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We give a derivation from first principles of the interaction Hamiltonian of electrons and long- 
wavelength phonons in ID-metals. Due to the almost complete compensation of the usual defor- 
mation and Coulomb mechanisms the interaction between electrons and sound turns out to be 
appreciably weaker than in a 3D-metal. The main role is played by the so-called cross-deforma- 
tion interaction and the inertial mechanism connected with the Stewart-Tolman effect. The cross- 
deformation interaction arises as the result of the modulation of the random scattered field of the 
sound wave and turns out to be off-diagonal in the electron momentum on the Fermi surface. We . 
find the equations of elasticity theory. We propose a new technique for calculating dynamic 
correlators which enables us automatically to take into account multiple scattering and the elec- 
tron localization effect. We analyze the frequency dependence of the sound speed and damping 
under conditions both of weak and of strong spatial dispersion. We predict a geometric-reso- 
nance-like effect of oscillations of the absorption, which is caused by the jumplike nature of the 
electron motion in the inhomogeneous field of the sound wave with a fixed length of the jump. 
Due to the absence of Landau damping the frequency dependence of the absorption turns out to 
be quadratic (rather than linear as in 3D metals) in the range of strong spatial dispersion and is 
determined by the quantum nature of the scattering by individual impurities oscillating with the 
lattice. 

1. INTRODUCTION 

The one-dimensional nature of the electron motion 
leads to a number of anomalies in the physical properties of 
ID-conductors. In them the electrons are strongly coupled 
to the phonons with a momentum equal to 2p0 (p, is the 
Fermi momentum) which is the cause of the Peierls instabil- 
ity.' The temperature dependence of the conductivity and 
the electron-phonon interaction near such a structural tran- 
sition were studied in Refs. 2, 3. Another peculiarity of 1D- 
metals is the localization of all electron states for arbitrarily 
weak scattering by imp~r i t ies .~  The change in the conductiv- 
ity with temperature and the effect of phonons on the local- 
ization were studied in Refs. 5,6. As to the electron-phonon 
interaction and the sound propagation in ID-conductors in 
the long-wavelength limit, this problem has up to now not 
been studied either theoretically or experimentally. 

Meanwhile, in a one-dimensional system the interac- 
tion mechanism between electrons and long-wavelength 
phonons turns out to be basically different from that in the 
three-dimensional case. Firstly, the deformation potential at 
the Fermi surface reduces to a constant and when there is no 
band overlap it is almost completely screened. For that rea- 
son the usual deformation mechanism which plays the main 
role in a three-dimensional metal does not operate here and 
the electron-phonon interaction turns out to be appreciably 
weaker. Secondly, in a ID-conductor there is no Landau 
damping as the electrons move along a single axis. Damping 
of sound therefore occurs only when the electrons collide. 
Thirdly and finally, a one-dimensional system of electrons is 
appreciably disordered upon arbitrarily weak scattering by 

impurities. It is therefore necessary to elucidate the electron- 
sound interaction mechanism in a disordered system and 
take into account the electron state localization effect which 
appreciably affects the spectrum and damping of low-fre- 
quency phonons. 

The present paper is the first to obtain the electron- 
phonon interaction Hamiltonian in ID-conductors, to write 
down the elasticity theory equations, and to find the frequen- 
cy dependence of the absorption and speed of long-wave- 
length sound for weak and for strong spatial dispersion (at 
T =  0). 

2. ELECTRON-ION HAMlLTONlAN 

As a model of a metal with one-dimensional conductiv- 
ity we take a three-dimensional crystal with a simple lattice 
in which the ions are positioned in the lattice points [ R J  and 
have a density n. The volume of the crystal is V,, the total 
number of ions N, the charge of an ion Z lei, and their mass 
M. We shall assume that the electrons have a one-dimension- 
a1 dispersion law ~ ( p )  ( p  =p,) and can move only along 
straight-line chains of ions in the x-direction. Let these 
chains form a quadratic lattice with lattice constant a; we 
neglect transitions of electrons from one chain to another. 
The electron density is n, = Zn. Such a model is very close 
to the structure of compounds like KCP in which the aniso- 
tropy of the conductivity reaches lo5. We neglect the possi- 
bility of a Peierls transition. 

