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We consider the influence of interference effects connected with spatial dispersion in the exciton 
region of the spectrum on the validity of the Kramers-Kroning amplitude-phase relations for the 
reflection and transmission coefficients. The onset of supplementary terms in the classical rela- 
tions is confirmed and analytic expressions are obtained for them. We investigate experimentally 
the supplementary relations for the exciton reflection spectra of CdSe and ZnSe crystals and for 
the transmission spectrum of the Cu20 crystal (quadrupole transition). 

INTRODUCTlON 

The Kramers-Kronig dispersion relations (DR) are by 
far not always applicable to crystal For the exciton 
region of the spectrum, in particular, the main hindrance to 
the applicability of the DR is due to the need for taking 
spatial dispersion (SD) into account. It is widely know 24 

that the classical DR, which express the causality principle, 
are certainly valid for the dielectric tensor E~~ (a ,  k) only at 
k = 0, i.e., in the absence of SD. However, since .zij (0, k) are 
analytical functions of the complex wave vector, at each 
fixed value of k the same DR are effective for them in the 
case of weak SD (k-0) as for k = 0. Certain generalizations 
for the particular case of a k(w) dependence were made in 
Ref. 5. 

Greatest interest attaches to DR between experimental- 
ly measured quantities, e.g., the refractive index and the ex- 
tinction coefficient, or the amplitude and phase of reflected 
light. Experiments with molecular6 and semiconducting7 
crystals have shown that violations of the DR between the 
refractive index and the absorption coefficient are substan- 
tial in the exciton branch of the spectrum at low tempera- 
tures, and vanish gradually with rising temperature, thus 
offering evidence in favor of the influence of the SD. An 
attempt8 to measure the phase in low-temperature reflection 
spectra near exciton lines yielded results that did not corre- 
spond to the amplitude-phase DR. 

In this paper we consider the relations between the opti- 
cal characteristics of crystals on the basis of an investigation 
of the analytic properties of the complex reflection and 
transmission coefficients. In our opinion, this approach per- 
mits a most natural analysis of the singularities that lead to 
violation of the amplitude-phase DR, and verify experimen- 
tally the theoretical results. 

I. THEORY 

1. Analytic properties of reflection and transmission 
coefficients 

of additional integration over space in the linear relation 
between the electric induction D(ro, to) and the electric field 
intensity E(r, t ).' One can attempt, however, to get around 
this difficulty by choosing for the medium response func- 
tions that do not express explicitly the nonlocality of the 
interaction. Assume that an electromagnetic wave is inci- 
dent from vacuum on a crystal plate and produces on the 
front face an intensity Eo(t ). We can then write for the respec- 
tive intensities E,(t ) and E,(t ) ofthe reflected and transmitted 
waves 

OD 

E,  ( t )  -1 p (t') Eo ( t - t ' )  dt', 
0 

where c is the speed of light in vacuum, z is the plate thick- 
ness, and the functionsp(t ) and r( t  ) are defined by the same 
token as the reflection and transmission coefficients of the 
crystal." Equations (1) relate quantities that describe the 
electromagnetic field in vacuum, and in the sense of the sta- 
tionary problem are taken to be the boundary conditions; 
they describe therefore a local response of a linear medium. 

It follows from expressions of type (I),  written with ac- 
count taken of the causality principle (see, e.g., Refs. 4, 5, 
and 9), that the Fourier transforms of the response functions, 
in this case&) and ~'(w)=r(w) exp ( - izw/c), have unique 
analytic continuations into the upper half-plane of their 
variable, including an infinitely remote point. In addition, 
from the requirement that the response be real if E,(t ) is real 
[a similar analysis was made, e.g., in Refs. 2 for cij  (5, k)] we 
can obtain that 

In macroscopic solid-state theory, the SD represents The analyticity of the functions p(5)  and r(5) in the upper 
the nonlocality of the connection between the quantities that half-plane of the complex variable 5 [hereafter designated 
describe electromagnetic processes in a medium.394 Verifica- I+  (&)I enables us to write down DR between their real and 
tion of the analytic properties of E~ (5, k (5)) as functions of imaginary parts, while relation (2) permits the integration to 
the complex variable i3 is made complicated by the presence be restricted to the region w > 0. 
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2 DD x Im(r' ( x )  -.lo) 
Re (r' ( w )  -s) = -f dx 

0 
x2-w2 

wherep, and r0 are the limits of the functionsp(5) and r'(5) 
as ~ ~ I - C C .  Integration is meant everywhere in the sense of 
the principal value. 

