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The characteristics of a system of parametrically excited spin waves in an above-threshold sta- 
tionary state are obtained for the case when the growth of their amplitude is nonlinearly restricted 
by a dissipative mechanism. The total intensity of the electromagnetic radiation emitted by the 
parametric waves is calculated, and the spectral composition of the radiation is determined. 
Comparison with the experimental data on parametric excitation of spin waves in the antiferro- 
magnet FeBO, attests to the good agreement between the theoretical predictions and the experi- 
mental results. 

Our aim here is to investigate theoretically the behavior 
of a system of parametrically excited spin waves (PESW) in 
antiferromagnets of the easy plane type (EPAFM), for which 
the NCel temperature is higher than the Debye temperature. 
Parametric excitation of spin waves (SW) in one such antifer- 
romagnet, FeBO,, was recently investigated experimental- 
l y . ~ +  

It is known that a stationary state of a PESW sets in 
above threshold through the action of nonlinear mecha- 
nisms that limit the amplitude of these waves (nonlinear de- 
phasing of PSEW5), and through the effect of positive non- 
linear The latter is caused by heating of the 
nonresonant SW and phonons, which increases under cer- 

pump frequency was first observed in Refs. 3 and 4, where its 
spectral characteristics were investigated. 

In the present paper we present an explanation of the 
experimental results. In $ 1 we obtain a stationary state of the 
PESW system in an antiferromagnet for dissipative above- 
threshold damping. In $2 we solve the problem of electro- 
magnetic radiation from a PESW system in an antiferromag- 
net. $3 is devoted to a comparison of the theoretical 
conclusions with the experimental data of Refs. 2-4. The 
nonlinear-damping coefficient is calculated in the Appen- 
dix. 

§I.  STATIONARY STATE OF A PESW SYSTEM 

tain conditions the damping of the PESW as their number 
increases. Low frequency SW in an EPAFM are characterized by 

The strongest positive nonlinear damping results from the dispersion law1' 

three-particle PESW decay processes (see Refs. 6 and 7). Re- o ~ ~ = A ~ + s ~ ~ ~ ,  (11 
\ ,  

sults of experiments with ferromagnetic YIG crystals offer 
where A = g2H ( H  + HD) is the gap in the spectrum, HD is evidence that when these processes are allowed their action 

suppresses the phase mechanism of the above-threshold li- the Dzyaloshinskii field, H i s  the static magnetic field, and g 
is the gyromagnetic ratio. mitation.' An evaluation reported in Ref. 9 shows that in 

The interaction of SW with an external pump is de- antiferromagnetic crystals in which the spectra of low-fre- 
quency spin waves and phonons intersect" (e.g., MnCO, and scribed by the Hamiltonian 

CsNiF,) all three-particle processes capable of leading to h 
%*= [ hV exp ( - i ~ t )  ak*a-r'+H.c.], 

positive nonlinear damping are forbidden, so that the princi- (2) 
k 

pal role is assumed by the phase damping mechanism. This 
conclusion is confirmed by experimental data.lO," There is 
no spectrum intersection in FeBO,, so that the decay of a 
PESW into an SW and a phonon is allowed by the conserva- 
tion laws.2' One should thus expect the dissipative mecha- 
nism of above-threshold damping to be the most important 
in this case. 

Parametric excitation of SW in FeBO, crystals was the 
subject of a number of recent experimental studies. l4 The 
results of these experiments indicate that the above-thresh- 
old limitation on the growth of the number of PESW is in- 
deed imposed here by positive nonlinear damping. Measure- 
ments of the absorbed power at various pumping levels made 
it possible to determine the nonlinear-damping coefficient.' 
Within the limits of the measurement accuracy, this coeffi- 
cient was found to be independent of the excess above thresh- 
old. Electromagnetic radiation emitted by PESW at half the 

in which the coefficient of the coupling with the pump is 
given by', 

In Eq. (2) h is the amplitude of the magnetic field of the 
pump. We consider the case when the average occupation 
numbers of the magnon states are large compared with uni- 
ty, so that a: and a ,  are classical complex amplitudes of the 
SW. 