We write the Hamiltonian of the electrons and ions in 
the form 
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Here ra and pa are the radius-vector and momentum of elec- 
tron number a, m, is the free electron mass; R, and Pi are 
the coordinates and momentum of ion number i; @ (r, - R, ) 
is the electron-ion interaction energy (pseudo-potential): 
A (R) = g(R) + Z 'e2/R is the ion-ion interaction energy, 
whereg(R) is its short-range part. The last term in (2.1) is the 
potential for the interaction between electrons and impuri- 
ties which are randomly positioned in the sites R,. 

The coordinates Ri give the positions of the ions (and 
impurities) in the deformed lattice: 

R,=R+u (R, t )  , (2.2) 

where u(R,t ) is the ion displacement field. 
We transform in the Hamiltonian (2.1) to new electron 

coordinates r': 

r=rr+u (r', t )  . (2.3) 

This transformation corresponds to a change to a coordinate 
system K ' which is connected with the deformed lattice. The 
need for changing to the system K ' is dictated by the fact that 
just in that system the electron density n, remains un- 
changed under the deformation and, hence, the Fermi mo- 
mentum p, is unchanged. 

We describe the scheme for obtaining from (2.1) the 
electron-ion Hamiltonian in the system K '. We perform a 
canonical transformation of H corresponding to (2.3); we 
expand all terms in (2.1) in powers of the tensor du,/dxk cp 
to quadratic terms inclusively; after that we change to the 
second-quantization representation in the Bloch functions 
!Ppz (r') of the single-electron Hamiltonian 

The electron-ion Hamiltonian in K ' can then be written 
in the form (we drop the primes everywhere in what follows): 

(2.5) 
Here a,+ and a, are the creation and annihilation operators 
for a Bloch electron with quasi-momentump (in the system 
K '); in the sum over momenta we include summation over all 
chains; A, ( p) is the deformation potenial tensor: 

which is the same as the corresponding expression in Ref. 7. 

The Fourier component of the electron density is 

The interaction with the impurities in (2.5) is obtained 
from (2.1) if we take into account the coordinate transforma- 
tions (2.2), (2.3), and the short-range nature of the impurity 
potential. We do not give the explicit expression for the bare 
elastic moduli y,,, , as we shall write down the final formula 
for the adiabatic moduli. 

The electron part of the Hamiltonian (2.5), neglecting 
impurities, corresponds to the usual form of the single-elec- 
tron dispersion law in the system K ': 

E ( p ,  r, t )  =cpf Aikuik(rr t )  f erp(r, t )  -movu (r, t )  . (2.8) 

In a 1D-conductor where the Fermi surface consists 
just of the two points f p, the second and third terms in (2.8) 
cancel each other up to terms of order ( q ~ ) ~ ( l ,  where q is the 
phonon wave vector. This cancellation is a consequence of 
the screening of the term with A, in (2.5) due to the Coulomb 
interaction between the electrons. There is thus no usual de- 
formation interaction in K '. The condition for neglecting 
small corrections of order ( q ~ ) ~  from the incomplete cancel- 
lation of the deformation interaction is given below. 

Hence, the electron-phonon interaction in a ID-metal 
is described by the last two terms in (2.5). The first of them is 
caused by the Stewart-Tolman effect, and the second arises 
as a result of the scattering of electrons by impurities which 
are displaced during the lattice vibrations. The energy of 
these interactions is small compared to the Fermi energy and 
they are in the three-dimensional case neglected as a rule 
against the strong deformation interaction. In the one-di- 
mensional case these two mechanisms become the basic ones 
and thus the interaction between the electrons and the long- 
wavelength phonons turns out to be appreciably weaker than 
in the three-dimensional case. 

We shall assume that the scattering by impurities is 
weak so that 

E R Z B ~ ,  (2.9) 

where r is the electron free flight time relative to backwards 
scattering; we neglect forward scattering (the impurity po- 
tential is short range). It is then sufficient to take in the Ha- 
miltonian (2.5) into account only electron states with mo- 
menta in the vicinity of the points + p,. 

