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The frequency and angular dependences of the intensity of radiation emitted by an electron 
moving in a planar channel in a crystal is calculated. The angle between the direction of motion 
and the atomic chains of the channeling plane is only slightly larger than the critical angle for 
axial channeling. In this case the inhomogeneity of the channeling plane is most pronounced. The 
conditions for resonant transformation of the electron wave function on account of the inhomoge- 
neity is determined. It is shown that the changes in the frequency and angular dependences of the 
radiation from those in planar channeling in the one-dimensional interplanar-potential model are 
due to electron diffraction from the atomic chains of the channeling plane. 

1. INTRODUCTION 

This article is devoted to an investigation of the radi- 
ation of relativistic particles in a crystal in the case when the 
angle of incidence of the particle on the crystal is smaller 
than the planar-channeling angle relative to one transverse 
coordinate and somewhat larger than the axial-channeling 
critical angle relative to the other. This case can be regarded 
either as transitional between axial and planar channeling, 
or as planar channeling with account taken of the discrete 
character of the channeling plane. A particle moving along 
such directions feels strongly the inhomogeneity of the 
atomic plane and is scattered by the system of atomic chains 
of the channeling plane. Since the atomic chains are periodi- 
cally arranged, the scattered waves produce diffraction 
maxima. This behavior is most typical of a particle moving 
near axes with large indices (h, k, I ) .  Indeed, the Bragg dif- 
fraction angle is 8, - (h + k + I 2)1/2. On the other hand, 
the interatomic distance in the chain is 
d = ao(h + k + 1 2)1/2, and the critical axial-channeling 
angle is $ - d l 2  Therefore the ratio O,/$, 
- (h + k + 1 2)3/4, i.e., it increases with increasing recipro- 
cal-lattice vector H,,, . However, at low energies of electrons 
with a relativistic factor y z  1 to 10 the situation indicated 
can be realized also in motion near the principal axes of the 
crystal. Some features of the channeling of electrons under 
such conditions are noted in Refs. 1-3. In Refs. 4 and 5 was 
investigated the influence of the discrete character of the 
atomic chain on the axial channeling. 

This paper deals in detail with the resonant case, when 
the condition 

is satisfied. Here Ei(q) is the total energy of the electron in a 
planar channel at a level i of transverse motion and with a 
quasimomentum projection fiq on the channeling plane, 
g = (2rny/ay, 2m,/a,), a,, and a, are the periods of the 
atomic lattice in the channeling plane, and n, and n, are non- 
negative integers. The features of the electromagnetic radi- 
ation of the channeled electrons are in this case the follow- 
ing: the frequency-angle spectrum of the radiation changes; 
the intensity of the coherent bremsstrahlung and Pendello- 

sung radiation increases compared with their values outside 
the channeling region; Raman scattering sets in. By chang- 
ing the angle of incidence of the beam on the crystal near the 
condition (1) we can vary the radiation frequency. Investiga- 
tion of electron channeling in the indicated situation extends 
both the possibilities of controlling the radiation parameters 
and the possibilities of investigating the properties of the 
crystal. 

2. RESONANT RETUNING OF THE ELECTRON WAVE 
FUNCTION IN THE KINEMATIC APPROXIMATION 

The motion of a relativistic electron in a crystal is de- 
scribed by the equation6 

2EU (r) 
[ A  Y (r) = - k y  (r) ,  

where E is the electron energy, U (r) is the electrostatic poten- 
tial of the atom lattice, and k = (E - m;c4)/@c2. In the 
planar-channeling regime it is possible to separate in the po- 
tential U (r) the part due to the averaged potential Uo(x) of the 
atomic plane; this part is the zeroth term of the expansion of 
the potential in a two-dimensional Fourier series: 

&!+" 

where 

u,(x) = - J exp (-igp) dp, S 
S 

S = aya, is the volume of the two-dimensional unit cell. In 
the zeroth approximation, the motion of an electron in the 
planar-channeling regime is described by the equation 

[ A  - 2Ey:::) ] Y, (r) = - k 2 Y o ( r ) .  

