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Rare earth metals having a "ribbon" singularity on the Fermi surface and a pronounced single- 
ion anisotropy in an external magnetic field are analyzed. A ferromagnetic phase is produced 
above a certain critical field. At low temperatures, only the lower of the spin-wave branches which 
exist in this ferromagnetic phase has dispersion. The behavior of the magnetic-structure vector as 
a function of the field and the temperature is determined by the ratio of the gap in the electron 
spectrum to the energy separation of the chemical potential from the critical point in the electron 
spectrum. The Curie temperature cannot change by a factor greater than three as the anisotropy 
constants are varied from zero to infinity. The rare earth metal is transformed from the paramag- 
netic phase to a helicoidal rather than ferromagnetic phase if the ribbon singularity on the Fermi 
surface exceeds a certain critical size. The constants of the microscopic theory can be determined 
by measuring the critical field and the longitudinal and transverse magnetizations of the transi- 
tion from a ferromagnetic helix to a ferromagnet. At this transition the longitudinal magnetiza- 
tion will change linearly, -(h, - h ), while the transverse magnetization will vary as the square 
root, -(h, - h ) ' I 2 .  

1. INTRODUCTION 

A broad spectrum of helicoidal structures is known to 
exist in heavy rare earth metals.' These structures have been 
attrib~ted'.~ to singular regions on the Fermi surface; the 
wave vector Q which "measures" the extremal cross section 
of this region determines the period - 2a/Q and the direc- 
tion of the corresponding helix. The magnetic anisotropy in 
a rare earth metal is produced primarily by the crystal 
fieldls4 and determines to a large extent both the diversity of 
long-period structures and their conversions into each oth- 
er. ' 

The standard method4 for describing effects of a single- 
ion anisotropy in a rare earth metal is based on the approach 
suggested by Callen and Callen.5 This approach is used ex- 
tensively to analyze experiments on rare earth metals and 
their corn pound^.^.^*^ As we will show in the Appendix, how- 
ever, this approach is not appropriate for describing rare 
earth metals. This fact was pointed out in Refs. 7-9 and a 
"mean-field anisotropy approximation" was proposed for 
seeking the ground state, the functional dependence of the 
magnetization on the external field, and the thermodynam- 
ics. The idea of this approximation is to discard the correla- 
tions and to minimize the free energy with respect to both the 
magnitude of the magnetization and the angles between the 
magnetic moment and the crystallographic axes. In order to 
use this method we need to know the particular region of 
parameters in which we can introduce (J" ) #O, (P ) # O  
(Ref. 10). For example, Zaitsev'' showed in the Heisenberg 
model that for the case S = 1 with an anisotropy BD (S;)2 
with D > 0 there is a region of the parameters of the system in 
which a state with a zero spin projection and with a quantiza- 
tion axis along the z axis is stable (in the classical descrip- 
tion,' the moment "lies" in the plane perpendicular to the z 
axis in the same parameter region). 

The stability of the ground state of a magnetic material 

and its low-temperature thermodynamics are determined by 
the spectrum of spin waves. This spectrum in rare earth mag- 
netic materials has been the subject of several s t ~ d i e s . ~ , ~ , ' ~  
The standard approach is based on the use of the Holstein- 
~ r i m a k d  representation (see the bibliography in the book 
by Taylor and Darby3). As will be seen below, for the normal 
arrangement of the levels of an f ion this calculation method 
can be used to find the lower branch of the spin-wave spec- 
trum, but it breaks down even at temperatures on the order 
of the distance between the lower levels of the f ion in the 
crystal field and a magnetic field. Vedyaev and Nikolaev 
~ h o w e d , ~  without allowance for magnetic anisotropy, that 
singular sections (of the ribbon type, for example) on the 
Fermi surface give rise to a maximum in the electron suscep- 
tibility x (q,O) at q = Q. This maximum corresponds to the 
extremal size of the singular region. Correspondingly, it cor- 
responds to a minimum in the spin-wave spectrum at the 
same Q. Vedyaev and Nikolaev6 also gave equations for find- 
ing the spin-wave spectrum in an easy-plane, ferromagneti- 
cally ordered rare earth metal. Vedyaev and Nikolaev6 took 
the single-ion anisotropy into account by introducing a 
phenomenological constant B (T)  in the gap of the spin-wave 
spectrum; working from the study by Callen and Callen,5 
they concluded that this contribution to the gap depends on 
the temperature as the tenth power of the magnetization. As 
already mentioned, this assertion is incorrect in the case of 
rare earth metals. We will show below that Eq. (7) of Ref. 6 is 
nevertheless valid for describing the lower branch of the 
spin-wave spectrum-at low temperatures, but for an easy- 
axis rather than easy-plane magnetic material. A method for 
correctly dealing with the single-ion anisotropy was pointed 
out in Refs. 1 1 and 13, and it was applied to rare earth metals 
in Ref. 14. What amounts to a general recipe for using the 
method was given in Ref. 1 1, although the illustrative calcu- 
lations there dealt exclusively with the case S = 1 and 
Ha, = BD (S;)2 for dielectrics. The same approach was used 
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in Ref. 14 to derive an equation for the spin-wave spectrum 
in easy-axis hexagonal crystals of rare earth metals for arbi- 
trary J in an s-f-exchange model. 