We introduce the operators 
1 1 q. (x) = 3z eikaaR~, $=+ (x) -5 z e - i k a b , + m  (2.10) 

k R 

where L is the length of the chain, the index a = f , and 
I k I <p,. We write the first term and the term arising from the 
Stewart-Tolman effect in (2.5) in the form 

where u, is a Pauli matrix and the round brackets containing 
the operators $+ and $indicate summation over the chains 
and contraction over the "spinor" indexes a. 

We now turn to the impurity potential in (2.5). Scatter- 
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ing by impurities leads not only to damping but also to an 
appreciable rearrangement of the electron states (localiza- 
tion effect). We write the last term in (2.5) such that we leave 
in the Hamiltonian only backward scattering and take into 
account the change in the matrix element of such scattering 
through the lattice deformation. To do this we first of all find 
the correlation function of the impurity potential 

D(r ,  r l )  =(Himp(r)Htmp(r,i) ), (2.12) 

where Hi,, (r) is the last term in (2.5) without the sum over a 
and angular brackets indicate averaging over the impurity 
positions. In the approximation which is linear in u, 

where the summation over the momentum transferred 7c ex- 
tends over the whole of the first Brillouin zone; ni,, is the 
volume density of the impurities, 

V x  (r) = vim. ( x t . ~ )  ei("')', Vim, ( x )  = 7 d 3 r  Vimp ( r )  e-ixr, 
B 

d 
(2.14) 

V,lm ( r )  = z-[ ( x+B)  ,Vim, ( x+B)  ] ei(x+B)', 
ax ,  

where B is the reciprocal lattice vector. In the diagram tech- 
nique the function D (r,r,) corresponds to an impurity line 
describing the scattering of two electrons due to the effective 
pair interaction through impurities. In order to take only 
backward scattering into account it is sufficient to retain in 
D (r,r,) terms with x, = + 2p0 + k , ,  k ,  1 <po. 

We now introduce in the Hamiltonian, instead of the 
field of the randomly positioned impurities, an equivalent 
random complex field g (x) that leads to the same spatial cor- 
relations as the original impurity potential (cf. Ref. 6) .  In 
terms of < (x) the last term in (2.5) will correspond to two 
terms: 

(2.15) 

The 2 x 2 matrices here are 

and the probability for backward scattering per unit time is 

Mp ( x )  = ~ d x Y ! ~ . ( x ) e i x x ~ ,  ( x ) .  

The dimensionless complex tensor A, is analogous to 
the deformation potential tensor and arises due to the inter- 
action of an electron with an impurity in the deformed crys- 
tal in exactly the same way as the tensor A, arises when 

there is interaction with ions. It is equal to 

We shall call the tensor A, the "cross-deformation" 
potential emphasizing thereby that (2.15) is off-diagonal in 
the "spinor" indexes a. The second term in (2.17) has the 
scale of the product of mov and the range of the impurity 
potential. 

Later 5. (x) is Gaussian and 8-correlated: 

(f ( x )  %+(x i )  )=16 ( x - x i ) ,  

Using the methods of functional integration, expanded 
in Ref. 13, one can derive Eqs. (2.15) to (2.18) with math- 
ematical rigor. 

The Hamiltonian of the electron-ion system taking into 
acount that part of the impurity potential which describes 
backwards scattering, is therefore in the long-wavelength 
limit of the form H = Ho + He-p,, 

The electron-phonon interaction operator in a ID-met- 
a1 is 

-I- ( x )  (i+Aik) uikS mOva3fix $ ( X I  I ) 
The first term in the square brackets in (2.20), arising as 

a result of the modulation of the random scattering field of a 
sound wave, will be called the "cross-deformation" interac- 
tion, and the second term the inertial or Stewart-Tolman 
one. 

The adiabatic elastic moduli when there is no scattering 
K,,,, in (2.19) can be obtained from the general formulae of 
Ref. 7 by taking the limit to a one-dimensional electron dis- 
persion law: 

where A,,, includes contributions from the lattice and the 
interband electron transition (for details see Ref. 7). The an- 
isotropy of the electron contribution to K,,, is clear from 
(2.21). 

Formula (2.20) proves the foregoing statement that the 
interaction between the electrons and long-wavelength 
phonons turns out to be weak in a ID-conductor and is 
caused by the cross-deformation mechanism and the 
Stewart-Tolman effect. As compared to the usual deforma- 
tion interaction which is characterized by the quantity A, 
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(of the order of the Fermi energy E,), the first mechanism is 
weaker by a factor E,T and the second one has a relative 
smallness of order s/v, where s is the sound speed. As both 
interactions are characterized by different constants they 
can compete with one another. Moreover, these interactions 
have a different symmetry under the change v+ - v and a 
different matrix structure. 

