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The interaction with a metal substrate is an important delocalizing factor in quasi-2D systems. 
Under certain conditions, a zero-charge situation can arise: As the dimension of the system, L, is 
increased the initial increase in the resistance t gives way to a decrease. This behavior results from 
an instability of the zero-component tensor o model with respect to the inclusion of the symme- 
try-breaking gradient terms which result from tunneling into the substrate. The new "charges" 
associated with these terms increase under transformations of the renormalization group, chang- 
ing the sign of the Gell-Mann-Low function dt /d( at large values of L. 

I. INTRODUCTION 

Noninteracting electrons in a disordered two-dimen- 
sional ( 2 0 )  system are localized if there is any, disorder, no 
matter how slight. This hypothesis, advanced by Abrahams 
etal.,' has been confirmed by a variety of approaches (see the 
review by Altshuler et al.'). The localization results from an 
interference upon the multiple scattering of a quantum-me- 
chanical particle by the same center with a probability which 
tends toward unity in the limit t+co in systems of dimen- 
sionality d ~ 2 .  Any effects which cause a phase relaxation of 
the wave function will suppress the localization, since only 
repeated scattering events in a time t shorter than the phase 
relaxation time r, will contribute to the interference. The 
time r, is usually determined by inelastic processes and is 
proportional to T P P .  At a sufficiently low temperature T, 
the finite dimensions of the system are known to be a factor 
that limits r, . 

In this paper we show that under certain conditions the 
interaction with the metal substrate can be an important de- 
localizing factor in real quasi-2D systems. In this case, tun- 
neling between the 2 0  and 3 0  bands gives rise to an addi- 
tional contribution to r; I .  The effect of a metal substrate, 
however, is not simply one of reducing the phase relaxation 
time r, . There is a completely different delocalization mech- 
anism, which is unrelated to changes in this time. It turns out 
that interference effects accompanying tunneling into the 
substrate do not cause a delocalization even in the limit 
r, +co . On the contrary, the initial decrease in the 2 0  quan- 
tum diffusion gives way to a logarithmic increase at a suffi- 
ciently large value of 7,. 

From the mathematical standpoint, this effect stems 
from an instability of the zero-component tensor o model 
with respect to the inclusion of symmetry-breaking gradient 
terms. A nonlinear tensor o model3 was proposed by 
Wegner4 in an effort to describe quantum diffusion. In this 
model, the diffusion modes are described by a functional of 
the (2N X 2N ) tensor field Q; the interaction of these modes is 
taken into account by the restriction Q = 1. Following the 
replica m e t h ~ d , ~  we should set N = 0 in the final results. The 
breaking of the symmetry between replicas which was pro- 
posed by Wegner4 is important for the description of diffu- 
sion. 

The functional analyzed in Ref. 4 was derived rigorous- 
ly in Refs.6-8 with a different symmetry of the tensor field Q. 
This approach has the advantage over the standard crossing 
technique in that both the average over impurities and the 
integration over the electron variables which vary rpaidly 
over space are carried out in that stage of the derivation of 
the functional, in which the lower-order terms in the expan- 
sion in the hydrodynamic parameters klog 1 and wrg  1 are 
taken into account (Io = U F 7  is the mean free path). 

We will taken the approach developed by Efetov et 
to derive a functional which contains, along with the ordi- 
nary terms, some symmetry-breaking gradient terms which 
arise in higher orders of the expansion in o r .  This functional 
is renormalizable in lowest order in the dimensionless resis- 
tance t and in the new charges rassociated with these terms. 

When tunneling into the volume occurs, small nucleat- 
ing charges r grow in the renormalization process, changing 
the sign of the Gell-Mann-Low function dt / d l  at a large 
value of the logarithmic variable = ln(r, /r). The initial 
increase in the resistance t thus gives way to a decrease to the 
zero-charge asymptote t = (26 )-I. In this asympotic limit, r 
increases to - 1. 

We derive the equations of the renormalization group 
for two cases. The first corresponds to scattering by a ran- 
dom potential relief. In the second case, the potential scat- 
tering is supplemented by a weak scattering by magnetic im- 
purities or an interaction with a weak magnetic field. 

