levels. The Fermi level in the superconductors is shifted rela- 
tive top  by an amount corresponding to the voltage drops U ,  
and U2 at the interfaces (the applied voltage is 
Uo = U ,  + U2, and the potential is referred to the level p so 
that U ,  and U,  have opposite signs). 

The resonance trajectories are formed out of impurity 
levels located in a narrow energy range near the chemical 
potential. As a result, when the level ,LL passes through the 
bandgap (the crosshatched regions in Fig. I), in the super- 
conductors (as the voltage is varied), the superconducting 
current will show singularities. If the junction is symmetric, 
then at U  = 2 4 ,  (for a positive voltage) as in the usual tunnel 
junction there will be one singularity, to which, however, 
corresponds a hyperbolic dependence of the current on the 
voltage. In an asymmetric junction the order parameters A ,  
and A,  are different in the two superconductors and the vol- 
tage drops at the interfaces are also different (the ratio of the 
voltages is given by y = I U2 / / I U ,  I). In this case, for positive 
values of the total voltage Uo there can be two square root 
singularities, when each of the voltages at the interfaces is 
equal in value to the respective energy gap. 

Thus, by studying the singularities in the superconduct- 
ing current it is possible to observe resonance tunneling in 
superconductor-semiconductor-superconductor junctions. 

FIG. 1. Band structure of a S-Sm-Sjunction for voltage U, = U, - U,. 
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2. GENERAL EXPRESSION FOR SUPERCONDUCTING 
CURRENT IN A SUPERCONDUCTOR-SEMICONDUCTOR- 
SUPERCONDUCTOR JUNCTION 

The current density is exprzssed by means of the matrix 
Green's function of the system G (r,rf;t,t '), which we find by 
using the Gor'kov equation, written down by the use of the 
Keldysh method1': 

X ~ ( r ,  r'; t, t') =6 (t-t') 6 (r-r') , (1) 

where .i, is the Pauli matrix, V (r) is the scalar potential in the 
system without an external field (it is comprised of the bot- 
tom of the conduction band V(z) and the impurity potential 
Vim, (r)), and V(z) is the potential distribution created by the 
applied voltage (z is the coordin%e perpendicular to the 
plane of the junction). The matrix A has the form 

h 

The matrix Green's function G is given by the expression 

where G and G B ( A )  are, in turn, matrices consisting of the 
usual Green's function g and an anomalous function I? 

To solve equation (1) we perform a Fourier transformation 
with respect to the time difference: 

d o  
G(r, r f ;  t, t r )  = - ko (r, r l ;  tf)e-io(t-t'). 

2n 

From this we obtain 
1 dZ 

{TZ[o-u(z)  I+-- + p - ~ ( r )  +A (r, t') 
2m dr2 

x G* (r, r'; t') =6 (r-r'). (6) 

Here, we have used the explicit time dependence of the order 
parameter: 

A (r, t)  =A (2) e-au(z) t ,  (7) 

where the order parameter in the semiconductor layer is tak- 
en to be zero because of the smallness of the electron-phonon 
coupling constant. The current density is expressed in terms 
of the Green's function by the formula" 

(8) 
To find the Green's function G, it is convenient to write it in 
the form 

Gw (r, r'; t') =th [ Wi:(z) ] ( G ~ ~ - G ~ * )  +G:') . (9) 

where the first term, in the absence of an external field, 
[U(z) = 0] goes over into the well-known ~olut ion '~,  and for 
G we obtain from Eq. (6) 

with the condition G 2) = 0 for U (z) = 0. Using formulas (9) 
and (10) we can write the expression for the current density 
(8) in the form 

x{th [ ] [GwR(r, r f ;  tf)-GoA(r, r'; t') ] 

XGoR(r, r i )  [GoR(ri', r') -GuA ( r l f ,  r') ] } . (11) 

With the use of Eq. (6) the Green's function of the sys- 
tem in the superconducting state can be expressed in terms of 
the normal Green's functions 

G:(~) (r, r'; t i )  =G:AA' (r, r') 