We give a criterion for dropping, as was done above, 
terms of the incomplete cancellation of the usual deforma- 
tion interaction [of order E~ ( q ~ ) ~ ]  as being small compared to 
(2.20). It is shown in section 5 that the condition ( q ~ ) ~ 4  1 is 
sufficient for the energy of the cross-deformation interaction 
to dominate over the "unscreened" deformation potential. 
The latter can be neglected also in comparison with the iner- 
tial mechanism, if ( q~ )~<rn /M.  On the other hand, the rela- 
tive role of the cross-deformation interaction and the 
Stewart-Tolman effect is determined by the ratio of m/M to 
( ~ o I ) - l .  

One can assume that the electron relaltation time for 
scattering by long-wavelength phonons which determines 
the low-temperature conductivity will be determined by the 
Hamiltonian (2.20) with a small effective electron-phonon 
coupling constant. 

3. ELASTICITY THEORY EQUATIONS 

The equations of motion for the lattice are obtained 
from the Hamiltonian (2.19), (2.20) using the usual formulae 
of mechanics. To do this we must, strictly speaking, replace 
in h u by P/Mand formulate next the Hamiltonian equations 
of motion. As there is in (2.20) a term which is linear in the 
lattice momentum (from the Stewart-Tolman effect), the 
connection between the velocity and the momentum is given 
by the formula 

M ; = P - ~ ~ V  Sp (9'0~9) =P- ( m o l e )  j ,  (3.1) 
where Sp includes averaging over the random field < (x), the 
trace over the spinor index, and thermodynamic averaging, 
j = j(r,t ) is the electric current density ( j 1 (x). The force F in 
the elasticity equations P = F is found from the formula 
F = - SH/Gu and as a result: 

The current density j and the strain tensor Ti, can be 
found using linear response theory:' 

Here u(q,w) is the conductivity, the angle brackets (AB ),, 
indicate the Fourier components of retarded correlators of 
the form 

(AB),,=-i I 7  dtei"' dxe-'9" T r  p o [ A  (x, t ) ,  81, (3.6) 
-L/2 

wherep, is t$e equilibrium density matrix with Hamiltonian 
H, of (2.19), A (x,t ) is an operator in the Heisenberg represen- 
tation, Tr indicates the trace over the electron quantum 
states for a fixed realization of the field < and subsequent 
averaging over realizations. 

Substituting (3.4) and (3.5) into Eq. (3.2) we get the elas- 
ticity equation for a 1D-metal: 

The problem has thus been reduced to envaluating corre- 
lators of the type (3.6) with the operators Ti, and j taking 
into account the rearrangement of the electron states in the 
scattering field (x). 

4. TECHNIQUE FOR EVALUATING THE CORRELATORS 

In the present section we give a new technique for evalu- 
ating the correlators occurring in Eq. (3.7). Well known 
 method^^'^.'^ of averaging over impurity configurations in 
1D-conductors which up to now have been applied to evalu- 
ate only current-current and density-density correlators are 
inconvenient for the calculation of the quantities we are in- 
terested in because of the tensor nature, the complexity, the 
different m?trix structure, and the dependence of the vertex 
operators Ti, on the random field 5 (x). The method pro- 
posed below differs, on the one hand, by the high degree of 
automatism and, on the other hand, enables us to evaluate 
correlators of any order or kind, and not only binary ones. 