The qualitative picture drawn above is common to these 
two cases. In the case of potential scattering, the dimension- 
less resistance reaches its maximum t,,, (1 at values r- 1, 
and r remains - 1 even in the limit 6-W. This circum- 
stance implies the qualitative applicability of the equations 
of the renormalization group derived in first order in the 
expansion in r .  The results on potential scattering have been 
reported in part in a previous brief comm~nication.~ 

In the magnetic case the delocalization effects are much 
stronger, since the localization in the magnetic case is 
weaker if there is no interaction with the volume. The resis- 
tance t may reach its maximum at values r- t,,, ( 1, so that 
it is legitimate to restrict the analysis to the lowest order in t 
and r in the derivation of the equation of the renormaliza- 
tion group. 
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2. DESCRIPTION OF THE MODEL 

We consider a 2 0  electron gas with a diagonal disorder 
which is interacting with an ideal 3 0  system. The Hamilton- 
ian is 

8- ~ e . , o Z i a J + g ~ - "  (ai+epetp"+~.a. ) + E (p) cp+cp. 
Z,P P 

(1) 
The operator aif creates an electron at the site R, of the 2 0  
lattice; the operator a,+ creates a volume electron with a 
momentum p and an energy E (P); and g is the interband 
transition constant (the hybridization constant). We assume 
that the overlap integrals E~ fall off rapidly. The position of 
the levels E ~ ,  is assumed to be a random quantity with a 
Gaussian distribution: 

The restriction to a diagonal disorder in (1) is not important. 
Incorporating a nondiagonal disorder would lead to simply a 
redefinition of the constants, as in the case of a purely 2 0  
disordered system.' 

The only formally important restriction in (1) is the as- 
sumption that the volume band is ideal. It is this assumption 
which will later allow us to integrate over the volume varia- 
bles and to derive an effectively 2 0  functional. It is physical- 
ly justified to ignore the disorder in the volume since, in 
constrast with diffusion in 2 0  systems, the quantum diffu- 
sion in a slightly nonideal 3 0  system can be arbitrarily in- 
tense. 

We wish to emphasize that we are interested in the dif- 
fusion of electrons through a 2 0  lattice. The coupling with 
the ideal volume in (1) does not lead to a "shunting" of the 2 0  
system, as it might appear. Even at observation times much 
longer than the characteristic time for transitions from the 
surface band to the volume band the diffusion through the 
lattice is finite. 

The interaction with the volume in ( I )  has been written 
in the simple single-particle approximation. We will show 
that even if we ignore correlation effects in the electron-elec- 
tron interaction the coupling with the volume can cause 
qualitative changes in the kinetic properties of the 2 0  disor- 
dered system. 

The diffusion of electrons through the 2 0  lattice is de- 
scribed by the correlation function 

Here ( . . . ) means an average over random distribution 
(2) .  The retarded (or advanced) Green's function G f ( A '  is 
conveniently written as a path integral over classical anti- 
commuting fields, as in the procedure of Efetov et al.? 

G ~ , ~ ( ~ )  (E*) 

= i  x ( R . ) ~ ( R ~ )  exp (is,) DX (R) Dx (R) DX ( P ) D ~  (P) 

Here S ,  is found from Z - E , Jlr (the operator Jlr repres- 
nets the total number of particles, and E, = E f w / 2  f iO) 

by replacing the operators by the corresponding classical 
Fermi fields: 

a i + + ~  (RI) , a,+x (Rt), cP++x (p) , cp+x (p) . 
Since the action functional S ,  is quadratic in the vol- 

ume variablesx (p) and x(p), we can carry out the integration 
over these variables in expression (4). As a result we find an 
effectively 2 0  model with the action 

The action functional (5) differs from the action in a purely 
2 0  disordered model by the presence of the additional term 

Here k is the 2 0  momentum, and p=(k, p, ). We emphasize 
that the inclusion of this term by no means reduces to a 
renormalization of E~ in (9 ,  since its odd part, 