In this paper we analyze the anomalous features of the 
low-temperature dependence of the magnetization of easy- 
axis rare earth metals on an external magnetic field. Our 
analysis is based on spin-wave theory; the single-ion anisot- 
ropy is taken into account exactly. The calculations yield for 
the magnetization simple expressions which can be used to 
find the constants of the microscopic theory from experi- 
ment. We also derive equations for plotting the (T,h ) phase 
diagram of the magnetic states of rare earth metals. 

2. HAMlLTONlAN AND EQUATION FOR THE SPIN-WAVE 
SPECTRUM 

We consider a system of localized f electrons and collec- 
tivized c electrons which are interacting with each other. 
Each f ion has its own term by virtue of the pronounced 
intraatomic and LS interactions. Each such ion is further- 
more in a hexagonal crystal field. Using the leading term in 
the s-fexchange Hamiltonian for a rare earth meta1,15.'6 and 
adding the energy of the single-ion magnetic anisotropy, we 
find the following Hamiltonian for the model: 

The operator J i s  the total angular momentum of the ion; i.e., 
the LS coupling of the f electrons is taken into account even 
in the zeroth approximation. In addition, the D :, (n = 1, 2, 
3) are the constants of the single-ion anisotropy which corre- 
spond to the hexagonal symmetry of the rare earth metal. 

For the calculations it is convenient to adopt the repre- 
sentation of Hubbard operators XPq = lp) (q l ,  which obey 
the multiplication rules X'""XPq = C'~, ,~X'"~ at a common 
site, while at different sites they commute in this case. The 
angular momentum operators J can then be expressed in 
terms of the Hubbard operators X as follows: 

J 

lrn~,,,= [ l ( l + l )  -m(m*i) I"; 

the number m specifies the projection of the angular momen- 
tum J on the quantization axis. After we introduce the 
mean-field approximation in the standard way, Hamiltonian 
(6)  becomes 

r? - 
FI;,' = - C e - i q f r n t i X ; m  ( c t  rriq - cf cklp j), 

lkqm 

. . 
tkqm 

Here c+c = c+c - (c+c), and SX = X - (X ). The spin- 
wave spectrum can be found from the poles of the transverse 
spin correlation function. We seek this function by using a 
diagram technique for Hubbard  operator^".'^ (this tech- 
nique is similar to the spin technique of Ref. 17). We denote 
the Green's functions of the X operators by a solid line with 
an arrow, while the c-electron functions are represented by a 
dashed line with an arrow: 

It does not matter just which ends-the c-electron orfelec- 
tron ends-we use to seek the correlation function, since the 
poles of these functions coincide with an interacting system. 
In zeroth order, the unknown function (TQ+(T)Q-(T')) is 
described by an ordinary electron loop. At low tempera- 
tures, diagrams of the type 

do not have any small factors on the order of Ago (where 
go- 1/2p). Diagrams which have disconnected parts within 
an oval (diagram a of the two diagrams, just below) are ex- 
ponentially small," while diagrams which contain elements 
of type b introduce a small factor -AgOlnb/A ): 

The unknown function is thus given by the series 

Writing the sum of series (2) analytically, and making an 
analytic continuation to the upper half-plane, we find an 
equation for its poles14: 

1+A2xo+-(q, a) K o ( o )  =O, (3) 

where 
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In the absence of an anisotropy, the spectrum of an f ion 
becomes equidistant; i.e., for each value of m we have 
AE,,, + , = AE. From ( 2 )  and (3) we then find the standard 
result of the s - f model," since, as is easily shown, we have 