One shows easily that for the binary retarded correlator 
(3.6) the expression 

(AB)..= 5-- 2ni de de S p & 9 [ G a ( e ) - G r ( e ) ]  

io dfo  + - de sp &~le-'~'@ (84-0)  etq%[@ ( e )  -G. ( e )  1, (4.1) 
2n E 

is valid, where Ga (E)  and G'(E) are the advanced and retarded 
Green functions, d and fZl are single-electron operators 
corresponding to the quantities A and B, and f,(~) is the Fer- 
mi function. The operator corresponding, for instance, to 
Gr (2) is, according to (2.19) equal to 

X e x p  ( - i q 2 ) G r ( z )  exp ( i q l )  =G7(z -quas) .  (4.2) 

Using the technique for expanding in an operator base 
for two-level systems1' we can obtain the following represen- 
tation for the retarded and advanced single-electron Green 
functions: 
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( X I  Gr (z+o--quos) I y )  

1 =--[i+r+w(y)r-u(y) 1-i ( G 2 x u  G4'v) 
v GQXY Gir' ' (4.3) 

Glxv,ie-~~+(x-v) n-@ (x) r-" ( y )  ei~.'%-u)+O- 

G , x Y = ~ ~ ~ P - ( x - u )  r+" ( y )  e l ~ w ( ~ - 4  I 
G3s!"e- 

n-" ( x )  
e'P~x+O- - 

Z - @ ( Y )  

(4.4) 
GI~w=ei(p-s+?+u) z + @ ( ~ )  r - u  ( y )  e - t ~ w + O -  - Y - @  ( 5 )  e-,pws 

n-" ( Y )  
y*" ( x )  

< y l G " ( ~ ) I x > = [ ( ~ l G ' ( z )  l y ) ] + ,  I'+"(x)=,- 
n* ( x )  ' 

We have here introduced the notation: 
2 0  z+ 0 

p.=-, p*=- v U 
7 0*=0[f  (x -Y)  1 ,  

9 (x) is the unit step function. 
The functionals of the random field [ (x) occurring in 

(4.3) and (4.4) satisfy the following equations: 

dI'+" (2) -- 0 1 1  
--2i-F+@(x)--g+ ( x ) + - G ( x )  [ I '+w(x)]2 ,  

ax V 1 1 
d r - q x )  -- I  I  

-2i - I'-"(x) + - 6 ( x )  - -if ( x )  [ r - " (2 )  12, 
dx v 1 1 

The boundary conditions for these equations are the follow- 
ing: 

All these equations have a structure of the form 

where summation over repeated indexes is understood. The 
functionals with an index + depend only on values of the 
random field < (x') for x' > x and functionals with index - 
are determined by values of < (x') for x' <x .  The representa- 
tion (4.4) and Eqs. (4.5) are valid for any statistical property 
of the field [ (x). 

If we now substitute Eqs. (4.3), (4.4) for the Green func- 
tions into (4.1) and then expand denominators of the kind 
(1 +r",r ) - I  in a power series in r",r", we can ex- 
press the correlator (AB ),, in terms of a sum of average 

values of pair products of some functionals R + with index 
+ and functionals R - with index - . These products under 

the sign for averaging over the realizations of the field f (x) 
are constructed from blocks of 1T", (x), r",x), and y", (x), 
and the same blocks with w = 0. Each of such products splits 
on averaging into a product of average values of factors, as 
the functionals R + and R - are statistically independent due 
to the fact that the field f (x) is &correlated. On the other 
hand, averages of functionals of one kind (R + or R - )  can 
easily be calculated using recurrence relations which in the 
general form can be written in the form: 

where the corresponding block wi satisfies one of Eqs. (4.5) 
while the quantities Dkl are taken from the relations 

( f k ( x ) f t  ( y )  )=Dkr6 ( I - Y ) .  

The technique described which will be applied to the 
calculation of the conductivity of a ID-metal at once leads to 
Berezinskii's equations.9 For the correlators in which we are 
interested we obtain the following results. 

The cross correlators are connected through symmetry 
relations: 

<jT,II>,.=-<Ti,j>-qm. (4.8) 

Because of this connection the two last terms in Eq. (3.7) 
cancel one another, if the vector q is directed along or at right 
angles to the x-axis. This means that the two basic mecha- 
nisms for the electron-phonon interaction-the cross-defor- 
mation and the inertial mechanisms-do not interfere in the 
elasticity equations, i.e., they act independently. This con- 
clusion is the consequence of the different symmetry of the 
corresponding terms in the Hamiltonian (2.20) under the 
substitution v+ - v. 