-S h r . ~ ~ " )  (r. r,) d (z,, t') G."'*) (r,, r r ;  t ' ) .  
(12) 

For the derivatives of the normal Green's functions that ap- 
pear in (1 1) we have the simple identity derived in Ref. 4: 

d2p d d JAg-z) I ,+r3 
G:$) (r, r l )  GoRiA) (r2, r') 

R(A) =Go, (rzr rl) [sign zim-sign z2]. (13) 

Here, the points r, and r, are located in the superconducting 
regions and the point r is in the semiconducting layer, p is a 
vector which lies in the plane of the junction and in terms of 
which it is subsequently convenient to transform to the mo- 
mentum representation, with the corresponding momentum 
p. We note that the origin of the coordinate system is taken in 
the middle of the semiconductor layer, so that expression 
(13) vanishes if both coordinates are in the same supercon- 
ductor region. 

Using formulas (12) and (13) and expanding the matrix 
derivatives in (1 I), we obtain for the superconducting cur- 
rent a final expression that contains two terms having differ- 
ent analytic properties: 
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In these formulas under the integral sign there are al- 
ways products of two Green's functions with coordinates z, 
and z, which lie on different sides of the semiconductor bar- 
rier (although the integration is taken over allz, andz,, when 
this condition is satisfied, then A in the semiconductor layer 
and the factor /sign z,-sign 2,) are both zero). The integrals 
are taken over transverse momenta p, and p,. 

The integration over w was carried out along the real 
axis, and the rule for going around the singularities was de- 
termined by the analytic properties of the Green's functions. 
Here, in addition to the functions f ( A  that are analytic in 
the upper and lower half-planes, it is appropriate to intro- 

= duce the func t ionsp  a n d d R  which have more complicat- 
ed rules for integrating around the poles; we shall formulate 
these rules after we write down explicit expressions for the 
Green's functions. We note only that as a consequence, in 
the term JFi there is a contribution to the current not only 
due to the pole of the hyperbolic tangent, as in the term J j", 
but also due to the poles of the Green's functions. 

Expressions (15) and (16), obtained by the method dis- 
cussed here, are very convenient for finding the supercon- 
ducting current in the superconductor-semiconductor-su- 
perconductor junction. The dependence of the order 
parameter on thez-coordinate in these formulas can be taken 
as 

since the smallness of the derivatives of the Green's func- 
tions under the integral sign automatically causes the correc- 
tion to the current in the superconductors due to thez depen- 
dence A (z) to be small. With formulas (15) and (16) one can 
also easily take into account the explicit z-dependence of the 
Green's functions (because of the complex shape of the po- 
tential barrier) and average over the transverse coordinates, 
that is, over the different resonance trajectories. For the 
present problem, this is how our method is better than the 
method of integrating the Green's functions over the energy 
variable. ' ' 

In the absence of an external field, formulas (14)-(16) go 
over into the expression derived in Ref. 14 for the supercon- 
ducting current of a superconductor-semiconductor-super- 
conductor junction. The well known results for the nonsta- 
tionary Josephson effect in a 
superconductor-insulator-superconductor junction8p12 also 
follow from these formulas. 

2. CONTRIBUTION OF RESONANCE TRAJECTORIES TO THE 
SUPERCONDUCTINGCURRENT 

It is necessary to average formulas (1 5) and (16) over the 
positions and energies of the impurities in the semiconductor 
(the Green's functions depend on these parameters). In doing 

so, it is found that the major contribution to the current is 
due to resonance trajectories with a periodic distribution of 
the impurity atoms. Such a trajectory is characterized by a 
certain definite distance 2y between the impurity atoms (the 
important values of y are such that yga,  so that there are 
many impurity atoms on a trajectory) and by an angle 8, 
which defines the crookedness of the trajectory (the impor- 
tant values of 8 are 04 1). If it is assumed that the trajectory 
begins and ends at a Schottky barrier, then in order to obtain 
cyclic boundary conditions, it is necessary that the first and 
last impurities be located at the same distance y from the 
ends of the trajectory (the impurity levels within the 
Schottky barrier can be neglected, since they lie considerably 
above p . 