The solution of (4) is 

where q, = [q, (k + x i  - q2)lf2), and u, (x) and x: are the 
eigenfunctions and eigenvalues of a Schrodinger equation 
with potential U,(x): 
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2Eu0 ] un (x) =xnzun (x) . [ F - h2c2 

The expansion coefficients c, (q) in (5) are determined by the 
continuity conditions on the interface (z = 0): 

where @ (r) is the wave function of the electron incident on 
the crystal. The first- approximation correction to the wave 
function in the perturbation-theory in terms of the potential 
U,(r) = U (r) - U,(x) satisfies the following iteration equa- 
tion: 

Using the solution of Eq. (7), the wave function takes in first 
order the form 

where 

u ,.,, = j urn*(.) U,(x) un (XI dx. 

It is known6 that the correlation of the different electron 
transverse-motion states vanishes at depths exceeding ap- 
proximately one period of the transverse oscillations. We 
shall therefore describe the state of an electron in the crystal 
by the number n of the transverse-motion level and by the 
two-dimensional quasimomentum fiq. Taking into account 
the finite width of the transverse-motion levels, we can then 
represent the wave function of the electron in the crystal in 
the form 

where r = r, + r, is the total width of the levels n and m. 
Thus, if the condition 

I qn+g I =qm ( 10) 

is satisfied, retuning of the electron wave function takes 
place. 

3. INTENSITY AND SPECTRUM OF THE RADIATION 

We shall examine the feature of the electromagnetic ra- 
diation from a channeled electron in the region of the reso- 
nance (10). The Hamiltonian of the interaction of the particle 
with the electromagnetic field is of the form 

1 
Hinf=- 7 i~ dr, 

where3 is the operator of the electron-current density, and A 
is the vector-potential operator, which is expressed in the 
following manner in terms of the operators for photon cre- 
ation (azA ) and annihilation ((;,,, ): 

here V is the quantization volume, x is the wave vector, w is 
the frequency, and e(*' is the photon-polarization vector. 

Using nonstationary perturbation theory, we obtain the 
following expression for the probability of the transition 
from the state (n, q) into the state (k, q'): 

Let the wave functions of the initial and final states be re- 
spectively 

Wnq (r) =uneiqP+Ugmnum (5) exp [i(q+g)pl,  (134 
Ykq. (r) =uk exp (iq'p) . (1 3b) 

The probability amplitude is then given by 

The matrix elements of the interaction Hamiltonian can be 
represented in the form 

M A  (nq, kq') = (kq' I H~!,:'~' I nq) 

here a,, = - f i (~:  - ~ ; ) / 2 m ,  n , ,  is the number of photons 
with wave vector K and polarization e"), K,, is the projection 
of K on the (y, z) plane, and (y,z),x,, = Ju:xu,dx is the tran- 
sition matrix element. The energy and momentum conserva- 
tion laws lead to the following form of the frequency-angular 
dependence of the radiation, determined by the first term of 
(14) 

and by the second 

where 

n=xc/o, cos €lo=qn/qn, p=hq/mc. 

The resonance condition (10) for the coupling of the 
states (nq) and (mq + g) can be rewritten in the form 

so that at exact resonance Eq. (17) takes the form 

o2 (n) =Qmk/ (I-@ cos 8 , ) ,  (19) 

where cose, = (q + g)n/lq +gin. Substituting (14) and (15) 
in (12) and integrating with respect tow we obtain the follow- 
ing expression for the probability of emission into a unit solid 
angle in a transition between states with wave functions (13a) 
and (13b): 
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where 

Pn, (9, x )  

- - eZ1xnkl2Qnk3 cos2 (P (COS 0-pZ) +sin2 cp (I-!3 cos 0)2 
2nAc3 (1-p cos 0)' 

, (21) 

and the angles 8 and e, are respectively the azimuthal and 
polar angles of the wave vector x in a coordinate frame with z 
axis directed along the vector q. The matrix element U,,, 
takes on the maximum value when m = n and n is an even 
number, since the maximum of U, (x )  is reached at x = 0 .  For 
example, if the potential of an individual atom is approxi- 
mated by the Coulomb screened potential U,(r) 
= - Ze2exp( - pr) /r ,  then U,(x) takes the form 