We write down now the equation of motion for the 
PESW amplitudes with allowance for their interaction with 
nonresonant SW and phonons. This interaction leads to two 
effects: on the one hand PESW damping sets in and can be 
described by introducing a term-ykak in the equation of 
motion. However, if only damping were taken into account, 
the SW amplitude would decrease with time to zero, and we 
would be unable to describe the thermal fluctuations on the 
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PESW. To take correctly into account the interaction of 
PESW with nonresonant SW and phonons it is necessary to 
include in the equations of motion, simultaneously with the 
damping, the random forces f, (t  ) that describe the noise ac- 
tion of the SW and phonons on the PESW.3) As a result, the 
equations of motion for the PESW amplitudes take the form 

ak= ( - iok+yk)ak- ihv  exp ( - i o , t ) a - k * + f k  ( t )  . (4) 
Here f, (t ) is a Gaussian random force with correlators: 

( f k *  ( t )  f k .  (t') ) = 2 D k A r ,  r .6  (t-t') 9 

where A,,, , is the Kronecker delta and the coefficient D, is 
connected with the damping y, (see below). With the aid of 
differential equations (4) we can obtain, by averaging over 
the realizations of the random force, the following equation 
for the average PESW density n, = (afa, ) : 

i / z n k = - y k l z k f ~ k f  ~m [hv eXp ( - - i o P t ) 0 k ] ,  (6) 
in which the anomalous correlator uk is defined as a, = (a- 
, a _, ). It follows from (6) that D, has the form of the arrival 
term in the kinetic equation. 

We consider below only the interaction of single PESW 
with resonant SW and phonons. In such processes the anom- 
alous paired correlation in the PESW syste?n cannot be relat- 
ed with the form of the collision integrals. Taking this into 
account, we can find the values of y, and D, from the usual 
(i.e., without allowance for the anomalous correlators) kinet- 
ic  equation^.^' It is shown in the Appendix that in the case of 
interest to us the quantities y, and D, are given by 

Here N = N / N i s  the ratio of the total number of PESW to 
the number of sites in the crystal, while 7, and @, depend 
little on Nand this dependence can be neglected. 

Returning to Eq. (4), we note that the connection 
between the PESW amplitudes and the random forces is lin- 
ear. Consequently the time variation of the complex ampli- 
tudes a, is a Gaussian random process. With the aid of Eqs. 
(4) it is easy to obtain for the Fourier transform of the equal- 
time correlation function S, (7) = (a:(t + ?)a, ( t  )) the 
expression 

where 25, = w, - wp /2; 25 = a - wp /2. We note that S,, 
determines the spectral intensity of the fluctuations of the 
complex PESW amplitude with specified wave vector k. 

Integrating (9) with respect to the frequency w we ob- 
tain the PESW density in k-space: 

Equations (9) and (10) are general. We confine ourselves be- 
low to the isotropic situation and neglect the dependences of 
y, and D, on the directions of the wave vector k. 

Expressions (9) and (10) contain the still unknown total 

number of PESW [see (7)]. It can be determined by using the 
self-consistency condition: 

where the summation is limited by the region of wave vectors 
close to the resonant surface w,, = a,,, . Condition (1 1) 
leads to a nonlinear equation for the total number $of the 
PESW: 

Herey = h /h,, h, = y',Od/V, h, determines the threshold for 
parametric SW excitation, while the coefficient B is defined 
by the expression 

in which 

is the velocity of a spin wave with wave vector k,, y,+y',ql is 
its damping, a = vh/3 (v, is the volume of the unit cell), 
?,?=?,l, 0 @ =@,,. 

Estimates show (see $3) that 041. In this case the ine- 
quality y - 1 ~0 2 1 3  is satisfied even at a small excess above 
threshold, and the solution of (12) is 

As can be seen from (lo), the PESW are then concentrated in 
a narrow spherical layer of radius k, and thickness 6k: 

Here I = s,/y, is the mean free path of a spin wave with wave 
vector k, in the absence of pumping. We see that at an appre- 
ciable excess above threshold ( y >  1) the width 6k of the 
PESW distribution in k-space increases in proportion to the 
amplitude of the pump magnetic field. 

$2. ELECTROMAGNETIC RADIATION FROM PARAMETRIC 
SPIN WAVES 

If the sample has a dipole magnetic moment M(t ), it 
emits electromagnetic waves of intensity l9 

But what is the dipole moment of a crystal in which a certain 
number of SW is excited? This question calls for an attentive 
analysis. On the one hand, this analysis can be based on the 
eigenmodes of the crystal vibrations, determined with ac- 
count taken of its actual form and explicit boundary condi- 
tions on the surface. This is precisely how the theory of mag- 
netostatic modes is form~lated.~'  When SW is having a 
wavelength much shorter than the size of the sample, differ- 
ent assumptions are usually made, viz., the spin waves are 
produced with an arbitrary wave vector in the interior of the 
sample and are scattered or reflected on reaching the sur- 
face. It is precisely the scattering and reflection which indi- 
cate that the spin waves arse not eigenmodes of the crystal 
vibrations. 
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Let SW with complex amplitudes a, (t )be excited in the It can be seen from (24) that the radiation line shape is 
crystal at the instant of time t. The deviation S M(t ) of the quite complicated (see Fig. 1). Near the center, however, at 
magnetic dipole moment of the sample from its static value /w - wp/21 5 dd 2 / y ,  it can be approximated by the Lor- 
M, is then entz expression 