The spread ED in energy of the impurity levels causes 
large-scale fluctuations in the potential, and the correlation 
length usually exceeds the thickness of the semiconductor 
layer. l 3  Therefore the value of ED+, as well as the height of 
the barrier Vo-p can be considered constant in each trajec- 
tory. We shall now determine the contribution to the super- 
conducting current from the resonance trajectories and then 
average over the parameters y, 8, and ED (taking into ac- 
count the probability of formation of a trajectory). In the 
case of not too small impurity concentrations, this contribu- 
tion is found to be larger than the ordinary tunneling super- 
conducting current. 

For periodic trajectories and for a 8-function potential 
for the interaction with the impurities, Eq. (6) reduces to a 
system of difference equations solved by the method devel- 
oped in Ref. 6 and 7. As a result we obtain 

N = -  If- 
a ( :). Y 

In (18) the factor IOim, describes the resonance tunneling, 
while the Green's functions on the right hand side of the 
formula describe the system without impurities. The coordi- 
nates z and z' lie in the superconducting regions, and z, and 
z, are the coordinates of the first and last impurities in a 
trajectory (the transverse radius vectors are denoted, respec- 
tively, p, and pN). The quantity B has the meaning of the 
width of the band formed by the periodic distribution of the 
impurities; the parameter a characterizes the decay of B 
within the barrier, and N is the number of impurities in a 
trajectory. 

The expression of the function g2 is obtained from for- 
mulas ( 18) and ( 19) by substitution of the frequency w by - w 
in the expression for I, i m p .  
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Let us now discuss the analytic properties of the 
Green's functions. The expression for I, has N poles for 
real values of w, which can be easily found by rewriting the 
expression in the form 

The "pure" Green's functions gp ( A  '(p,;z,,z,) and I 

(p2;zNjf) have, as usual, a branch point at 
w = f A ,,, + U ,,, , and the contour passes above them for 
the retarded Green's functions and below them for the ad- 
vanced Green's functions.' The contours around the poles of 
the function I Z t  ) must be the same. For the functions gRA 
and &R the rules for integrating around the poles are more 
complicated. For instance, for the function gRA we have 

R A  RA 
giwn (PI ,  PZ; 2 , ~ ' )  ,mp ( Y ,  0, E D )  

xexp [ipip0-ip2p~] gEn (pi; z, 20) gl:, (p2; ZN, z') , 
(21) 

where the poles of I 2fmp are encircled from above when the 
difference U(z)-U(al) > 0 and from below when U(Z  j 
U (z') < 0. For the function I the rules are the opposite. 
Thus, for any sign of the applied voltage U, the functions 

a n d d R  are not analytic in the upper half-plane or in the 
lower half-plane of w. 

Using the formulas for the Green's functions of ordi- 
nary  superconductor^,^^^ we bring expressions (14)-(16) for 
the superconducting current to the form 

~s=~:'sin 2(U0t+x) +J:' cos 2U0t, 

where D ( p) are the derivatives of the transmission factors of 
the Schottky barriers, as were calculated in Refs. 1 and 4. 

If we take into account only ordinary tunneling, then 
f l  = f, = S exp( - 4aa), where S is the area of the junction, 
and from these formulas we obtain the well-known singulari- 
ties.8312 In the resonance case, using formula (20) we obtain 
for the functions f, and f, 

cp+ . 
f i=  ( (G) { ( ctg 

sin p+N+i6 cos p+N 

cp-N-i6 cos rp-N 

'F+ . 
/a= ( (E) { ( ctg sin p+N+i6 sign U, cos p+N 

cp-N+i6 sign Uo cos cp-N 

where the angles e, * are defined by formula (20) when f w 
are substituted into it. The factors cospN and signU, for an 
infinitely small positive S give the rules described above for 
integrating around the poles. The brackets (...) denote an 
average over the corresponding quantities. We note that this 
method that we have developed enables one to calculate in 
addition the superconducting current in other systems of 
weakly coupled superconductors with low-transmittance in- 
terfaces, e.g., in superconductor-insulator-normal metal-su- 
perconductor (S-I-N-S) junctions.I4 In this case, only the 
functions fl and f, are different, while the form of the equa- 
tion for the current is the same. 