The correlator (Ti, T,, ),, is equal to: 

<TikTIrn>,,=- 
4naz 

The function S (w,q) is expressed through the integral: 

where y(6 ) is the solution of the equation 

and satisfies the boundary conditions of finiteness at 6 = f l  
and y(f )+O as 6- + m .  The differential operator p can be 
treated as the operator of the dimensionless collision fre- 
quency as the left-hand side of (4.11) recalls the linearized 
kinetic equation.'' 
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The first term in the correlator (4.9) is independent of 
the localization effect and can be obtained in the Born ap- 
proximation in the cross-deformation interaction. However, 
the second term in (4.9), containing S (w,q) and proportional 
to I d ,  I d , ,  , is caused by the effect of localization as the 
effect of multiple scattering by impurities leads to the char- 
acteristic Eq. (4.11). 

We calculate S(w,q). Firstly we consider the high-fre- 
quency region, or) 1. According to (4.10) in that case we 
must find y(g ) for large 5. It follows from (4.11) that here 
y(6)  = A6 -' and the integral in (4.10) equals 

In the limit the operator ?reduces to multiplication by unity. 
We now turn to the low-frequency limiting case, wr( 1. 

We can look for the solution of (4.11) in the form of a power 
expansion in p. In the main approximation we put P = 0 in 
Eqs. (4.1 1) and (4.12) and using the Green function of the 
equation obtained 

J 

E-t.' k E' x exp (tk'l -IhKip/2 ( j - )  Kim (4.14) 

we easily find the solution in the form: 

r sh(nd2)  v2(p) Kw2 (+) 
ch2 (np/2) v (p) +iql 

Here v ( p )  = (1 +p2)/4 is the dimensionless collision fre- 
quency which depends on the quantum number p over 
whose fluctuations we must average in (4.15) (details in Ref. 
12). 

Substituting (4.15) into (4.10) we get the main term in 
the function S (w,q): 

So(o, q)=- dp 
P sh(np/2) v3(p) (I+ v(p)/2) 7 oh3 (np/2) v (p) +iql . (4.16) 

The first order correction y,({ ) to (4.15) is given by the 
equation 

with boundary conditions of decreasing at infinity and yl  Z O  
at g = 8. Using (4.14) we get the solution of (4.17) in the form 

Analysis shows that we can neglect the first term in 
(4.19) and as a result we easily get for the correction term to 

11 I 
S1(o,q)=-, q l <  

24 211n ozl 7 (4.20) 

Formula (4.2 1) is valid for 291 1 lnwr / ) 1. In contrast to 
the conductivity u(w,q) the expansion of the correlators (w,q) 
for wr( 1 does not contain powers of In wr even when q = 0. 

5. DAMPING AND DISPERSION OF SOUND 

The characteristic feature of ID-conductors is that in 
them there is no collisionless Landau damping mechanism 
which is normally connected with the spread in electron ve- 
locities in magnitude and direction. All absorption mecha- 
nisms therefore are collisional in nature. 

The general Eqs. (3.7) and (4.9) enable us to study the 
propagation of long-wavelength sound of arbitrary polariza- 
tion and in any direction in a 1 D-metal. We restrict ourselves 
here to longitudinal sound with a wave vector q along the 
direction of high conductivity. We introduce the adiabatic 
longitudinal sound speeds: Kxxxx = Mns2. As the dispersion 
s(w) of the speed is small as is the relative damping r of the 
sound we can easily write down from (3.7) the following for- 
mulae for them [As = s(w) - s]: 

Here a(w,q) = - Imu(w,q)/wru, is a quantity proportional 
to the polarizability of a ID-conductor; a,, = n,e2r/m; 
A, =A = A l  +id2,  S+(w,g) = S (w,q) + S (w, - 91, 
m =p,/u is the effective electron mass. On the right-hand 
side of (5.1) and (5.2) we must replace the wave number q by 
W/S. Taking spatial dispersion into account, the conductivity 
u(w,q) was found in Ref. 12. We analyze the frequency de- 
pendence of the sound speed and damping in different re- 
gions. We shall then neglect the first term in the square 
brackets in (5.1) which is independent of the frequency and is 
a relatively small collisional correction to the adiabatic elas- 
ticity moduli. 

Low frequencies, wr(l. There are here several regions 
depending on the magnitude of the spatial dispersion param- 
eter x = ql = wl /s. 