The poles of the function x,+-(q,w) lies in the region 
w -Ac  = 2AR j at small values of q. Here we are interested 
in values w-w, - A  2g,-&4Rfz, so we will be ignoring the 
dependence of the function A 2Xo+-(q ,~)  on the frequency w. 
In this case, of course, the quantity A 2~o+-(q ,0)  plays the 
role of a Fourier transform of the exchange integral between 
transverse components of the angular momentum, and Eq. 
(7) also describes spin waves in an anisotropic dielectric with 
a Hamiltonian 

H = H . ~  - [ A , , ~ S , ~ S , ~ ~ + B , ~ ~  (S,+$,-+St-Sfr+) I .  
f f '  

In a metal, we lose the high-lying spin-wave branch with 
Wg - A c .  

We rewrite Eq. (2) as 

I 1 iZ1 

where j specifies transitions between the sublevels of the f 
ion. At low temperatures, we have the level occupation 
numbers NJ - , (1, N j  -, (1, etc. Retaining only ANj with 
j = (J, J - I), we find 

In this temperature range, all the spin-wave branches except 
that corresponding to the transition between the lower levels 
are nondispersive, and their energy is equal to the difference 
between the energies Em + , - Em of the f ion in the crystal 
field, the magnetic field, and the exchange field. The ex- 
change field is produced by the conduction electrons. The 
expression in parentheses in (4) agrees at T = 0 with Eq. (2) of 
Ref. 6. The derivation here proves our assertion in the Intro- 
duction regarding the range of applicability of this equation. 
At the same time, we see that the phenomenological anisot- 
ropy constant B (T )  introduced in Ref. 6, which determines 
the gap in the spectrum of the lower spin-wave branch, has 
the meaning of the difference between the low-lying energy 
levels of the f ion in the crystal field and the magnetic field: 

B (T) =AEJ-, , , -2ARCz.  

The change in the occupation numbers N j  and Nj - , of the 
low-lying levels E, and E, - , at low temperatures is evident- 
ly also determined by spin waves: 

Sine we have N y  =. 1 and NO,+, z O  at low temperatures (the 
superscript 0 means the "mean field"), we have 

and thus 

and the average magnetization becomes 

Equations (2) and (3) are incorrect if there are large cor- 
rections to the electron-spin vertex A. These corrections are 
of the form 

In deriving an equation for the spin-wave ~pec t rum,~  Ve- 
dyaev and Nikolaev used for the vertex an equation based on 
a correction of type a as shown here (the solid line is a mag- 
non line6). Diagram a is forbidden by spin conservation and 
does not occur (as was mentioned in Ref. 18). Diagram" b, 

- A' C G ~  ( i w )  G~+, ( i w )  2 mmf (N,B,,,,C -N,N, ,  ) , 
N 

is exponentially small at low temperatures and does not con- 
tain a sum over the frequency. It is therefore also small in the 
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"mean-field" temperature range. When we take (2) into ac- 
count, we find that correction c becomes correction d, where 
the solid line without an oval represents the series analogous 
to (2) for the function 

+ - 1 KO+- ( i v )  Kfr, ( i v )  = -C e l q ( f - f ' )  - 
N q  

1+A2xo+- (q ,  iv)  KO+-( iv)  

In none of the three diagrams d, e, f can we single out a 
"resonant" electron-hole pair. These diagrams contain an 
integration over a broad range of the momentum, so that the 
estimate given in Ref. 18 remains valid for them; they can be 
discarded. Corrections 6-f thus do not hurt Eq. (3). 

3. EQUATIONS OF THE PHASE DIAGRAM 

The bare Green's functions (4) correspond to the mean- 
field approximation, so that Eq. (3) is essentially a general- 
ization of the Tyablikov equation to the case of an anisotrop- 
ic s-f magnetic material. We can thus use (3) to determine 
such crude properties as the phase diagram. At o, (0 the 
ferromagnetic phase is unstable. Because of the flat regions 
on the Fermi surface, the electron susceptibility x,+ - (q, 0) 
has a maximum at q- Q, so that Eq. (3) at o = 0, 

