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Asymptotic expressions are obtained, within the framework of the concepts of a regular equiva- 
lent donor lattice, for the kinetics of hopping quenching, with account taken of the nonzero 
donor-acceptor distance. The results of a numerical calculation of the time evolution of the donor 
excited state with and without allowance for the structure of the material are compared at various 
values of the parameters of the theory. 

The hopping mechanism of energy transfer in an assem- 
bly of interacting donors and acceptors was proposed as an 
alternative to the diffusion mechanism in Refs. 1 and 2, 
where the concept of a regular equivalent donor lattice was 
used and the variation of the random instantaneous excita- 
tion-quenching rate was regarded as a Markov process. In 
later s t ~ d i e s , ~ - ~  in particular, account was taken of a "mem- 
ory" effect, i.e., of the possibility that an excitation can land 
repeatedly on one and the same site in the course of its wan- 
dering. The nonexponential kinetics of excitation outflow, 
due to the disorder of the donors, was also considered. The 
theoretical studies are of practical value, in particular, be- 
cause they can be used to deduce the interaction mechanism 
from the experimental data and to determine the micropara- 
meters of the donor-donor (C,,) and donor acceptor (CDA ) 
interactions. These are needed to calculate important mate- 
rial characteristics such as the luminescence quantum yield, 
the optimal active-impurity density, and others. 

The microparameter C,, , which characterizes the rate 
of donor-donor transfer, is usually determined from the sec- 
tion of the curve of stationary migrational quenching real- 
ized at long times, using asymptotic formulas that are valid 
at t + ~ .  This means, however, loss of the information con- 
tained on CDD in the entire curve of the decay of the donor S- 
excited state. In our opinion, the most consistent approach 
to the determination of CDD is to describe the experimental 
curve, within the framework of the corresponding theory, in 
the entire time scale and to determine C,, from the best 
agreement between theory and experiment. 

Assuming a regular donor arrangement, analytic ex- 
pressions were obtained in Ref. 8 that describe the time evo- 
lutions of the population in the case of the hopping mecha- 
nism of migrational quenching. These equations permit, in 
principle, determination of the microparameter CDD in ac- 
cord with the indicated scheme. They were obtained in Ref. 
8, however, assuming a zero minimum distance R, between 
the donor and acceptor, so that an infinite quenching rate 
was obtained at t = 0, making it difficult to compare the 
theory with experiment over the entire time scale. 

In the present paper, within the scope of the approach 
used in Ref. 8, we consider for a dipole-dipole interaction the 
kinetics of hopping quenching at R,#O, obtain approximate 
formulas for the quenching kinetics at characteristic values 
of the parameters of the theory, and demonstrate by numeri- 

cal calculation the accuracy of the derived formulas. For a 
primitive cubic lattice we compare the integral approach 
with that developed in Ref. 7 for the description of the decay 
kinetics of an excited donor state, with allowance for the 
actual structure of the crystal. 

We express the decay kinetics of an excited state of a 
donor system following S excitation in the form 

I ( t )  = I  (0) exp {-t/.tD-n ( t )  ) , (1) 
where 17 (t ) is the nonradiative-energy-transfer function and 
T, is the donor proper lifetime. The expression obtained in 
Ref. 8 for 17 (t ), in the case of the dipole-dipole transfer mech- 
anism that will be discussed below, is 

2 
IT ( t )  = - 3 n2na (cDAt0 ) y ; [ + m  ( ( : ) I h )  +dm ( ( : ) Ih )  

Here n, (n,) is the density of the acceptors (donors), 
T, = (+r3nD 2CDD ) -  ' is the most probable donor-donor 
transfer timeIv2 and represents the time of one excitation hop 
in an ordered lattice of donors with a certain average dis- 
tance between them, and 

is the probability integral.9 
The instantaneous quenching rate W (t ) is then 

uII ( t )  CDa 
w ( t ) = - - = n , ~ - n ( ~ , t ) d ~  dt R" 

where n(R, t ) is the instantaneous excitation density at a do- 
nor located a distance R from an acceptor.8 

It is impossible to obtain analytic expressions for 17 (t ) 
and W(t ) for a nonzero minimum donor-acceptor distance. 
We can, however, analyze their asymptotic behavior and in- 
vestigate the functions17 (t ) and W (t ) by numerical methods. 

The general expression obtained from (3) assuming 
R,+O is 
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where 

a= (to/.c,)'", .tl= (CDA~RO')  -'. 
At short time ( t ( ~ , )  as well as when the kinetic quenching 
stage2 is realized (a(l), we have from (4) at all values of the 
time 

W ( t )  ='l3nnACDA/RO3. (5) 

Obviously, in both cases (static and dynamic ordering) 
the densities of the donor excitations are the same at all do- 
nors. This follows automatically from the expression given 
in Ref. 8 for n(R, t ). We note that at t ( ~ ,  Eq. (5) is obtained at 
any ratio of T, and T,. The obvious reason is that the migra- 
tion does not "knock down" (but, on the contrary, enhances) 
the initial equiprobable excitation distribution realized 
when the sample is S-excited.' 