U-(k) ='/, [U(E+,  k) -U(E-, li)], 

contributes to the difference S+ - S- . We will need the val- 
ue of U -(k) at I k - k, I (1, ', where I, is the unrenorma- 
lized mean free path, and k, is the Fermi momentum of the 
electrons in the 2 0  band. Under the condition 
k,l; '(p; - k ;)-I#  1 (p, is the Fermi momentum of the 
electrons in the 3 0  band) we can restrict the analysis to a 
calculation of U -(k,) .  For a quadratic dispersion law for the 
electrons in the volume, E (p) =p2 /2m,  we easily find from 
(6) 

g U- (k,) =Q=w - k,Zm2(kpZ-pp2) -'la 
3-c 

ppck,. (7b) 

The conditionp, > k, in case (7a) means that the Fermi sur- 
faces of the 2 0  and 3 0  bands, which would be a cylinder and 
a sphere in the isotropic case, intersect. In this case [in con- 
trast with case (7b)l there can be an interband tunneling of 
electrons with the Fermi energy E,. It was assumed in the 
derivation of (7) that the Fermi energies in the 2 0  and 3 0  
bands are the same, since the system is near equilibrium in 
the low-frequency limit of interest here. 

3. DERIVATION OF THE FUNCTIONAL OF THE ZERO- 
COMPONENT TENSOR o MODEL WITH THE SYMMETRY- 
BREAKING GRADIENT TERMS 

To average correlation function (3) over a random dis- 
tribution of levels of the 2 0  electrons, we use the replica 
method of Refs. 5 and 6. As a result of this averaging and a 
transformation from the site description to a continuous de- 
scription, the correlation function becomes 
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X(r ,  r'; a )  

xai (r) Xai (r') xP2 (I') yo2 (I) eisDxD% 
-- - 

The replica indices written as subscripts here (Greek letters) 
vary from 1 to N (we are to set N = 0 in the final results); the 
(block) superscripts a, b = 1,2 specify the orgins of the fields 
from GR and GA , respectively; and any repeated tensor in- 
dex implies a summation. The action functional is given by 

Here ~ ( k  ) aqnd k, are the dispersion law and Fermi momen- 
tum of the electrons in the 2 0  band (all energies are reckoned 
from the bottom of the volume band), and r = k $/4r2vA is 
the unrenormalized mean free time, where v is the electron 
state density in the 2 0  band, and A is the width of distribu- 
tion (2). We can then write 

[see (7)]. To simplify the notation, we have converted from 
the double set of fieldsx, tt to the spinor field $ in Eqs. (9) and 
(10) (Ref. 6): 

The fields $ and $ contain rapid spatial oscillations. The 
diffusion modes correspond to slow spatial variations. It is 
thus convenient to transform "' in Eqs. (8)-(10) to the tensor 
field Q which is the adjoint of the bilinear combination $ e $. 

The functional of the tensor field Q(r) was derived in 
Refs. 6, 8, and 10. We offer an alternative derivation here, 
which we belive to be more natural; this alternative deriva- 
tion has the methodological advantage that the slow vari- 
ation of the field Q (r) is exploited only in the last step of the 
derivation. This derivation is in the spirit of that of Ref. 7, 
but there several difficulties arose in the functional intergra- 
tion over intermediate Bose fields. 

We write correlation function (8) in the form 

2 (r, r'; a )  = - 
6" (h) k2 'P{ 6h ((r )Sh (r') [ -1 a=or=o 1 ' 

where the generating functional is 

Here 

It follows from (1 1) that $ e $ is a Hermitian quaternion-real 
(2N X 2N) matrix. The field h (r) is conveniently chosen to be 

also Hermitian and quaternion-real. The functional deriva- 
tive in (12) is evaluated in terms of independent quaternion 
components. If the correct coefficient of the exponential 
function in (8) is to be obtained, the matrix structure of h (r) 
must be 

where T are quaternions, ro is the ( 2 x 2 )  unit matrix, 
r, = - ia, (aj are tha Pauli matrices, j = 1,2,3), and ho and 
h, are real N X N matrices. 