gives us the phase diagram of a transition from a ferromag- 
netic state to a state with a helicoidal structure with a period 
2n-/Q. The transition from the paramagnetic phase to the 
ferromagnetic phase is made less abrupt by a field, although 
at h /Tc 1 a trace of the singularity remains. The effect of a 
field on an antiferromagnetic dielectric reduces to shifting 
T, by - h 2/Tc, according to Ref. 19. This shift results from 
a Zeeman shift of the levels of the magnetic ions. In metals, a 
field also pushes the Fermi surfaces of electrons with differ- 
ent spin projections further apart. Following Ref. 12, we 
classify all electrons as either "resonant" electrons, which 
occupy the flat parts of the Fermi surface, or "nonresonant" 
electrons, which occupy the remainder of the Fermi surface, 
which we will assume to be spherical. The nonresonant elec- 
trons are insensitive to the field since h /p( 1. We emphasize 
that the resonance condition and, correspondingly, the con- 
dition for a transition from a paramagnet to a helicoidal 
structure may change. These changes can be followed by 
analyzing the poles of the longitudinal Green's function in 
the paramagnetic phase: 

p PC (6m,,,~mz-mm'Nm~) Nm. 

mm' 

Equation (7) gives the condition for a transition (albeit 
smoothed over the field) to the ferromagnetic phase, while 
Eq. (8) gives the condition for a transition to a helicoidal 
structure. 

If there is no anisotropy and no external field, we find 
from (7) the usual expression for T, = 2A 2go J(J+ 1)/3, 
while in the Ising limit, D R -m, we have Tc = 2A 2go J 2 ;  
i.e., the anisotropy cannot change Tc by a factor greater than 
three. Ignoring quantities - T/p  and using the conditions 
A /2p( 1 andq/2po < 1, wefind, withanaccuracy to (A /2p)3, 

where m is the electron mass, uc is the volume of the unit cell, 
p, is the Fermi momentum, andg, is the state density on the 
nonresonant Fermi surface. To calculate the resonant con- 
tribution, we replace the Fermi function by a step with an 
angle tan 5 - 1/2T. We use the mean value theorem to inte- 
grate over the flat region. As a result, we find that the suscep- 
tibility x +- is proportional to the quantity 

where p *  is the chemical potential, which is reckoned from 
the critical point on the Fermi surface." 

In the limit T 4 ,  the quantity x,+ - (q, 0) diverges lo- 
garithmically at the point p +  +p- ,  as was mentioned in 
Ref. 12 (see also the Conclusion). At a nonzero temperature 
the susceptibility has a maximum 

+- v c  mASreS a 
Xres  (Q,O)=---In- 

(2n)3 Q Q 

at Q = p+ + p- (a calculation of the susceptibility in the 
case of the frequently used spectral property E, = - E, + Q ,  

leads to the same logarithmic dependence on the tempera- 
ture21). After corresponding calculations for the longitudi- 
nal susceptibility we find that this susceptibility has a maxi- 
mum 

at the point Q = 2p-, where AS,,, is the area of the resonant 
part of the Fermi surface. By solving Eq. (6) jointly with the 
equation for the magnetization in the external field we can 
thus find the temperature dependence of the vector of the 
helicoidal structure. The effective chemical potentialp* can 
be found if a single experimental point is known. 

The system can change from the paramagnetic phase to 
a helicoidally ordered phase if 

x" ( Q )  2 x z " O ) ) .  

Analysis of this condition reveals that it holds only for a 
certain area of the resonant surface: 

AS,,,>3 ( Q / ~ P o ) ~ S ,  

where S is the area of the nonresonant part of the Fermi 
surface. 

Using the electron susceptibilities calculated in this 
manner, we can very easily take into account the important 
features of the Fermi surface and also the temperature and 
field dependence of,y (q). 

859 Sov. Phys. JETP 59 (4), April 1984 A. N. Podrnarkov and I. S. Sandalov 859 



Nevertheless, it is not possible at present to calculate 
phase diagrams for specific rare earth metals, since the data 
available (on the single-ion anisotropy constants, for exam- 
ple) not only differ greatly in magnitude but also differ in 
~ i g n . ~ , ~ . ~  We will now show that certain microscopic con- 
stants can be determined from measurements in a low-sym- 
metry phase. 