When an isolated exciton transition is considered, the 
contributions of the remaining resonances are usually taken 
into account by introducing the background dielectric con- 
stant over the entire spectrum. In this case the speed of light 
in (1) must be replaced by c/n,, where no = &is the back- 
ground refractive index, and ~'(6) must be taken to mean 

where k,  = n@/c. In addition, in the isolated-resonance 
model the role of the imaginary coordinate in I  + (5) is as- 
sumed by the damping y (Ref. 10). 

2. Amplitude-phase relations in transmission spectra 

From the analyticity of the function 

p ( Q )  = 1 p (a) 1 exp iS ( a )  

it follows that its logarithm 

is also an analytic function in I  + (G), except for the points at 
which p(5)  vanishes. According to Ref. 1 1 the coefficient of 
reflection from a crystal having nonzero absorption cannot 
vanish. Therefore in crystal optics without allowance for SD 
the classical DR between the amplitude and phase of the 
reflected light are valid. 

An essential feature of SD is that the reflection coeffi- 
cient can vanish in a crystal with finite damping (the analog 
of the Brewster effect in the exciton region 12). 

Let 5, = w, + iy, be a first-order zero of the function 
p(6)  in I+ (6). The measured amplitude and phase reflection 
functions correspond to values of p(5)  on a certain point 
shifted in I +  (5) by the value of the damping y(w). If 
yo < y(w,), the function Ln p(6)  is analytic in the region of 
I+  (5) bounded from below by the y(w) curve, and the classi- 
cal DR between the measured quantities are valid. If 
yo > y(w,) the logarithmic singularity of the function p(&) 
turns out to be in the region o f I +  (6) that is vital for obtain- 
ing the integral relations, and the classical DR are violated. 
The contribution of the logarithmic singularity to the ampli- 
tude-phase DR is determined from an analysis of the inte- 
gral'' 

where the integration contour C differs from the usual one 
(Ref. 2, Fig. 3) that is closed at infinity with the pole singular- 
ity on the section y(5) bypassed because of the presence of 
the section G that bypasses the logarithmic singularity; 
a = S o a t ~ < o o a n d a = S o + 2 ~ a t w > w o ,  where6,is the 
phase of the coefficientp,. Integrating3' along the contour G 
and recognizing that the integral of the measured quantities 
along the real axis is an integral with respect to y(w), we 
obtain the supplementary DR: 

where R (o) = p (w)p*(w) and R, = p, p are the energy reflec- 
tion coefficients. 

The relations obtained explain not only the violation of 
the classical amplitude-phase DR in exciton reflection spec- 
tra at low temperatures, but also the "nonclassical" behavior 
of the reflected-light phase, wherein the long- and short- 
wave limits of S (w) differ by 21r.13-l7 Therefore the quantity 
yo has the same meaning as the limiting damping con- 
stant,14.17 which is the upper limit of the damping values4' at 
which the phase in the spectrum can change by 277. 

It is easily seen that at low values of yo - y(w) the con- 
tributions from the logarithmic singularity may turn out to 
be dominant only in the vicinity ofw,. We can therefore with 
good accuracy replace y(w) in (6) and (7) by y(o,). 

5 3. Amplitude-phase relations in transmission spectra 

For analogy with classical crystal optics, it is conven- 
ient, when considering the amplitude-phase spectra, to in- 
troduce the concept of effective refractive index 
fi(w) = n(w) + i(xw). It can be specified by writing down the 
expression for the coefficient of transmission through a layer 
of thickness z in a semi-infinite crystal'' in the form 

r' ( a )  = [1+p ( o ) ]  exp [ i (o /c)  Aii(o)z],  (8) 

where Afi(w) = fi(w) - no. The interference of the opto-exci- 
ton waves leads to a dependence of the so-defined effective 
refractive index on the crystal thickness. 

In accordance with the maximum-modulus principle, 
we can state that in I  + (5) we have (p(w) 1 < 1. Therefore the 
function 

is analytic in I +  (5). The proof given in Ref. 9 that the func- 
tion O (5) has no zeros is not valid in our case, since it is based 
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on a fact obvious for classical crystal optics, that the refrac- n + ~ ~ p ( x ) / p o l s i n 8 ( x )  
tive index is independent of the crystal thickness. To obtain 'OS = 

n l p ( o ) l  
' 

x2- o2 
the DR between the refractive index and the extinction coef- 
ficient with allowance for interference of the opto-exciton (11) 

waves it is therefore necessary to use an analysis similar to sin 6 (0)  =- dx; 
that given in the preceding section. 