ZeZ 1 
U,(x) =- - 

nS (pZ+g2) "2 

exp (-- (p2+g2)'ia1x1). (22) 

At (q + g/2).g = 0 the intensity of the lines corresponding to 
transitions from even levels will thus be higher in the direc- 
tion of the diffracted beam than from odd levels. This cir- 
cumstance is of interest for the identification of the radiation 
spectra of channeled particles. 

The frequencies w , and w ,  [see ( 16) and ( 18)] coincide if 
the wave vector of the photon satisfies the condition 

& ( ) = 'gxoi~ 
Qnn rnw 

The radiation intensity will increase by interference in the x ,  
direction. The right-hand side of (20) will then acquire a term 
corresponding to the imaginary part of the matrix element 
U,,,; this part differs from zero only in noncentrosymme- 
tric crystals. In fact, the wave functions u,  (x)  can always be 
chosen real and U:,, = U,,, , if U ( r )  = U ( - r) .  In centro- 
symmetric crystals the increase of the intensity in the x,  
direction at resonance will be determined by the ratio of the 
second term of (20) to the first at x = x,. 

Let now k = n. Then the first term of (20) vanishes and 
the second yields, according to (17) and (18),  the radiation 
intensity at the frequency 

oz (n) =Qmn/ [I-A (q-tg) nlrncl . 
A normal Doppler branch is excited if a,, > 0 and an anom- 
alous one at am, <O. This radiation is due to collisions 
between the electron and the atomic chains of the channeling 
plane, and constitutes bremsstrahlung when channeled. 
Since the maxima of the wave functions u,(x)  are reached 
near the atomic planes, the intensity of the channeled brems- 
strahlung will exceed the unchanneled in an approximate 
ratio 

The second circumstance that leads to an increase of the 
bremsstrahlung intensity on channeling is that r in (20) is 
determined by the width of the transverse-motion levels, and 
not by the collision time r , ,  as is the case outside the chan- 

nel. The condition r g r ,  is always satisfied in the considered 
energy region. 

Allowance for the fact that the final state of the electron 
can also be near a resonance of the type (18) does not alter 
substantially the radiation picture described above. An ex- 
ception is the onset of the interference maximum (23),  when 
n = m. In this case the final state will certainly be near a 
resonance point. This case will be investigated in detail in the 
last section. 

4. TEMPERATURE DEPENDENCE OF THE RADIATION 
INTENSITY 

The square of the matrix element U,,, in Eq. (20) for 
the radiation intensity must be averaged over the thermal 
vibrations of the atoms. Taking into account the deviations 
of the radius vectors ri of the atoms from their equilibrium 
position r,, the expression for the Fourier component of 
Ug(x)  can be written in the form 

1 
n 

ug(x)  = FJ ~ ( r )  BXP (-igp) dp= C br(x-r,) erp (-igp.). 
S i= i  (24) 

where 

UO (x-xi, p) exp (-igp) dp, 

N is the number of unit cells in the channeling plane (we 
assume for simplicity a primitive unit cell), and 2 = SN. 
Taking (24) into account and assuming that the vibrations of 
the individual atoms are independent, we can represent 
( I Ugm, i 2 ) ,  in the form732 

( 1 Ug,,,,,12)~h=hrZe-@u2 1 Ju,,,* (x) u,, (x) (ug(x-xa) )dx I 2  

urn* (x) U, (x) ( U g  (x-xO) ) dx , I 'I (25) 