4. TRANSITION FROM A FERROMAGNETIC HELIX TO A 
FERROMAGNET 

Let us consider the opposite transition-from a helicoi- 
dal structure to a ferromagnet-in an external magnetic 
field. We restrict the discussion to the case of the ferromag- 
netic helix which is observed in holmium and erbium. We 
will derive an equation for the transition point, and we will 
find the low-temperature behavior of the magnetization 
components near this point. For this purpose, we write a 
system of equations for the Green's functions in the self- 
consistent field approximation: 

where we have q,, = (c,, , c, + Q,) in the ferromagnetic-he- 
lix phase, and Q is the vector of the magnetic structure. The 
crystal is inhomogeneous, and the solution of the system of 
equations is the following matrix Green's function: 

a,, (uZZ ,  R ~ ~ )  + am, (uz2, - R ~ ~ )  (111 + 
io-oZ+ io-02- ' 

where the matrices 2 and & are 

and R $ and R { are the average values of the magnetization 
along thez axis and in the plane. In order to find R $ and R { 
we would generally have to diagonalize a matrix of rank 
(W + I), but this is not necessary in the present case since the 
transverse component of the magnetization is small near the 
transition point. Making use of this circumstance, we find 

the wave functions and energies of the levels of the f ion by 
perturbation theory. The expressions for R and R { in the 
phase of the ferromagnetic helix are then found to be R { cc 
(h, - h ), while the transverse components exhibits a square- 
root behavior (R { cc (h, - h ) ' I 2 ) .  This temperature depen- 
dence of the structure vector Q describes the correct tenden- 
cy toward an increase with increasing temperature. 

The phase diagram which can be constructed from our 
equations is valid only if the fluctuational region is narrow. 
As we move 

We find expressions for the R f; and R f components of the 
magnetization of the c subsystem from the Green's functions 
which we have found, (12): 

The system goes into the ferromagnetic state in the limit R { 
-0. Substituting (15) into (13), and letting R { tend to zero? 
we find an equation which is the same as that derived earlier 
for the transition from the ferromagnetic phase, Eq. (6). 

Let us find the critical transition field h, at low tem- 
peratures. Near h, , the magnetization of the c subsystem can 
be written 

RIlc=AZ~o+- (0, 0) RIIf. 

Using this result, we find the following expression for h, : 

The longitudinal magnetization component R $ behaves lin- 
early near h, in the ferromagnetic helix, while the behavior 
of the transverse component is a square-root behavior: 

By studying the field dependence of the magnetization ex- 
perimentally we can determine the quantity A 2X$ - (Q, 0) 
and also the energy of the transition between the low-lying 
levels of the f ion. If we find the gap in the spin-wave spec- 
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trum in a magnetic field h > h, at low temperatures, we can 
then use Eqs. (16) and (17) to find the distance the low-lying 
levels are moved apart by the single-ion anisotropy AD. 

5. CONCLUSION 

This theory can be used to describe a rare earth metal 
which has either an easy-axis anisotropy (Ho below 20 K or 
Er) or an easy-plane anisotropy (Tb, Dy, Ho above 20 K, and 
Tm) in a strong longitudinal (h Ilc) magnetic field. It follows 
from an analysis of Eq. (3) for the spectrum of spin waves and 
the poles of the longitudinal susceptibility that the critical 
field for the transition from the ferromagnet to the helicoidal 
structure depends strongly on the area of the flat part of the 
Fermi surface. Detailed measurements of the field depen- 
dence of the magnetization of a rare earth metal near the 
transition might therefore yield information on this area. 
According to our equations, as the field is varied away from 
the ferromagnetic helix the longitudinal magnetization com- 
ponent exhibits a linear behavior (R { a (h, - h )), while the 
transverse components exhibits a square-root behavior (R { 
a (h, - h ) ' I 2 ) .  This temperature dependence of the struc- 
ture vector Q describes the correct tendency toward an in- 
crease with increasing temperature. 

The phase diagram which can be constructed from our 
equations is valid only if the fluctuational region is narrow. 
As we move away from the ferromagnetic region the dimen- 
sion of the fluctuations is cut off by the field. The role played 
by fluctuations in a helicoidal structure in a rare earth metal 
was studied in Refs. 22 and 23, where it was shown that the 
transitions may be of either first or second order. So far, 
there has been no study of the case with a pronounced anisot- 
ropy and an external magnetic field. Other open questions 
are the mechanisms which lead to the sequence of phase 
transitions in easy-plane rare earth metals and the roles 
played by the Coulomb and phonon interactions. These in- 
teractions will obviously not be unaffected by ribbon singu- 
larities on the Fermi surface. It is surprising that no space- 
charge waves or transitions of the displacement type have 
been found in rare earth metals, since the constant of the 
Coulomb interaction (either the s-s or s-f interaction) is 
usually larger than the constant of the s--exchange interac- 
tion. The existence of, say, space-charge waves might cast 
light on the nature of the z helix in Er, where the angular 
momenta of the f ions are directed along the c axis and vary 
in magnitude along this axis in the temperature range 53.5- 
85 K. If there is a space-charge wave, then the crystal field 
sensed by each f ion will differ from that sensed by the adja- 
cent f ion along the c axis. The angular momentum of the f 
ion will then be determined primarily by the state which is 
the lower state in the given crystal field, and this state will 
not necessarily have the maximum possible projection. It 
thus seems to us to be extremely important to seek space- 
charge waves and displacement transitions in rare earth met- 
als. 