In this case, if5,, = woj + iy,, are zeros of the function 
O (5) in I + (5), the supplementary DR are of the form cos b ( o )  = 

2 exp d ( o )  
{+ + 

exp ( - -d(x)  )sin b ( x )  
n x2-o2 

0 

20 a ~n ( x )  
x ( " ) = - - j - d ~ - L z l n [ l +  x x2-o2 o z  (=) ooj-o '1 . (10) where b (w) + id(o)-(w/c)zAA(w). The relations obtained, 

I which are valid both in ordinary crystal optics and when SD 

The phase terms corresponding to a in Eq. (6) are left out 
here to preserve the analogy with classical crystal optics, 
where the refractive index is uniquely determined from the 
connection between the vector k of the transverse waves and 
the dielectric constant. The latter is incorrect when account 
is taken of the SD, and it is therefore not surprising that the 
function An(w), defined only in terms of the phase of the 
transmitted light, becomes non-single-valued. 

5 4. Possibilities of using the supplementary DR 

The newly obtained relations cannot be used directly to 
calculate the phase spectra from the known amplitude spec- 
tra, and vice versa. This calls for knowledge of the coordi- 
nate of the singularities of I + (5) and of the damping con- 
stant. Amplitude and phase measurements in the exciton 
region of the spectrum are thus mutually complementary, as 
was already noted in Ref. 13. 

The problem of determining the positions of the zeros of 
p(5) and O (5) in I +  (5), which are due to interference of the 
opto-exciton waves, presupposed the use of supplementary 
boundary conditions (SBC) in some form of another (other- 
wise the ratio of the amplitudes of the interfering waves is 
not defined). This adds to the unknown parameters of the 
exciton transition one other that characterizes the effect of 
the surface on the dielectric constant of an infinite crystaL2' 
On the other hand the values, determined from joint ampli- 
tude-phase measurements, of the additional terms (the con- 
tributions of the logarithmic singularities) in (6), (7), (9), and 
(10) yield new information that allows us to check whether 
the SBC and the values of the parameters were correctly 
chosen. 

In the reduction of the experimental results we used the 
supplementary DR (6) and (9), which express the phase char- 
acteristics in terms of the amplitude characteristics, and the 
Pekar SBC. 19*21922 The supplementary parameter in this case 
was the thickness I of the "dead" layer.23 We note that the 
effect of the dead layer as a clearing film1' can lead to viola- 
tion of the DR in the absence of SD.5' 

To indicate another possibility of employing the forego- 
ing results, we rewrite (3) and (4) in terms of the amplitude 
and the phase 

is taken into account, represent weaker restrictions on the 
changes of the amplitude and phase of the reflected (and 
transmitted) light than the classical DR. There are systems 
of linear integral equations in the functions Ip(w)/ 
pol cos 6 (w) - 1 and lp(w)/p,lsin (w) (1 1) as well as 
exp ( - d (w))cos b (w) - 1 and exp ( - d (a))  sin b (w) (12). 
Given the amplitude spectra, the phase solutions (1 1) and 
(12) are not unique. It can be shown that besides the true 
phase functions 6 (w) and b (w) determined in the general case 
by the supplementary DR, relations (1 1) and (12) are also 
satisfied by the functions 6, (w) and (w/c)zd n, (w), which cor- 
respond to the first terms in the right-hand sides of (6) and 
(9). Nonetheless, a search for the true phase solutions is pos- 
sible in certain cases if the supplementary DR (6) and (9) are 
used. After determining the first term in the right-hand side 
and knowing the analytic expression for the second term, 
approximate satisfaction of (1 1) and (12) can be achieved by 
varying the parameters woj and yoj - y. The result of such 
an analysis is a reconstruction of the phase spectrum from 
the known amplitude spectrum. This is done, however, by a 
more complicated and less reliable method than the use of 
DR in ordinary crystal optics. 