We multiply the numerator asnd denominator in (12) by 

where Q (r) is a (4N X 4N) Hermitian field, and we use the 
linear substitution 

Q-Q- (2/nv) $@$+th. (16) 

The small displacement (16) causes the contributions of (10) 
and (14) to functional (13) to cancel out, so that the action 
becomes bilinear in $ and $, and the field h is the adjoint of 
the field Q: 

After calculation the functional derivative in (12) we find the 
following expression for the correlation function: 

2 (r, r'; a )  = - (;; ) 2  

J Sp [Qi2 (r) (ro+it.) Q" (r') (rO+irr) ] e-'"'DQ 
X 

-2nv~6 (r-r') . (I81 

The "free-energy" functional in (1 8) can be written 
5cv 

F[Q]=- J d2r spQ2(r)-ln J exp{iS[Q, $])DxDx, (I9) 
8 t  

where 

and So[$] is given by (9). Since $ e $ and h are quaternion- 
real Hermitian matrices, only the quanternion-real part of 
the Hermitian field Q contributes to the action in (17), (20). 
The field Q will thus be assumed to be a Hermitian quater- 
nion-real field: 

Q=Q~%=Q.= 1 TI .+ I QF {QZ,j), j=0,1,2,3. (21) 
Correlation function (18) is essentially the same as that 

derived in Refs. 6 and 8. We should emphasize, however, 
that our derivation did not require that the field Q (r) vary 
slowly. Another important point for the discussion below is 
the presence of a S-function in (18); this function was not 
considered in Refs. 6-8. 

It was shown in Refs. 6-8 that in the long-wave limit 
and under the condition1' 

780 Sov. Phys. JETP 59 (4), April 1984 V. E. Kravtsov and I. V. Lerner 780 



the only important contribution to correlation function (18) 
is made by the gap-free modes which satisfy the transversa- 
lity condition 

Q"(r) = I ,  Sp Q=O. (23) 

The minimum of the free energy in (19) is reached on a class 
of fields Q, which are constant over space and which satisfy 
condition (23) [if the symmetry-breakingz' A term in (9) is 
ignored]. We write the free-energy functional (19) as an ex- 
pansion indeviationsfrom the minimum, SQ (r) = Q (r) - Q,, 
where Q (r), like Q,, satisfies condition (23): 

Here ( . . . ) means average with functional (20), in which we 
set Q = Q,. 

Expectation values of the products of the $fields in (24) 
are calculated from Wick's theorem; only coupled diagrams 
are taken into account. We recall that in the calculation of 
Gaussian integrals over the fields $ and $ the integration 
should actually be carried out over the adjoint Fermi fieldsx 
and x (these fields were originally written as expansions in 
anticommuting Grassmann variables, for which integration 
operations have been defined6,82'1). Expressing $ and $ in 
terms of the original fieldsx and x ,  and carrying out a Gaus- 
sian integration, we find 

-i<$ (r) 8% (r') ) ='/'G (r-r') . (25) 

In addition to (25), we have some other nonvanishing qua- 
dratic expection values: 

In (26) each element of the (2N x 2N) quaternion matrix G is 
multiplied (on the left or right) by the quaternion 
r2 = - iu,. Here G is the Green's function of Eq. (20) with 
Q = Qo: 

E=E ( k )  -&p=vp ( k - k a ) .  

In a description of quantum diffusion it is sufficient to 
derive the explicit form of the functional (24) for fields Q (r) 
which vary slowly over space. For this purpose, we should 
carry out a hydrodynamic expansion in the parameters kl, 
and WT in (24), where k -' is the characteristic dimension for 
the spatial variations of the field Q (r), and I, = v,r is the 
unrenormalized mean free path. In lowest order in these pa- 
rameters, the first two terms of the expansion in (24) contri- 
bute to the free energy. 