, , 
k 

where u, and v, are the coefficients of the diagonalizing uu 
transformation. The spectral density of the magnetic dipole- 
moment fluctuations, which is defined as the Fourier trans- 
form of the correlation function (S M*(t + .r)SM(t)), is 
therefore given by 

Here HE is the exchange field, fl is the sample volume, u, is 
the unit-cell volume, and Sku is the spectral intensity of the 
PESW [see (9)]. The function Gk is determined by an integral 
over the volume of the crystal: 

with half-width 

60=(2/s) 'hyOP2y3/  ( y - I ) ' ,  y-i>B. (27) 

Thus, at large excess above threshold ( y )  1) the half-width of 
the radiation line increases in proportion to the amplitude of 
the pump magnetic field. 

To conclude this section we must note that in certain 
cases, besides the foregoing mechanism of direct radiation 
from PESW, a significant role can be played by reradiation 
through a uniform-precession mode, which is connected 
with the PESW via the two-magnon process of scattering by 
impurities, defects, and the crystal surface: 

The value of the integral (19) is sensitive to the sample shape. 
For the sake of argument we present an expression obtained 
for a sample in the form of an ideal sphere of radius R:  

Gk=3 (sin kR) / (kR) ' .  (20) 
We assume in addition that the width of the PESW in space 
is small: SkR(1. This condition is satisfied in the experi- 
ments of Refs. 3 and 4. Because of this condition we can use 
in the equations that follow the value of G, at k = $. 

According to (16), the spectral intensity I (w) of the radi- 
ation is expressed in terms of the spectral intensity of the 
fluctuations of the magnetic dipole moment in the form 

I ( o )  = (1 /3nc3)  o'( '8MZ) .. (21) 
With allowance for (1 8), we get 

Z(s) = (NZnN) Sk.. 
(22) 

li 

The quantity I in (22) defines the time-averaged intensity of 
the electromagnetic radiation. Its explicit form is 

It was demonstrated in Ref. 21, for a ferromagnetic YIG, 
that this mechanism is decisive in the resonant case, i.e., 
when the frequency wp/2 coincides with the uniform- 
precession frequency. It must be emphasized, however, that 
reradiation is possible also on the uniform-precession line 
wing via induced excitation of this oscillation at an unrelated 
frequency. The spectral intensity of radiation produced by 
such a process is of the form 

I ) m 1 g o  1 sku. 
(0 - 0 0 1 2  (29) 

Comparison of (22) and (29) shows that when the condi- 
tionlwp/2 - w 1 )Sw, is satisfied, i.e., far from resonance 
with the uniform precession, the radiation line shape is not 
distorted and is determined, just as in the case considered 
above, by the sum contained in Eq. (29). 

A quantitative estimate of the contribution made to the 
total radiation intensity by the processes indicated above is 
difficult, inasmuch as in the case of direct emission by para- 

I= J I ( o ) d o =  - I(w) 

Here N is the total number of the PESW. 
Integration of (9) with respect to the wave number k 

leads to the relation 

I  ('0) a [ A  ( A + B )  I h ]  -%, (24) 

where 

A= [ ( y t d 2 - s 2 )  'f ! t ' f Z ~ 2 ]  ' I2,  
-/ , I , 

B=y,2d2-sZ,  -3 -2 -1 1 2 3 w 

~ = B Y ~ / ( Y - I ) ,  ~ = y ~ ( l + ~ m ) .  (25) FIG. 1. Electromagnetic-radiation line shape calculated from Eq. (24). 

Theabscissas are the parameter combinations w = 2(w - lo, ) /yo yp 2; the 
We have left out of (24) factors that do not depend on radiation intensity zis in arbitrary units. At y, 1 the1 (w) is universal. The 
i;, = w - a, /2. We note that allowance for the actual shape line shape is Lorentzian near the radiation maximum but broadens into a 

of the sample (i.e., for its deviation from spherical) can influ- "pedestal" far from the center. The dashed line shows for comparison a 
Lorentz line having the same width. The experimental points marked on 

ence only the integral intensity of the radiation, but not its the diagram were obtained by reduction of the electromagnetic radiation - 
spectral composition. ~pec t rum.~  
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metric waves the total intensity depends substantially on the 
actual shape of the sample, as well as on its surface rough- 
nesses of size (SR )k 2 1, whereas the intensity of the radi- 
ation due to elastic scattering with transformation into uni- 
form precession contains as a factor the scattering amplitude 
kko which we do not know. 