1. When wrllnwrl <s/u one can put q = 0 in Eqs. (5.1) 
and (5.2) and we get for the speed and the damping 
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2. In this region where wr / lnwr / > s/v, but WT < S/U the 
change in the velocity As is described by the same Eq. (5.3), 
but the damping r is given by the expression 

In this region the damping due to the Stewart-Tolman effect 
turns out to be an oscillating function of the frequency with a 
slowly varying period ns/vr11n(wr/2) I. The oscillations are 
caused by geometric resonance in Rea(w,q) in the field of the 
inhomogeneous sound wave which arises due to the jumplike 
nature of the conductivity with a fixed jump length 21 lln(wr/ 
2) / . I 2  Similar oscillations exist also in the sound speed disper- 
sion but they have a small amplitude (-s/u) relative to the 
first term in (5.3). 

3. In the region of strong spatial dispersion, where 
WT > S/U, but w7-g 1 we have 

High frequencies, 0r,1. Here the sound absorption is 
given by the same Eq. (5.7), but the velocity dispersion is 
given by the formula 

In the figure we show the frequency dependence of the 
relative damping r in the case of most interest, when the 
parameter 

The quantity a characterizes the relative role of the 
Stewart-Tolman effect in comparison to the cross-deforma- 
tion interaction: i fa  > 1 these two mechanisms compete with 
one another. 

The region 1 of very low frequencies where the quantity 
r depends linearly on w and where the role of the inertial 
mechanism is negligibly small cannot be seen in Fig. 1. This 
is connected with the fact that for the chosen values of the 
parameter a the region 1 corresponds to wl/s< For 
higher frequencies up to wl/s-a the main contribution to 
the sound damping comes from the inertial mechanism. 
Here r initially increases proportional to w31n2wr and after 

FIG. 1. Calculated frequency dependence of the relative damping of longi- 
tudinal sound in a ID-conductor. The quantity f i n  units r, = Z ( m v /  
Ms) ( /A  l/2p01 )2 ;A,  = 0; along theabscissaaxiswe plotx = wl /s; for curve 
1--a = 10, v / s  = lo3; for curve 2--a = 4, u/s = 0.5X lo3. 

that one oscillation of r in the region 0.15 < wl /s < 0.25 is 
clearly visible. The fact that no further periods manifest 
themselves is explained by the fact that for s/v- al- 
ready in the second period 2 / ln(wr/2) =: 20 and the param- 
eter wl /s approaches unity and the amplitude of the oscillat- 
ing term in (5.5) becomes very small, - After that in 
the region wl /s > 1 the contribution of the inertial mecha- 
nism decreases as w-' and the absorption reaches a mini- 
mum 

mas 181 s rmin=z - - when o=a-. 
Mu pol 1 

This minimum is caused by the above mentioned competi- 
tion of the two damping mechanisms and can exist only 
when a 2 1. The absorption beyond the minimum reaches 
the linear dependence which is caused by the cross-deforma- 
tion mechanism. 

The role of the Stewart-Tolman effect leading to the 
oscillations o fT  (w) weakens as the quantity a2 decreases. As 
to the dispersion of the sound speed, for lA21 =: 1 and at low 
frequencies it is caused by the cross-deformation interaction 
and at high frequencies As/s is, generally speaking, deter- 
mined by both mechanisms for the electron-phonon interac- 
tion. 

We explain the physical nature of that part of the impu- 
rity absorption which is described by the term with lA I Z  in 
(5.2) and is not affected by spatial dispersion. This damping 
has a quanta1 character and occurs when the electron is scat- 
tered by a single impurity oscillating with the lattice absorb- 
ing at that moment a quantum &. The local character of 
such scattering makes it independent of the macroscopic 
scales of the electron motion in the crystal and, in particular, 
of the localization of the electron states in the ID-conductor. 
Just therefore there is in it no effect of the spatial dispersion. 
Such a treatment is also confirmed by a formal calculation 
which shows that the contribution to the corresponding cor- 
relator (4.9) is determined by the electron Green function for 
equal spatial arguments (because of the short-range nature of 
the impurity potential). At the same time the absorption pro- 
portional to A : in (5.2) is caused by multiple scattering by 
different impurities and thus depends on the localization and 
spatial dispersion effects. 
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We show that the condition (qa),gl is sufficient to ne- 
glect the incomplete screening of the direct deformation in- 
teraction. Indeed, the second term in (5.7) can be obtained 
from the following simple considerations. The relative ab- 
sorption rA due to the direct deformation interaction is as to 
order of magnitude equal to (2 - - ~ , q ~ a ~ )  