Equations (25) and (26) can be used to express the sec- 
ond-order expectation value as the difference between two 
terms with the following structure: 

Sp (GGQGGQ) -Sp(Gz2~GQT.~,G~GQ). (28) 

Making use of the known properties of quaternions and the 
circumstance that SQ is a Hermitian, quaternion-real ma- 
trix, we easily conclude that the two terms make identical 

contributions to the expectation value. Since the condition 
for a minimum, (23), was derived by ignoring the symmetry- 
breaking term in (9), a term linear in SQ also appears in ex- 
pansion (24). As a result we find the following expression for 
the free-energy functional: 

nvD 
F =-I d2r{Sp(VQ)'+yo Sp AQ}. 

8 (291 

Here D = u;T/~ is the unrenormalized diffusion coefficient, 
and yo = 2iGD - '. Functional (29) (with G=w) has been sug- 
gested in a paper by Wegner4 for describing 2 0  quantum 
diffusion; it was derived in Refs. 6-8. 

To describe the effects of the interaction with the vol- 
ume, we will also calculate the contribution to the free-ener- 
gy functional which is quadratic in GT. For this purpose we 
need to consider, in addition to the expansion of the Green's 
functions in (28) in Gr, the variations of third and fourth 
orders in SQ = Q - Q,. The corresponding calculations 
show that the cross terms QQ, cancel out. The following 
symmetry-breaking terms are added to functional (29) [these 
terms are also calculated under condition (23)l: 

B = V ~ Z ~ D  J d2r{y, s p  AQ ( v ~ ) ~ + p l ~ - ~  s p  (AQ) 

-r, Sp(AVQ) '+r2  Sp ( A Q ) ' ( V Q )  "+r3 S p ( A Q V Q ) " .  (30) 

The unrenormalized values of the coefficients in (30) are 
y1=3i@t, p=p,==-- ( G T ) ~ ,  

The hydrodynamic limit of model (1) is thus described by 
free-energy functional (29), (30), in which the field satisfies 
conditions (21) and (23). 

If the system also contains magnetic impurities, or if the 
system is in a weak magnetic field, then fluctuations of the 
quaternion components Q, and Q, are suppressed in the lim- 
it of sufficiently small momenta, as was shown in Refs. 6 and 
8. The modes corresponding to field fluctuations Q = Q,r, 
+ Q,T, remain Goldstone modes. The model is thus de- 

scribed by functional (29), (30) under condition (23) in the 
magnetic case; the Hermitian matrix Q in condition (23) con- 
sists of 4N2 complex numbers.,' 

4. APPROXIMATION OF FREE DIFFUSIONS 

In calculating the correlation function (18) with the 
functional (29), (30), we need to choose a parametrization of 
the field Q, which belongs to the manifold (21), (23). Follow- 
ing Ref. 6, we write Q as 

Q ( r )  = U e ' ( r ) A U ( r ) .  (32) 

Condition (21) holds for the field Q if U (r) is an arbitrary 
quaternion-real unitary matrix, i.e., if UeSp(2N), where 
Sp(N) is a symplectic group. The block-diagonal matrices 
(UeSp(N) X Sp(N) commute with the matrix A and thus do 
not convert it4' into another matrix Q. Such matrices are 
eliminated from (32) by the following choice of parametriza- 
tion6: 

where B is an arbitrary (N x N ) quaternion-real matrix. Rep- 
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resentation (32), (33) is also valid in the magnetic case. Here 
Uis a unitary matrix, while B is an arbitrary field of complex 
numbers. 

The approximation of free diffusions corresponds to an 
expansion [with the help of (32), (33)] of all the matrices Q in 
correlation function (18) out to terms quadratic in W. After 
the corresponding Gaussian integrals have been calculated, 
the correlation function can be written as follows (for N = 0): 

2nv 
3 (k, o )  = ,- ~ V T .  

4k2-io-iQ-BT- (34) 

The effective diffusion coefficient 5 in (34) is 

The term P d 2  results from the change in the unrenorma- 
lized diffusion coefficient in (29) in second order in LIT. 