§3. COMPARISON WITH THE EXPERIMENTAL DATA 

In this section we compare our theoretical results with 
the experimental data24 on parametric excitation of SW in 
the antiferromagnet FeBO,. 

We shall use in the estimates the following parameter 
values1: the magnetoelastic constant 0 ~ 2  . lo-'' erg, the 
exchange field HE =. 3 . lo3 kOe, the Dyaloshinskii field HD 
10' kOe, the unit-cell volume ~ ~ ~ 0 . 9  . lopz2 cm3, the mag- 
non velocity s~ 1.4. lo6 cm/asec, the phonon velocity 
c ~ 4 . 7  . lo5 cm/asec, the site spin S = 5/2, w, = 35.7 GHz, 
Mc2 = lo5 K, and the unit-cell mass M. 

We verify first that the residual damping yo of the 
PESW is indeed due to magnon-phonon decay. In the Ap- 
pendix we derive Eq. (A9) for the damping on account of 
such a process. In the case a, 1 this equation goes over into 
the expression obtained in Ref. 22 for the relaxation. Substi- 
tuting in (A9) the numerical values of the FeBO, crystal pa- 
rameters we find (at H = 100 Oe and T = l .2 K) that yozO. l 
mHz, of the same order as the value obtained in Ref. 2. Just 
as in the experiment, the damping yo obtained by us in- 
creases linearly with temperature and decreases with in- 
creasing magnetic field H. 

In the same investigation of the depedence of the ab- 
sorbed power on the excess above threshold, they measured 
also the nonlinear-damping coefficient 7. The relation ob- 
tained at small H is 

where the temperature T is in degrees Kelvin. The theoreti- 
cal expression for the coefficient 7 has a similar temperature 
dependence [see (A12)l. The numerical expression obtained 
by us at T = 1.2 K is of the same order as the experimental 
estimate (30). The electromagnetic radiation produced when 
parametric SW are excited in a crystal were investigated in 
Refs. 3 and 4. According to the data of Ref. 4 the profile of 
the spectral intensity of the radiation I(w) consists of a low 
broad pedestal a narrow Lorentzian peak rising above it. 
Such a curve, as can be seen from the figure, is well described 
by Eq. (24). It follows next from (27) that the line width Sw 
outside the vicinity of the threshold increases in proportion 
to the pump-field amplitude. A similar dependence was ob- 
served in Ref. 3, and the linearity was preserved within the 
accuracy limits all the way to the kinetic-instability point. At 
the kinetic-instability threshold, the line width was seen to 
increase: this can be attributed to the abrupt increase of the 
PESW damping in the immediate vicinity of the value 
5 = N,, [see (A1 l)]. 

According to our theoretical results [see (13) and 
(All)], the coefficient ,8 can be expressed in terms of the 
quantity y,, ,which determines the threshold of the kinetic 
instability (NzN,, ). In particular, at H = 100 Oe and 
T =  1.2 K we have 

In the e ~ ~ e r i m e n t s , ~ . ~  the kinetic-instability threshold corre- 
sponded to y,, = 10. In this case we obtain from (31) 
, 8 ~ 4 X  which agrees in order of magnitude with the 
experimental result at the same values of the external mag- 
netic field and temperature,,PP ~2 X 10-'. The value ofy,, 
can be calculated theoretically, using Eqs. (A3), (A5), and 
(A9). This yields y,, z 2 ,  in approximate accord with the ex- 
perimental value. One should not expect better agreement in 
this case, since our calculation, in the Appendix, of the non- 
linear damping coefficient is based on a number of simplify- 
ing assumptions. 

We note in conclusion that it follows from (13) that the 
coefficient ,8 increases linearly with temperature (since 
7 a T-I, @a T, yo= T) ,  and therefore the line width Sw 
should increase like T 3  with rising temperature. The experi- 
m e n t ~ ~ ' ~  revealed an increase ofSw with increasing T, but no 
complete investigation of the temperature dependence of the 
line width was made. 

We take pleasure in thanking M. I. Kaganov for valu- 
able discussions. We are grateful to L. A. Prozorova, B. Ya. 
Kotyuzhanskii, and L. E. Svistov for numerous discussions 
and for reporting the results of a number of experiments 
prior to publication. 