Now it is necessary to perform the average and find the 
optimum trajectories. In accordance with Ref. 13, and with 
the use of the distribution function for the random potential 
7 ( E  ), the average over the values ofED was taken according 
to the formula 

(f (a) ) E , = l ' 2 x ~ ( p ) ~ f  (0). (26) 

In this formula the factor B (the width of the impurity band) 
appears for the following reason: f as a function of ED - p 
falls off already for values of ED -p - B (this can be seen from 
(25)) whereas the scale of the fluctuations ((ED - p)2)"2 is 
large in comparison to B (see Ref. 12). 

The average over y and 0 are taken according to the 
formula 

For the probability offormation ofa trajectory we have, with 
exponential accuracy6.' 

where n is the concentration of majority impurities in the 
semiconductor. Ordinarily, only the first term appears in 
this formula. The integrals in (27) are calculated by the meth- 
od of steepest descent. Here it is convenient to substitute (27) 
into formulas (22) and (23) for the current and first calculate 
the integral over w. 

In the static case (U, = 0) the imaginary Matsubara fre- 
quencies (the poles of the hyperbolic tangents) at which the 
function f (w) is exponentially small are important. The sad- 
dle point is determined by just this exponential and it turns 
out to be larger than the ordinary tunneling transmittance of 
the entire barrier.6 In the nonstationary case the situation is 
different. We shall consider first for simplicity the symmetri- 
cal case ( - U, = U2 = U,/2; A, = A, = A,). When the vol- 
tage U, is not too small and not too close to f 2A0, the main 
contribution to the integral over w is given by the poles of the 
function I,,, (the important frequencies are w -B ). There- 
fore the integral over w proves to be proportional to the 
range of integration B and the saddle point is determined by 
the behavior of the function B W. For the saddle point in this 
case we have 

where we introduce the dimensionless quantities: the thick- 
ness of the semiconductor layer L = 2aa, the concentration 
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of impurities c = n/a3, and length x = 2ay. By solving the 
system (29) it is easy to find the optimal values of x, and 8, 
(the resonance percolation trajectories of Lifshitz7). The val- 
ue of cL is usually small and accordingly 8,(1, while the 
number of impurities N- L /x in a trajectory is large. For the 
width of the impurity band we obtain 

- 
B=(V,-p)p-ie-B1iz, p=(LIlncL1)'". (30) 

The magnitude of B increases with increasing impurity 
concentration, but up to the point of degeneracy B is usually 
small relative to A, 

From formula (22) (in which the f, term is the important 
one) we obtain for the superconducting current, with an ac- 
curacy up to a numerical coefficient, 

A02 (Vo - y)2 e-2 fp B 
JF)  = eSD (y) 5 (p) IUoI 

Lp2 ( U 0 2 - 4 A 0 2 ] t h 4 T '  

As can be seen, the singularity at Uo = f 24, arises as a 
result of the merging of two square roots in the symmetrical 
case for small w. Formula (3 1) does not take into account the 
contribution from nonresonance electrons, which is propor- 
tional to the usual tunneling transmission e -" and is rela- 
tively small even for small impurity concentrations 

Near a singularity Uo = + 24, a different formula for the 
superconducting current is valid 

This result is obtained from formula (22), where now with 
logarithmic accuracy the values w - Uo + 24, are important 
in the integral over w, and the saddle point in 8 and y is found 
in the expression B W. As can be seen, near a singularity the 
Riedel logarithmic peak is preserved. Formulas (32) and (33) 
match up in the region 1 (ln(B / I  Uo f 2A01)@. For expon- 
entially small voltages (32) also does not determine the value 
of the superconducting current, since in this case the princi- 
pal contribution to the current is due to the saddle-point 
current, which corresponds to the critical current of the 
junction. 