When (31) and (35) are used, the correlation function of 
the zeroth approximation, (34), is the same as the correlation 
function derived by summing the ladder diagrams in the 
crossing technique with the same accuracy in &T. Conserva- 
tion of the number of particles requires that the exact corre- 
lation function by proportional to w-' at k = 0. Because of 
the constant term in (34) [i.e., the 6-function in (18)], the 
correction pa  (car)' cancels out in the denominator in (34). 
The number of particles is thus conserved at D = 0, with the 
same accuracy with which the correlation function is de- 
rived. When there is tunneling into the volume [case (7a)], 
the number of particles in the 2 0  band is not conserved; this 
situation is described by the 0 term in correlation function 
(34). 

We will be interested in the renormalized values of the 
coefficients in (34). As will be shown below, the renormaliza- 
tion of the coefficientp is determined to a large extent by the 
shortwave (k- 1, ') contributions to functional (29), (30), so 
that it is not possible to determine the behavior o f 8  upon a 
change in the characteristic dimension by the renormaliza- 
tion-group approach. In contrast, the renormalization of all 
the gradient terms is determined exclusively by long-wave 
fluctuations of the field Q (r). 

5. DERIVATION OF THE EQUATIONS OF THE 
RENORMALIZATION GROUP 

How do the symmetry-breaking gradient terms in (30) 
affect the properties of the model in the renormalization- 
group approach? To single out the "fast" diffusion modes, 
we use the method proposed by Polyakov,13 which was used 
in Refs. 6 and 8 to analyze a tensor a model with functional 
(29). 

The unitary matrix U (r) in (32) breaks up into the pro- 
duct of a "fast" part U,(r) and a "slow" part 3 ( r ) :  U = u,C, 
where the matrix U, can be written in the form in (33). Using 
[A W] + =A W + WA = 0, we then find from (32), (33) 

where the fast matrix is 

Qo=A exp ( Wo) . (37) 
From (36) we find the following convenient representation of 
VQ: 

VQ=U+( [Qo, A1 -+VQo)Q, (38) 

where 

A=VBO+=-OVCC. (39) 

The functional 9, which describes the slow fluctuations, 
can be found by integrating over the fast variable Q,(r): 

B[QI =-In S exp{-T[Q])DQo. (40) 

H e r e 3  = F + @ [see (29) and (30)], while the slow field 0 (r) 
is 

p=a+nu. 
To simplify the calculations we can, following Ref. 8, 

immediately choose the gauge of the matrix A, setting 
A" = A22 = 0. We might note that the expression for VB 
[see (38) with Q, = A  ] does not contain A" or A22. 

The functional integral in (40) can be evaluated through 
an expansion in the dimensionless resistance ?, where 

This expansion corresponds to an expansion in W, of the 
matrix Q, in (37) in the functional F [ Q ] .  To calculate 9 in 
first order in t it is sufficient to use the approximation qua- 
dratic in W, (the terms linear in Wo do not contribute to the 
functional, since Wo varies rapidly). Expressions of three 
types which are quadratic in W, arise in each of the gradient 
terms in the functional F [ Q  1. The three types of expressions 
(Yo,  F 1 ,  and 3,) contain zero, one, and two matrices A, 
respectively. A special role is played by the functional F, 
which is obtained in this manner from the functional (29): 

This functional does not contain the slow field at all, and it is 
adopted as the zeroth-approximation functional. 

As in our original functional, (29), (30), we consider in 
g [ o ]  terms no higher than quadratic in vQ. Here it is suffi- 
cient to retain in the expansion of the exponential function in 
(40) in 3 - F, only the terms which are quadratic in A, 
which are then averaged with a weight factor exp( - F,). 
This average will be denoted below as ( . . . ),. 