15.  Analysis of transmission spectrum on the basis of 
supplementary DR 

The dependence of the zero-reflection coordinates for 
p- and s-polarization on the dead-layer thickness and on the 
light incidence angle in the SBC methodz3 was considered in 
Ref. 24. Our calculations of O (5) by using the SBS from Ref. 
19 (dipole transitions) and Ref. 21 (quadrupole transitions) 
have shown that all the transmission zeros in I + (5) lie in the 
band y < y,,, where y,, is the imaginary coordinate of the 
branch point of the dispersion-equation solution in the 
effective-mass approximation: Z,, = w,,, + iy,, . At y > y,, 
the classical DR between An(w) and x(w) are thus satisfied; 
this corresponds to the conclusion that the SD has a negligi- 
bly small effect. '0925926 In the case y < y,, , the number of ze- 
ros of O (5) in the vital region of I +  (5) increases with in- 
creasing crystal thickness, and each individual zero point 
moves in such a way that Go, (z )4 , ,  , and the larger z the 
closer the trajectory GOj(z) to the curve corresponding to 
equality of the extinction coefficient of opto-exciton waves 
of various types." 
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Taking into account this behavior of the singularities of 
the function Aii(6), we can describe on the basis of the sup- 
plementary DR the interference thickness dependence of the 
optical quantities in the exciton-resonance region (e.g., the 
integral absorption-see Ref. 18, Fig. 2). It can be also be 
shown that Aii(6) (8) coincides at z = 0 with the effective 
refractive index, used in many papers, for reflection at nor- 
mal incidence of light 

which can be easily seen to be a function analytic in I +  (5). 
Therefore the usual DR are valid at z = 0, and the integral 
absorption reaches its classical value. At small crystal thick- 
nesses, the appearance of each new transmission zero and its 
displacement in I+ (6) causes large "perturbations" of 
Aii(6). An increase of the thickness causes the zeros to con- 
dense in the region of 6,, , and their combined influence ex- 
ceeds considerably the influence of the individual zeros in 
the region y < y,, . At large z one can approximately con- 
ceive, at the point 6,, , of one transmission zero whose multi- 
plicity increases linearly with thickness (An(w) and ~ ( w )  
cease to depend on the thickness). This treatment, in addi- 
tion to the usual notions concerning damped thickness-gov- 
erned oscillations, explains also the increase of the integral 
absorption as 2-43. 

Thus, even a qualitative analysis based on the supple- 
mentary DR helps describe a number of singularities of the 
spectral characteristics of crystals near exciton resonances. 

11. EXPERIMENT 

1. Procedure 

The experimental setup was built around a DFS-12 
spectrometer. For photography we used also the spectro- 
graphs DFS-8, DFS-4, and DAS-2. The amplitude spectra 
were measured by the usual procedure with modulation of 
the light beam and with synchronous detection. The results 
were referred to the values of the amplitude far from the 
resonances, inasmuch as for our purposes we need determine 
only the relative reflection coefficient R (w)/R, and the ab- 
sorption coefficient in the region of an isolated resonance. 
The small dispersion of the refractive index in the vicinity of 
the quadrupole transition of Cu,O (Ref. 27) allows us to ne- 
glect the spectral changes of the reflection and obviates the 
need for the appropriate correction to the absorption coeffi- 
cient of a sufficiently thick crystal. 

The phase spectra were measured both with a Bequerel 
interferometer (Ref. 13) and by modulating the phase differ- 
ence between the signals in two mutually perpendicular po- 
larizations, followed by synchronous detection at the modu- 
lation frequency. The phase difference was made periodic in 
time by vibrating a birefringent wedge (along the thickness- 
variation direction ~emendicular to the s~ectrometer slit) 

thep- and s- polarizations of the reflected light. Synchronous 
detection preserves the information on the signs of the mea- 
sured quantities, so that the phase is determined accurate to 
a term + 27~. A similar procedure is described in greater 
detail, e.g., in Ref. 16. 

We note that analyticity of the functions pp (5) p, *(6) 
and ' ( 6 ) ~ ~  '*(5) (the symbols (1 and 1 pertain to the orienta- 
tion of the vector E of the corresponding wave relative to the 
direction of the variation of the wedge thickness) in I +  (5) 
can decrease the number of measurements in this procedure 
by one-half, owing to the use of relations of the type (1 1) and 
(12). The quantitative differences between the phase spectra 
obtained by the procedure of Ref. 13 and by modulating the 
phase difference do not exceed 5". 