where u is the amplitude of the thermal vibrations. The first 
term in (25) reaches a maximum at zero temperature and 
falls of with rising temperature. The second term of (25), 
which is proportional to N, on the contrary, vanishes at zero 
temperature and increases with rise of temperature. The re- 
lation between the individual terms in (25) depends also on 
the crystal-lattice symmetry. Thus, in centrosymmetric 
crystals, where U,(r) = Uo( - r) ,  the first and last terms in 
(25) vanish if the levels urn (x) and u, (x )  have different parity. 
On the other hand, the second term depends little on the 
crystal symmetry if the amplitude u of the thermal vibra- 
tions is close to the average distance ( x ~ ) " ~  between the 
electron and the plane. Thus, in centrosymmetric crystals 
the nonvanishing of the bremsstrahlung intensity is due to 
the second term in (25). In noncentrosymmetric crystals the 
terms in the square brackets cancel each other and the main 
contribution to the intensity of the bremsstrahlung is made 
by the first coherent term in (25). 
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5. DYNAMIC SCATTERING 

The intensity of the new radiation lines at resonance is 
inversely proportional to the squared widths of the trans- 
verse-motion levels. The level width is determined by several 
factors: the radiative lifetime of the particle at the level, the 
finite length of the crystal, and the band broadening. Assum- 
ing that the main cause is the finite size of the crystal (this 
assumption is natural for the energy range considered by us) 
we find that the intensity of the indicated radiation is pro- 
portional to the square of the crystal length. This depen- 
dence is the consequence of the kinematic approximation 
used by us. Allowance for dynamic effects in electron dif- 
fraction leads to a splitting of the energy levels of the trans- 
verse motion near the resonance. This eliminates the indicat- 
ed dependence of the intensity on the crystal length I, if 
L >Lo ,  where Lo is the extinction length determined by the 
dynamic interaction of the diffracted waves. 

Let us determine the form of the wave functions of plan- 
arly channeled electrons with allowance for their diffraction 
by the atomic lattice of the channeling plane. We seek the 
solution of Eq. (2)  with potential (3)  in the form 

Substituting (26) in (2)  we obtain the following system of 
equations: 

We confine ourselves for simplicity to the case of two-wave 
diffraction and to a resonance of the form (n,q)+(n,q + g).  In 
this case the system (27) becomes 
d 2 ~ o l d ~ 2 + V o ~ o + V i ~ g = ~ Z ~ ~ ,  d2qg/dx2+Voqg+Viqo=x,Zqg, 

(28) 
where 

Vo=-2mUolf i2 ,  Vi=-2mU,lfiz=-2mU-g/fiz, 
xZ=q2-k2, xgZ= (q+g)' -k2.  

Rewriting the system (28 in the form 

where cp  + (4 = cpO(x) + cp,(x), cp - (x )  = cpO(x) - cp,(x), we 
see readily that each level splits into two in the potential 
Uo(x). Thus, if Uo(x) = ax2  and UJx)  = Dx2, at exact satis- 
faction of the Bragg conditions (q + g/2)g = 0 the frequen- 
cies o = (2a/m)'I2 are replaced by o , = [ 2 ( a  + P ) / m ]  ' I 2 .  

Let u,, (x )  be the orthonormalized eigenfunctions of the 
system (28). The general solution of Eq. (2)  with potential (3)  
can then be written in the form 

where the coefficients c, are obtained from the boundary 
conditions and q$ = k + x i .  For example, if Uo(x) and 
U, (x)  are of the form 

the functions even in x can then be written, for zero deviation 
from the Bragg angle [ (q  + g/2)-g = 01, in the form 

gY yAi) = [ n d ( a + x , : )  ] - ' I2 cos pnlx sin - exp ( i q n l z ) ,  
2 

gY 
(31) 

yy) = [nd(a+?l,: ) 1-"' cos pn2x cos - exp ( i q . 2 ~ ) ~  
2 

where p = (Vo IO+ V1 - x2)lt2,  and the eigenvalues x,,, ,  
are determined respectively from the conditions 

The functions odd in x are similar in form. When the condi- 
tion Vo - x o )  Vl  is satisfied, the approximate solutions of 
(32) are 

where x ,  are the solutions of (32) with Vl = 0. 
The radiation intensity is determined by the value of the 

matrix element (nilexp( - ixr)j lmj) [see ( 1  l ) ]  The matrix 
element will depend on the parity of the initial and final wave 
functions with respect to the transverse coordinates (x,y) .  