In contrast with F, in (42), the terms @, found from 
functional (30) contain both the fast variables Wo and the 
slow variables 0 ,  so they cannot be taken into account in the 
zeroth approximation. These terms, which do not depend on 
gradients of the slow variable G, give rise to terms which are 
quadratic in VQ during the expansion of the expontential 
function in (40) in an arbitrary nth) order in y ,  and r (and in 
the lowest order in t ), because of expectation values of the 
types 

( ('Do) "F2>o, (('Do) "-"Dz)o, ( ( ' D o )  n-2(@i)2 )~+  
In zeroth order in y, and r [i.e., when only functional (29) is 
taken into account], the contribution to 9 is 

where 9, stems from a term in expression (37) which does 
not contain W,, and it reproduces in the slow variable Q the 
gradient term in functional (29). In (43) we have used the 
circumstance that we have Fl = 0 when A" = A22 = 0. 
Here 
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In first order in the small parameters y, and r ,  the con- 
tribution to 9 which is quadratic in VQ is given by 

The terms so reproduce in the slow variables the form of 
functional (30). 

As an example, we describe a method for renormalizing 
t h e r ,  term in functional (30). In the approximation quadrat- 
ic in Wo, @ (TI) is 

We have not written out the terms of @,( r , )  which are linear 
in A, since [see (45)] they do not contribute to the functional 
in first order in r,. 

To evaluate the expection values in (45) we should ex- 
press the matrices W, in (46) explicitly in terms ofB and B +, 
working from (33). For potential scattering the matrices B 
consist of N real quaternions: 

B=Bj~ j ,  B+=BjT.tj+. 

In this case the expectation value which are quadratic in 
B are, in terms of the parameter i in (41), 

2n? 
(Bag,{ (ki) BIIv,j (-k2) ) O= 7 6k+~Jap6~~6ij. 

ki 
(47) 

In the magnetic case, in which the matrices B consist of N 
complex numbers, the only nonvanishing expectation values 
are 

Here we are assuming that the fast field B (k) is nonzero only 
intheregion/Zko<k<ko, whereO<A< 1, and k o - l c ' i s a  
cutoff parameter. Expection values of the products of the 
matrices B can be calculated with the help of expression (47) 
or (48) and Wick's theorem. To take the logarithm in (40) is, 
as usual, equivalent to considering only the coupled dia- 
grams in expression (45). 

As a result we find the following expressions: 

Here = In A -'. The coefficient a in (49) depends on the 
symmetry of the matrix Q: For quanternion-real matrices 
(for the case of potential scattering) we would have a = - 1, 
while for complex matrices (the magnetic case) we would 
have a = 0. 

It can be seen from (49) that the integration over the fast 
variables not only leads to a renormalization of the coeffi- 
cients in functional (29), (30) but also generates a new contri- 
bution to the functional [the last term in (49)l. Correspond- 

ing additional contributions are generated upon the 
renormalization of @ (r,) and @ (r3) in functional (30). 

The following functional is thus added to functional 
(291, (30): 

The last term in (50) is nonzero only in the magnetic case, in 
which the Hermitian matrix Q consists of 4N2 complex 
numbers. In the case of potential scattering, in which the 
matrix Q consists of 4N real quaternions, this term is identi- 
cally zero. 

The theory described by functional (29), (30), (50) is ren- 
ormalizable. Each r - T pair is renormalized independent- 
ly (without reference to the other pairs). From expressions of 
the type in (19) we find the equations of the renormalization 
group, which turn out to be identical for the TI - TI and 
r, - 7, pairs: 

The vertex T, in functional (50) is nonzero only in the 
magnetic case. In this case, in which we have a = 0, the 
equations of the renormalization group for the pair T, - T3 
are also the same as (51) and (52). In the case of potential 
scattering, on the other hand, we are left with a single inde- 
pendent equation for the renormalization of r 3 :  

Renormalization of the vertex y, in functional (30) leads to 
the equation 

This equation differs only in the sign of its right side from the 
equation from the renormalization of the vertex yo of func- 
tional (29) obtained in Refs. 3 and 6. In the limit of interest 
here (N = O), the vertex y,l -' is not renormalized. Also in 
this limit, the charges r grow in magnitude, telling us that 
the a model is unstable with respect to the inclusion of sym- 
metry-breaking gradient terms. For any natural number N, 
all the charges in Eqs. (51)-(54) vanish, so that there is no 
instability with respect to their inclusion. 