APPENDIX 

The analysis presented above is based to a substantial 
degree on the assumption that the nonlinear-damping coeffi- 
cient 7 and the value of @ depend weakly [see (7) and (8)] on 
the number of the PESW. In this Appendix we justify the 
assumption and obtain quantitative estimates. 

As already noted, positive nonlinear damping in anti- 
ferromagnets having a high NCel temperature is due to the 
possibility of decay of a parametric SW into an SW and a 
phonon. The effects observed here are close in principle to 
those considered by Gottlieb and S ~ h l , ~  who investigated 
PESW decay into two spin waves in ferromagnets. Our case 
differs mainly in the forms of the dispersion laws, in the 
different amplitudes of the analyzed processes, as well as in 
the possibility of a larger difference between the SW and 
phonon damping. 

The experiments showz3 that at low temperatures the 
phonons attenuate in antiferromagnets more strongly than 
the spin waves, so that the deviation of the phonon distribu- 
tion function from thermal equilibrium can be neglected. 
The rapid phonon damping is apparently due to the substan- 
tial contributions of processes within the phonon subsystem 
and of the heat transfer to the surrounding medium. 

The main contribution to low-temperature magnon 
damping in the easy-plane antiferromagnets investigated in 
Refs. 1 and 2 is made by processes of relaxation on two-level 
i m p ~ r i t i e s . ~ ~  Above the resonance threshold, however, this 
main contribution to the damping drops out and the residual 
damping of the PESW is due to the decay of the PESW into a 
magnon and a phonon (Refs. 22 and 26).3' 

The gist of the nonlinear damping in the decay process 
is that a definite group of nonresonant SW becomes heated, 
and this increases the PESW damping. Allowance for the 
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conservation laws for the PESW decay process determines 
the k-space regions in which the secondary SW are concen- 
trated. This region is characterized by the condition 
k, < k < k,. The minimum wave vector of the secondary SW 
is 

where a = s/c and c is the phonon velocity. PESW decay is 
forbidden if k, < w, /2sa. It is known (see Ref. 25) that the 
matrix element for the decay of an SW of frequency w, into a 
spin wave of frequency w, . and a phonon is proportional to 
(ak - w,, ).2 Therefore the most intense process is PESW 
decay into spin waves with small wave vectors, since the 
matrix element for these waves is the largest. Thus, the maxi- 
mum heating is reached for secondary SW with wave vectors 
k close to k,. Assuming that the width of the heated region is 
small enough, we disregard hereafter in the kinetic equation 
the interactions between the secondary SW, since the matrix 
elements for such processes are proportional to the square of 
the width of the heated region. 

With allowance for the foregoing remarks, the solution 
of the kinetic equation for the secondary spin waves takes the 
form 

Here 

(A41 
In addition 

a2- 1 ask /ok-  1 
Q ( k )  =ln - 2 

a2+1-2asklo,, a2-1 . (A61 

In (A3)-(A6) Tis  the sample temperature (i.e., the tempera- 
ture of the phonon thermostat), and w ,=wk, . 

The total number of secondary SW per crystal site is 

The PESW damping is given by 

where yo is the equilibrium damping of the PESW via decay 
processes 

and the coefficient W, is given by the expression 

Substituting (AS) in (A7) we obtain 

It can be seen from (A7) and (A1 1) that at = N,, the total 
number 5 ' of secondary spin waves and the PESW damping 
y become infinite. The value 5 = N,, can be interpreted as 
the threshold of the kinetic instability21.26 for the secondary 
spin waves at a given number of PESW. Below the kinetic- 
instability threshold, expanding (A1 1) in terms of the param- 
eter %/N,,, we arrive at expression (7) for the nonlinear 
damping. The nonlinear-damping coefficient is equal to 

In the same approximation, we obtain for the coefficient Q, 

[see (811 

''As a rule, the NBel temperature T ,  in such crystals is lower than the 
Debye temperature T ,  . 

"We note that three-magnon processes with participation of SW from 
only the lower branch of the spectrum never occur in EPAFM, since the 
coefficient of the corresponding term in the Hamiltonian is identically 
zero. As for three-magnon processes with participation of SW of the 
upper branch of the spectrum, they are allowed only for SW with very 
large wave  vector^.^ 

3 ' ~  general theoretical foundation for the procedure used by us can be 
found in Refs. 14 and 15; as applied to the study of parametric excitation 
of SW the questions were discussed also in Refs. 16 and 17. 

4'This question was discussed also recently in Ref. 18. 
5'PESW-phonon coalescence, which contributes to the below-threshold 

damping of SW," is eliminated simultaneously with the impurity relaxa- 
tion. 
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