The energy of momentum conservation laws lead to the 
following expression for the angular dependence of the fre- 
quency 

where x, = xcose, sine, = g/2q. 
The matrix elements of interest to us have, for a transi- 

tion Y ',"-!PIT) between nearest states of like parity in x,  the 
form 

where uni = (a + x;  1)-112cos,unix. 
The frequency-angular dependence of the radiation is 

given according to (33) and (34) by the expression 

2U,/f i  (l+x,a) 
a =  

I-pn cos 0, cos 0 ' 

Thus, only they projection of the transition current density 
differs from zero, and consequently the radiation is due to 
diffraction of the electron in the channeling plane and has 
the same properties as Pendellosung radiation of a diffracted 
electron.' 

The matrix element of the operator [exp( - i?t.;)lj on 
going from the state !P [Eq. (3 l ) ]  into a state with wave func- 
tion 

gY y,,!"= [nd(a+x,:  ) ] - I h  sin p,,x sin - exp ( iqm*z)  
2 

is of the form 
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,. 
(ml l  exp (-ixr) j,1 n1)=0, 

(mil exp (-ixr)?xlnl)=ieQnl, m18 (qnl-qml'-xz), 
( n ~ l  I esp (-ixr)?,Inl>=-ieul,x,xn,, m16(q,l-qm,'-r.,). 

Consequently, the transition between levels of like parity in y 
and of unlike parity in x corresponds to interference of tran- 
sitions of the type (23) between discrete levels of transverse 
motion of channeled particles. The presence of diffraction 
manifests itself only in an insignificant change of the radi- 
ation frequency. In fact, according to (33) and (34) we have 

UI 1 ) ]  / (1-8n cos 0, cos 0 ) .  o= Q n m f  - ------- [ h (I+,., i+zn,a 

where On, = - fi(xi - x i  )/2m. 
The last type of possible transitions corresponds to ra- 

diative coupling of levels with unlike parity both in x and in 
y. Consider, for example, the transition Y If'+Y E'. The cor- 
responding matrix elements are 

,. 
(ml  lexp (-ixr)?,~ n2)=(mll  exp (-ixr) j ,  In2)=0, 

ex, 
<mi I exp (-ixr)jvl n2)= -.zn2,m1 9 6  (qnz-qmi'-xz). 

m 2 

From the very form of the matrix elements it follows that 
Raman emission will be observed in this case. In fact, the 
only projection of the transition current at x-g = 0 is a pro- 
duct of matrix elements of the transition with respect to the x 
andy coordinates. The expression for the frequency a,,,, is 

The change of frequency compared with the kinematic ap- 
proximation is thus determined by the diffractive splitting. 

6. CONCLUSION 

Our calculations of the angular and frequency depen- 
dences of the radiation intensity under the conditions indi- 
cated in the Introduction have shown that the differences 

from the case of planar channeling in the model of a one- 
dimensional interplanar potential are due to diffraction of 
the electron from the atomic chains of the channeling plane, 
which results in a Doppler branch of radiation with a fre- 
quency maximum along the propagation direction of the dif- 
fracted electron wave. In the directions defined by the condi- 
tion (23), this branch interferes with the primary one. 
Localization of the electron wave function near the atomic 
planes increases the intensity of the coherent bremsstrah- 
lung and Pendellosung radiation. The increase of the 
bremmstrahlung intensity is due also to the fact that the 
number of coherently scattering atoms is now determined 
not by the collision time (i.e., by the longitudinal momentum 
transfer), but by the reciprocal width of the transverse-mo- 
tion levels. The distinguishing feature of the Pendellosung 
radiation produced as a result of dynamic diffraction of the 
electrons is that dynamic splitting takes place now of each of 
the levels in the channel. Therefore, in electron transitions 
between dynamic sublevels of one level there can occur in the 
channel, besides the purely Pendellosung radiation, also Ra- 
man radiation in transitions of electrons between dynamic 
sublevels of unlike parity and belonging to different levels in 
the channel. 
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