For Uo<2Ao the value of 3Lb' vanishes, while for 
U, > 24, it is determined by the same formulas as (32) and 
(33) (in the latter formula one should replace the logarithm 
by a constant - T). 

We shall also study the singularities in the I-V charac- 
teristics for the asymmetric case, going back to the general 
formulas (22) and (23). In the nonresonance case (for ordi- 
nary tunneling) the frequencies w - U,,, + A ,,, are impor- 
tant. This corresponds8 to the known values of the total vol- 
tage U, = + lA , f A, 1 .  In the resonance case, small values 
of a, w -B are important, and for the appearance of singu- 
larities it is sufficient that one of the voltages be close to the 
corresponding value of the gap [as can be seen from (22), the 

singularity in this case is a square root singularity]. As a 
result we obtain two singularities in the current (for a posi- 
tive voltage), which correspond to the chemical potential 
level passing through the edges of each of the band gaps in 
the superconductors. 

(a) - Js - SeD (y)  3 (y) AiAz (Vo - y)' 
LP2 

In the immediate vicinity of the singularities the supercon- 
ducting current becomes constant (the singularity is 
"clipped"). For example, for the singularities U, = -A, 
and U, = yA ,, we have 

A;"A~ (Vo - p,'/z JF' = e S D  (PI 5 (PI w* 1 

An analogous expression is obtained for the singularities 
U, = A, and U, = - A,/y. As can be seen, in this case the 
singularity is distinct from the Riedel singularity over the 
entire voltage range, since it is caused by a different mecha- 
nism. Formula (35) is valid when the parameter y, which 
defines the voltage ratio, is not too close to A,/A ,, specifical- 
ly, 1 y - (A,/A ,) 1 )B /(A, + A,). In the contrary case the sin- 
gularities begin to overlap and for y = A,/A, there is one 
singularity for a total voltage Uo = A, + A,, and which is 
described by the formulas (3 1) and (33). Thus, these formulas 
correspond to a more general case than the fully symmetric 
junction, where A, = A, and y = 1. 

4. DISCUSSION OF RESULTS 

The results of this investigation show that resonance 
tunneling of electrons appears most strongly in the singulari- 
ties of the superconducting current in superconductor-semi- 
conductor-superconductor junctions. In the symmetric case 
of identical superconductors and identical Schottky bar- 
riers, resonance tunneling leads to an enhancement of the 
Riedel logarithmic singularity in the amplitude of the super- 
conducting current. The superconducting current increases 
according to the much faster hyperbolic law [formula (3 I)] as 
the singularity is approached (Fig. 2), and the logarithmic 

FIG. 2. Amplitude of resonance superconducting current as a function of 
applied voltage. 1) asymmetric case, 2) for y = A , / A ,  the singularities 
merge. 
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dependence (formula (33)) is recovered only in a narrow vol- 
tage range near the singularity. 

For the resonance effect to contribute more to the su- 
perconducting current than the ordinary tunneling, a suffi- 
ciently high concentration of impurities is necessary. A com- 
parison of the tunneling and resonance exponentials in the 
expression for the superconducting current shows that reso- 
nance tunneling becomes dominant for impurity concentra- 
tions defined by formula (32). Transforming to dimensional 
quantities, we obtain 

n~a,?(a/a,)-' e x p  ( -2a /aB) ,  a,= (2m)-'" (V,-p) -'", 

(36) 
where a, is the Bohr radius of the impurity. It can be seen 
that resonance transmission is preferred even at exponential- 
ly low impurity concentrations (the thickness 2a of the semi- 
conducting layer is large compared to the Bohr radius). 