52. Results and their reduction 

1. Reflection from hexagonal CdSe crystals (T = 4.2 and 77 K) 

The CdSe crystals were mounted such that the hexag- 
onal axis, which lies in the plane of the reflecting face, was 
perpendicular to the incidence plane. In this case the polar- 
ization of the leading line of the exciton spectrum A,  = , co- 
incides in the dipole approximation with the incidence 
plane, meaning that the spectral changes of the reflection 
coefficient and of the phase take place only in the p compo- 
nent.13.14"6 Me asurement of the amplitude-phase reflection 
spectra in a wide range of incidence angles has shown that at 
p,)pBr (p,, =: 7 lo) the DR are satisfied independently of tem- 
perature. At p, < p,,, the difference between the experimen- 
tal phase spectra and those calculated with the usual DR 
increased with increasing incidence angle, and the deviation 
at lower temperature was larger (at T = 77 K, and at small 
incidence angles, the experimental spectra satisified the 
DR). Thus, p,, (Refs. 17,24) is the limiting incidence angle 
at which the reflection zero turns out to be in I + (5). In Ref. 

. A 

between the crystal and the analyzer. B~ varying the FIG. 1 .  Reflection energy and phase spectra in the region of the exciton 
transition A, = , of a CdSe crystal: a-T = 4.2 K, q, = 45"; b-T = 4.2 K, average position of the wedge Or by introducing a quarter- q, = 65"; c-T = 77 K, q, = 65". The solid lines denote the experimental 

wave plate it was possible to obtain signals that were propor- reflection and phase spectra and the calculated a,,, (o) with parameters 
tional in the case of reflection at oblique incidence of the obtained from experiment. The dashed lines show the spectra 6,  (o) calcu- 

lated using the usual DR from the energy spectra. Points--experimental 
light* e.g.* IPS Ices ' and IPS ( w b ~  (w) 1 sin values of the additional term; o, and o, are the longitudinal and trans- 
where S(w) = 8, (w) - S, (a), is the phase difference between verse exciton frequencies. 
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17 it was shownby calculation that r,i, for an acutal crystal 
increases when the incidence angle is varied from zero to 
p,, . The latter, according to (6), leads to an increase, with 
increase of angle, of the additional phase term at each fixed 
point of the spectrum, and it is this which explains the de- 
scribed angular dependence of the amplitude-phase rela- 
tions. 

Figure 1 shows the energy and phase reflection spectra 
of the CdSe crystal at T = 4.2 and 77 K and at different 
incidence angles. They were reduced on the basis of (6) by 
separating and analyzing the additional phase term 

dadd(o)  =2 arctg 7 0 - 7  ( 0 0 )  

0 0 - 0  

It is easily seen that oo corresponds to the point of the spec- 
trum at which Sad, (a,) = + a. By measuring Sad, (w) at 
some other frequency not too different from w,, we can ob- 
tain the value of yo - y(wo). Next, solving with a computer 
the equation&& p, I ) = 0 (in the model with the SBCI9 and 
with a dead layer) at a fixed incidence angle, we established 
the relation 

which enabled us to determine the values of I and yo, and 
hence also the damping y(wo). It suffices to determine the 
thickness 1 for one incidence angle. It can be shown that the 
best accuracy is reached at p zp,,. The value obtained was 
used to plot w,(p) and yo(p). The calculated values of wo(p) 
are in good agreement with the experimental ones, thereby 
confirming the model employed. At incidence angles 
45 < q, < pBr it is possible to record in experiment the vari- 
ation of the frequency w, in a quite sizable spectral range 
wo > w, . This makes it possible, knowing yo@), to track the 
frequency dependence of the damping in the given spectral 
region. Our measurements, however, revealed no substantial 
changes of y(w) in the indicated region at either liquid helium 
or nitrogen temperature. The results of the reduction of the 
spectra shown partially in Figs. l a  and lb  ( T  = 4.2 K) are: 

The values of o0 correspond to a dead-layer thickness 
I = 7.0 + 0.5 nm. 