In the case T, = T, we get from (4) 

The agreement of one of the experimental W (t ) dependences 
obtained at different densities n, with that calculated from 
(6) is evidence of satisfaction of the relation T, = T,, and this 
can be used in the reduction of the experimental data. 

If the condition a )  1 is satisfied we obtain by expanding 
(4) in powers of l/a, we get at arbitrary time (accurate to the 
first term of the expansion): 

The expression for 17 (t ) takes in this case the form 

4 
ll ( t )  = - nnA (CDA.to 

3 

Letting ?,-to in (7) and (8) we obviously obtain Eqs. (3) and 
(2). 

Relations (7) and (8) describe the decay of the excited 
state of the donor in the entire time interval (provided that 

I / I ,  
FIG. 1. Temporary evolution of the excited state of the donors, calculated 
from Eqs. (2)--curve 1; (12)--curves 2,4,6; (4)--curves 3,5, 7, at param- 
eter values a2 = 100 (curves 2, 3), 1 (curves 4, 5), and 0.01 (curves 6, 7). 
Curve calculated from approximate Eq. (8) at a2 = 100 is coincident with 
curve 3. 

a )  1). Wenotethatwhereasthefunctionsl7(t )and W(t )arein 
the general case quite complicated, at Wf(t ) = l 7  "(t )we have 
an exact expression valid for all values of the parameters and 
of the time: 

Analyzing with the aid of (9) the W'(t ) curves obtained from 
the experimental data, we can also determine the parameters 
of interest to us. The figure shows the decay kinetics of the 
excited state of the donors at fixed values of n, , n,, CDA , 
C,, , calculated from Eqs. (2) (the result of Ref. 8), (4) (the 
exact integral expression that takes a nonzero R, into ac- 
count), and (8) (an approximate expression valid at a )  1). The 
factor n, (CDA T , ) ' ~ ~ ,  which is common to all the expressions 
used for D ( t )  and has the meaning of the relative "black 
sphere,"' was assumed equal to 0.1. The abscissa is the di- 
mensionless time t /T,. It can be seen that at the same values 
of nA , n, , C,, , C,, the decay kinetics depends strongly on 
R,. It can also be seen that the approximate equations (7) and 
(8) agree well within the range of their applicability with the 
exact results. At a2 2 lo4 the donor-excited-state decay 
curves plotted from the data of Ref. 8 and from Eqs. (4) and 
(8) are in almost complete agreement in a population dynam- 
ic range that reaches three orders of magnitude. At t ( ~ ,  and 
a )  1 we obtain from (4) 

4 
( t )  - - 3 nn, (CDAto)  '11 

This expression differs from the analogous expression of 
Ref. 8 (at t g ~ , ) :  
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We note that to analyze the experimental decay curves with 
the aid of (1 1) it is necessary to satisfy, besides the condition 
t(ro, also t)rl, whereas the use of (lo) does not require satis- 
faction of the last inequality. Information on C,, is obtained 
in this case by using the initial section t 5 T,, where the 
quenching processes are most strongly pronounced. 

It was proposed in Ref. 7 to describe the rate of the 
hopping quenching by the expression 

W ( t )  = %z INDA (Ri) n (Ri, t )  . 
A'D 

(12) 

0 

where n(Ri , t ) agrees with Ref. 8, WDA is the donor-acceptor 
interaction probability, and the summation is over the do- 
nor-sublattice sites (whose density is ND ). If the donors and 
acceptors are incorporated in one and the same sublattice, 
we have (12) 

W (t) = Y A  W D A  (Ri) n (Ri. t ) .  (13) 

where yA is the average acceptor density. By describing the 
experimental donor-excited-state decay curves with the aid 
of Eqs. (12) and (13), which take the actual crystal structure 
into account, we obtain good agreement between the theo- 
retical and experimental results.' 

Let us compare the results of the numerical calculation 
of the temporal evolutions of the donor-excited-state popu- 

lation, obtained by using the integral approach to the deter- 
mination of the function ZI(t ) from Eqs. (1) and (4) and with 
the aid of (12) and (13), for a primitive cubic lattice (see the 
figure). As expected, the difference between the decay curves 
is larger the larger the ratio rl/r0. This circumstance must be 
borne in mind if the experimental data are reduced with the 
aid of integral equations that do not take the geometry of the 
crystal lattice into account. 
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