Resonance tunneling is due to the presence in the semi- 
conductor layer of special trajectories with a periodic distri- 
bution of impurities connecting the superconductors. The 
result is the formation of a narrow impurity band [its width 
B for optimum trajectories is given by formula (30)] along 
which coherent electrons can pass easily. Such trajectories 
are exponentially few in number, but the ordinary Josephson 
current too is proportional to a small tunneling exponential 
function. Therefore, in the range of concentrations defined 
by (36), the resonance current is greater. We note that the 
limitation on the concentration (36) is much weaker than in 
the stationary case. The stationary superconducting current 
always transports electrons of energy the order of T, and 
these electrons lose their coherence at spacings the order of 
the pair distance. When a voltage is applied in the resonance 
case, electrons with low energies -B  become important, and 
these are transmitted along the impurity band without at- 
tenuation. In order for the resonance effect to enhance the 
singularity, the impurity concentration cannot be too large. 
The superconducting current senses the edge of the band gap 
only when the width B of the impurity band is small com- 
pared to A,. However, because of the exponential smallness 
of B, this limitation is weak. For temperatures not too close 
to the critical temperature and for a sufficiently thick semi- 
conductor layer, where 

a > a ~ l n Y  (vo-p)lAol, 

the condition on the impurity concentration is satisfied up to 
the point of degeneracy. Finally, we note that the calcula- 
tions were carried out in the approximation c L )  1, and this 
condition puts a significant upper limit on the concentra- 
tion: 

The study of the superconducting current in the asym- 
metric case is of particular interest, since in this case new 
singularities appear. These are due to the passage of the nar- 
row impurity band through the edges of the band gaps in the 
superconductors at characteristic voltages at each of the in- 
terfaces: U, = f A, and U, = k A,. In this case the cur- 
rent increase first follows a square root law [formula (34)] 
and in the immediate vicinity of the singularity becomes con- 

stant [formula (35)l. Such singularities are produced only in 
superconductor-semiconductor-superconductor junctions 
during resonance transmission of electrons, whereas, in oth- 
er weakly bound systems the singularities occur at charac- 
teristic values of the total voltage (the voltage distribution in 
this case is unimportant). 

The values of the total voltage corresponding to the sin- 
gularities are given by the expression A ,,, (1 + y * ' ), where 
the quantity y, equal to the ratio of the voltages at the inter- 
faces, is determined by the parameters of the Schottky bar- 
riers. These values coincide with the voltage A, + A,, at 
which the ordinary Josephson current shows a singularity 
only for a specific value y = A,/A,. Consequently, in the 
asymmetric case, in addition to the usual singularities, there 
are additional resonance singularities which become the 
stronger when the condition (36) is satisifed. We note that the 
quasistatic current in this case is small, as it is proportional 
to the smaller (with respect to barrier transmittance) expo- 
nential. 

In the calculation of the superconducting current we 
did not take into account the interaction among the elec- 
trons. As is known, when this interaction is taken into ac- 
count, a Coulomb gap can be formed.13 The magnitude of 
the gap is determined by the interaction energy of electrons 
separated by a distance the order of the correlation length. 
Therefore, in the case of weakly and strongly compensated 
semiconductors, as well as amorphous semiconductors 
(when the correlation length is large), the gap will be small. 
The formula for the superconducting current derived in this 
paper is valid when the gap is small compared to the band 
width B. However, in the opposite case the position of the 
resonance singularities is the same, while only the magni- 
tude of the superconducting current changes. To calculate 
the latter it is necessary to use a more exact form of the 
distribution function of the random potential F ( E  ). 

In conclusion, let us formulate the optimum conditions 
for the observation of resonance singularities in supercon- 
ductor-semiconductor-superconductor junctions. The 
thickness of the semiconductor layer should be as large as 
possible, but such that one can reliably measure the super- 
conducting current through the junction. The temperature 
must be low, so that the order parameter A is of the order T. 
Under these conditions there is, whithin the limits of the 
inequalities (36) and (37), a broad range of impurity concen- 
tration for which singularities, characteristic of the reso- 
nance mechanism of electron transmission, should appear in 
the amplitude of the superconducting current. These singu- 
larities are perceptible directly in the I-V characteristics un- 
der conditions of a given total current if the capacitance of 
the junction is small,9 or can be observed by uhf irradiation 
by the same means as the Ride1 singularities. 

The authors thank A. A. Abrikosov and A. I. Larkin for 
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