It was indicated above that the usual amplitude-phase 
DR hold at liquid-nitrogen temperature and at small inci- 
dence angles. Violation of the DR comes into play in the 
phase spectra at p=;50", but already at q, = 65" the addi- 
tional phase term reaches approxi~qately the same value as at 
T = 4.2 K (see Fig. lc). This indicates that in a CdSe crystal a 
temperature rise, besides increasing the damping, changes 
also the yo(p) dependence. Calculation shows that this be- 
havior of the anglular dependence is due to an increase of the 
dead-layer thickness. Reduction of the experimental spectra 
shown in Fig. lc  ( T  = 77 K, p = 65") leads to the following 
results: 

5 (wo-or) =1:53 mey hyo=0.8 meV; 
-ti7 (o , )  =0.31*0.02 meV, 1=10,5*0.5 nm 

60, rad 

FIG. 2. Comparison of the reflection phase spectra of CdSe crystal 
( A ,  = , ), calculated from relations ( 6 )  and ( I  1) (dashed lines), with experi- 
ment (solid lines): T = 4.2 K, q, = 45" (a), q, = 65"b). 

From the energy reflection spectra of the CdSe crystal 
at T = 4.2 K (p = 45 and 65") and T = 77 K (p = 65") we 
were able to obtain the phase spectrum with the aid of (1 1). 
To this end, expressions (1 1) were transformed so as the leave 
in the left-hand sides only the trigonometric functions of the 
additional phase term, whose spectral dependence was 
specified in the form 

where Q and B are fit parameters whose variation leads to 
the equality. When a concrete value of Sad, (w) is substituted 
in the newly obtained equation, the deviation from the equa- 
lities can be characterized by a function F(Q, B). This re- 
duces the problem to a search for the minimum of a function. 
The deviation from equalities [the sum of the absolute values 
of the differences of the right- and left-hand parts of two 
working equations, referred to Sad, (a)] was averaged over a 
spectral interval made commensurate with Q. The compari- 
son interval was chosen in the region of the most appreciable 
overlap of the functions 6, (w) and Sad, (w). Variation of B 
changes the degree of the overlap and distorts strongly the 
result of the minimization of the deviation with respect to 
the parameter Q. However, the sought value of B is none 
other than the spectral coordinate of the zero of the function 
p(6)  so that it is reasonable to multiply the deviation function 
by theenergy reflectioncoefficient:F(Q, B ) = R (B )Fo(Q, B ). 

Some of the phase spectra obtained in this manner are 
compared with the experimental ones in Fig. 2. It can be seen 
that this method is suitable at any rate for a qualitative esti- 
mate of the phase spectra from the reflection spectra. 

2. Reflection of light from cubic ZnSe crystals (4.2 K) 

The dipole transition corresponding to the leading line 
of the exciton spectrum of the ZnSe spectrum is allowed for 
any polarization state. Therefore spectral (amplitude and 
phase) changes of the reflection coefficient always take place 
both in the p and in the s components of the reflected light. 
The phase spectra of cubic crystals were first measured in 
Ref. 17. The properties of the investigated ZnSe spectra 
turned out to differ more from ideal than the properties of 
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FIG. 3. Reflection energy and phase spectra of ZnSe crystals in the spec- 
tral region of the leading exciton-spectrum line. The notation is that of 
Fig. 2. 

the CdSe crystal. Therefore deviations from the ususal DR 
(change of phase in the spectrum by 2 ~ )  could be obtained 
only for incidence angles close to e,,, (e,,, -,71°). Figure 3 
shows the amplitude and phase spectra of the two ZnSe sam- 
ples at an incidence angle e, = 67". The quantity measured 
for cubic crystals is S(w) = 6, (a) - 6, (w). In Ref. 17, how- 
ever, a qualitative similarity was observed between the phase 
curves of cubic and hexagonal crystals in obliquely incident 
light. Calculation of the phase in the s component, using the 
DR for reflection spectra, yields a change 6, (w) within 6" for 
both samples at e, = 67", so that it can be assumed that 
G(w)-,S, (a). The parameters obtained for the first sample 
(Fig. 3a) were 

fi (ao-a,) =2.25 meV, fiy0=1.41 meV, 
( 0 0 )  =0.7*0.1 meV, 1=7,1&0.5 nm. 

The phase spectrum of the second sample, obtained by using 
a Becquerel interferometer, has at w > w, a two-mode struc- 
ture (Fig. 3b; see also Ref. 17). The lower branch is in good 
agreement with the usual DR, i.e., corresponds to the func- 
tion 6, (a).  The upper branch is described by Eq. (6) with 

corresponding to a dead-layer thickness 1 = 7.3 + 0.5 nm. 
The presence of a two-mode picture is evidence of a "mosa- 
ic" structure of the crystal surface relative to the damping,17 
whose scatter is estimated at -0.3 meV. A remarkable fact 
is that the frequency o, and an estimate of the dead-layer 
thickness can be deduced directly from the two-mode phase 
spectrum obtained with a Becquerel interferometer. 