We wish to thank K. P. Belov, A. V. Vedyaev, K. K. 
Kikoin, and E. V. Kuz'min for a useful discussion of these 
results. 

APPENDIX 

We will show here that the procedure of Callen and 
Callen is not appropriate for a rare earth metal. We write the 
free energy of the system as the sum of the energies of iso- 
tropic and anisotropic parts. We write the anisotropic com- 
ponent as 

can= x C,""Y~"(B, p) ,  (A.1) 
1,'" 

where the angles 9 and e, specify the direction of the satura- 
tion magnetization with respect to some selected frame, 
usually the crystallographic axes. The coefficients C ;" de- 
pend on external parameters such as the pressure, the tem- 
perature, and the magnetic field; in general, they also depend 
on the magnitude of the magnetization vector. To calculate 
the C ;" we take the following approach: Since a rare earth 
metal has a strong spin-orbit coupling ( -  lo3-lo4 cm-'; 
Refs. 1, 3, and 4), the various J multiplets of the f ions are 
separated by a large energy gap, and we need consider only 
the lowest-lying multiplet. We can thus use the Wigner-Eck- 
art theorem and write the Hamiltonian of the single-i:n an- 
isotropy in terms of equivalent Stephens operators 0 con- 
structed from the components of the total angular 
momentum operators Jf at the sitef: 

Here the D are the microscopic anisotropy  constant^.^ The 
operators 6 are written in the intrinsic representation of the 
operator P , where the z axis runs parallel to the hexagonal 
axis of the rare-earth crystal. In the Callen and Callen proce- 
dure, after transforming in (A.2) to a quantization axis along 
the magnetization M of the crystal and after thermodynamic 
averaging, a cylindrical symmetry about M is assumed expli- 
citly. The free energy is then written in the form 

where the Y ;" are the spherical harmonics. Comparison of 
(A.3) with (A. 1) gives us the dependence of C ;" on the param- 
eters of the system. The averaging of the operators Y l ( J )  is 
usually carried out with a distribution function 
a exp( - xm)/8,, exp( - xm'). This procedure corresponds 
to an approximation of the mean-field type with an equidis- 
tant f-ion spectrum. Under what conditions are the magnet- 
ic-anisotropy effects described completely by expressions 
(A. 1) and (A.3)? The Hamiltonian of the system is 

where H, describes the change interaction in the mean-field 
approximation, and H,  describes some spherically symmet- 
ric exchange interaction (an s-f-exchange interaction or a 
Heisenberg interaction) minus the mean field. From (A.4) we 
have the following expression for the free energy; 
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We see from (A.5) that if Fan is to completely describe the 
anisotropy effects then we must discard the Hamiltonian 
Ha, in the Gibbs distribution function in Fo and F,. On the 
other hand, if in the expansion 

(Ylm(J))= z b , ( m , m f ) ( ~ l m ' ( J ) )  
m' 

we wish to retain only the terms with m' = 0, i.e., 
b,(m,O) = Y;"(S,p), then we must also discard this Hamil- 
tonian in Fan, so that we are actually left with a Hamiltonian 
which is spherically symmetric. The primary requirement is 
thus the requirement that Ha, cause only a slight perturba- 
tion of the distribution of levels determined by Ho + H,. The 
magnetic-ordering temperatures in heavy rare earths  are'^^.^ 

corresponding to a distance - 10-50 cm-' between single- 
ion magnetic sublevels (for Er, for example, we have J = 15/ 
2). The magnetic anisotropy energy is1v3s4 - 10-10' cm-l, SO 

that we cannot construct a perturbation theory in the energy 
parameters; correspondingly, even phenomenological 
expression (A. 1) cannot be used. 

''When the Holstein-Primakd representation J fZc+ c+(J - af+af)ctc 
is used,'' the corrections of iype b and other corrections containing ovals 
with several disconnected blocks (corrections to the occupation 
numbers) do not appear at all. 
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