I h div z i  I * T V  ( E X )  - E P  (qa) ' OT rh= --- 
Mno31 ~ 1 ~ ( l f q ~ l ~ )  Ms2 If  q2L2 ' (5.11) 

An estimate of the absorption from the cross-deformation 
interaction is obtained from (5.11) if in that formula we re- 
place the quantityA by lA / / T  and neglect q21 in the denomi- 
nator (for the reason given above). Comparison of these two 
quantities gives the estimate 

q a 4 p 0 z 2  = ( a 2  ( p a )  ( a .  (5.12) 
l+q2Z2 I+ (qQ2 

For long-wavelength sound the unscreened remainder 
of the direct deformation interaction thus turns out to be 
negligibly small. 

6. CONCLUDING REMARKS 

We emphasize that the elasticity Eqs. (3.7) are suitable 
for any direction of propagation and arbitrary polarization 
of the sound in a three-dimensional crystal with one-dimen- 
sional conductivity. It is clear from those equations that the 
absorption and velocity dispersion of the sound depend in an 
essential way on the orientation of its wave vector and the 
polarization vector relative to the conducting filaments. The 
statement about the absence of a strong deformation interac- 
tion between the electrons and the sound in a 1D-metal is 
valid independent of the direction of propagation, and also 
when qlx. Indeed, that fact is a consequence of the disper- 
sion law being one-dimensional and the electron density n, 
being constant in the comoving reference frame K '. When 
longitudinal sound propagates along the conducting fila- 
ments or at angles of the order unity n, being constant is 
maintained by the Coulomb forces. If, however, longitudinal 
sound is propagating at right angles to the filaments, even 
though the electron plasma frequency turns to zero, the un- 
changing electron density is guaranteed by those forces 
which contain the electrons to the conducting filaments. 

We give a criterion for the validity of the neglect of 
three-dimensional effects when describing the interaction 
between the electrons and long-wavelength sound (the role 
of three-dimensional effects in the conductivity has been dis- 
cussed, e.g., in Ref. 6). Collisional absorption of sound by the 
electrons with a (due to three-dimensionality) weakly curved 
Fermi surface can be estimated using Eq. (5.1 1) in which we 
must replace ( 9 ~ ) ~  by 8 where the parameter 8-(p,/ 
P )-(mil /m, )'I2 characterizes the deviation of the shape of 
the Fermi surface from a plane (Pis a characteristic radius of 
curvature, m,, and m, are the longitudinal and transverse 

(relative to the x-axis) electron effective masses). In the case 
ofcollisionless damping the quantity (1 + q21 ,) in (5.11) must 
be replaced by ql. As a result we get the condition 

1 e2- 3 < - + qa, 
m, POL 

under which the effects of three-dimensionality are unim- 
portant in the electron-phonon interaction. 

We note finally that the possibility for an experimental 
observation, at sufficiently low temperatures, of the frequen- 
cy dependence of the sound absorption and speed obtained in 
the present paper is completely realistic notwithstanding the 
presence of a Peierls transition in many well known 1D-con- 
ductors. We draw in this connection attention to two facts. 
Firstly, among the quasi-one-dimensional organic conduc- 
tors there are substances in which such a structural transi- 
tion has not been observed experimentally down to the low- 
est temperatures. As examples we mention Qn(TCNQ ), and 
Adz(TCNQ ),, crystals with a rather high degree of internal 
disorder which, apparently, suppresses a Peierls transition. 
Secondly, even if there occurs a Peierls transition in a 1D- 
conductor, in the presence of impurities and at temperatures 
below the transition point (in the Peierls dielectric phase) the 
electron conductivity may have the same nature as in a 1D- 
metal with localized electron states. For instance, Larkin 
and Lee14 have shown that for a sufficiently weak potential 
for the scattering of electrons by impurities the soliton con- 
ductivity mechanism, characteristic for a Peierls dielectric, 
is replaced by a jump conductivity with electrons jumping 
between localized states; this is described by the Berezinskii 
equations. 
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