3. Transmission of cubic CuzO c~ystals in the quadrupole- 
transition region (T = 4.2 K) 

Transition to the lowest exciton state of cuprous oxide 
is dipole-forbidden. In the quadrupole approximation, for 
light propagating along the C, crystal axis, the line in polar- 
ized; El I C4 (Ref. 28). In Refs. 18 and 27 we observed the 
birefringence and investigated the influence of SD on the 
optical characteristics of Cu,O crystals in the vicinity of a 
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quadrupole transition. The experimental geometry corre- 
sponded to complete polarization of the exciton line and to 
maximum birefringence. 

The spectral interval in which the opto-exciton waves 
E + and E - are comparable in amplitude at y = 0, and the 
critical damping connected with the quadrupole-transition 
oscillator strength,29 are small quantities compared with the 
corresponding dipole-transition parameters. Nevertheless, 
in hydrothermal Cu,O samples it was possible to observe 
experimentally the decrease, peculiar to SD, of the integral 
absorption as T-tO (Ref. 30). This means that at low tem- 
peratures the damping constant in the region of the quadru- 
pole transition can be smaller than critical 
(fiy,, = 4.1 x lo-' eV). In this case the interference of the 
opto-exciton waves should lead to the appearance of trans- 
mission zeros in the I + (&) region bounded from below by 
the y(o) curve. The thickness of the Cu20 crystal investigat- 
ed by us (3 mm) was larger by about two orders than the 
period of the thickness-dependent oscillations of the integral 
absorption." It can therefore be approximately assumed 
that all the transmission zeros are concentrated at the point 
&,, . The additional term in (9) takes then the form 

2c N 
Anadd (u) - Q arctg - , 

Ores2 ares-@ 

where N is the number of the transmission zeros in I + (6) 
and Q = y,, - y(w,,, ). By calculating the refractive indices 
6, (w) we can estimate the number of zeros, viz., N-,  120 at 
z = 3 mm. 

The experimental width of the quadrupole line in the 
case when a decrease of the integral absorption is observed3' 
is noticeably larger than that calculated from the SD theory, 
so that the broadening must be taken into account. The 
broadened birefringence and absorption curves calculated18 
by the formulas of the SD theory using the additional bound- 
ary conditions2' at fiy = eV and a half-width of the 
instrumental function 0.6X lop4 eV (0.5 cm-') are in good 
agreement with experiment. For the additional phase term 

An, An,, ID-' 

FIG. 4. Birefringence (a), absorption (b), and additional phase terms (c) in 
the region of the quadrupole absorption line of a cuprous-oxide crystal. 
Solid lines--experiment; dashed-birefringence calculated with the usual 
DR (a) and An,,, (a) calculated from Eq. (14) (c). 
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we can write, when account is taken of the broadening, 

It is reasonable to use for A (w - x )  a Gaussian distribution. 
The integral in (14) can then be determined by asymptotic 
methods. 

The experimental birefringence and absorption curves 
are shown in Fig. 4. The value of An,,, calculated from Eq. 
(14) at Q = 3.1 x lo-' eV, half-width A (o - x) = 0.6 
eV, and N = 120 (Fig. 4c) describes well the difference 
between the birefringence obtained with the usual DR from 
the absorption spectra and the experimental An(w) curve. 

In conclusion, the authors are deeply grateful to A. V. 
Lyaptsev and V. S. Rudakov for helpful discussions and re- 
marks. 

"In real experiments the geometry is usually so chosen that the problems 
of reflection and transmission of the light become scalar. We can confine 
ourselves therefore to the use of scalarp and T, assuming a more specific 
experimental geometry. 

''We disregard the conjugate singularity which occurs, according to (2) at 
the point - 5*, since it makes a vanishingly small contribution to the 
considered spectral region: Aw(w. 

"To obtain a single-valued result of integration over the section G is must 
be recognized that the functions In p(o)/pol and 
(l/r)J" [ ln p(x)/p,l/(x - w)] dx make up a Hilbert pair. 

4'In Ref. 17 the term "damping" is used for the quantity r = 2y, therefore 
Yo = r,,, 12. 

5'The clearing action of the dead layer is considered in Ref. 24 
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