Since the unrenormalized values of the coefficients y, 
and r are such that the condition - /r / holds, we also 
need to take into account the contribution of second order in 
the coefficient y, to the functional (40). This contribution is 
given by the expectation values 

At N = 0, the expectation values (55) contribute only to 
equations of the type (52) for the vertices T2 abnd ?;: We 
need to add - (2 + a)d /4 to the right side of the equation 
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for T2 and - (1 + a ) d / 4  to the right side of the equation for 
T3. 

Renormalization-group equations were derived in Refs. 
3, 6, and 8 for the gradient term of functional (29). In the 
magnetic case, the Gell-Mann-Low function vanishes in 
lowest order in i, so that we need to consider the next term in 
the expansion in (Refs. 2, 3, and 8). For the system under 
consideration here, the vertices r and 7 also contribute to 
the renormalization of functional (29), as can be seen from 
expressions of the type in (49). As a result, the equation of the 
renormalization group for the dimensionless resistance 2 be- 
comes (N = 0) 

df-i/dg=a-i/2f ( l + a )  -a (r,-r,-r,) 
+2 (Ti-F2) +2f  ( i + a ) .  (56) 

Unfortunately, it is not possible to derive a renormal- 
ization-group equation for the gradient-free0 term in func- 
tional (30). The reason is that expectation values of the types 
(@,), and (so), contribute to the renormalization of the 0 
vertex. Expectation values of this type diverge quadratically 
at the upper limit; i.e., they are proportional to the square of 
the cutoff parameter, k ,?J -1, 2.  The order of magnitude of 
the contribution of these terms of N, (or *J: 1; 2), i.e., on 
the same order as the original coefficient of the gradient-free 
term, PI ,  [see (30) and (3 I)]. The renormalization of the 
vertex thus depends strongly on the cutoff parameter k,; i.e., 
it is determined by the contribution of shortwave fluctu- 
ations, which cannot be described by the renormalization- 
group method. 

6. ANALYSIS OF THE RENORMALIZATION-GROUP 
EQUATIONS 

We begin the analysis with the magnetic case. Equation 
(56) with a = 0 is conveniently rewritten 

Introducing the corresponding combination r = T, 
- r2 + r 3 ,  we find the following equations (for N = 0) from 

Eqs. (51) and (52), taking the contribution of the y, vertex 
into account: 

Here we have taken it into account that by virtue of (54) we 
have y,({) = y,i/io, where yl=y,(g = 0). The unrenorma- 
lized value of the dimensionless resistance (41) is 

% -" o=t (E=O) = ( ~ E ~ T )  -'<<I. (60) 

The vertices T arise only in the course of the renormaliza- 
tion. The initial conditions for Eqs. (58) and (59) with (3 1) are 
thus 

To=O, ro=P0/2, ~,~=9/3a.  (61) 

It is easy to see that even in the initial stages of the 
renormalization (while i has essentially not yet changed) the 
equality r = T becomes established, and both charges in- 
crease in proportion to m,Boexp(2io{). We thus see that if 

FIG. 1. The dimensionless resistance versus the logarithmic vari~ble 
4 = In A - I .  In the case of potential scattering we would have - t, I, 
while in the magnetic case we would havego-min (to-' l n l r j ~  -{  

0, > 0 the sign of the Gell-Man-Low function (57) changes at 
sufficiently large values of{. As a result, the initial growth of 
t (6 ) gives way to a zero-charge asymptotic behavior (Fig. 1): 

Under the condition 

we have tmax (1. It can be seen from (57) that the maximum 
of i corresponds to 7 = tmax/4; i.e., condition (63) is also a 
sufficient condition for the use of therexpansion. In asymp- 
totic expression (62), the quantity r (and 7) tends toward 
unity (Fig. 2). 

If 0, < 0, the sign of the Gell-Mann-Low function in 
(57) does not change, so that the incorporation of t h e r  terms 
does not cause qualitative changes of any sort. For a purely 
2 0  system (6%~) we would be dealing with precisely this 
case. Incorporating the volume states in case (7b), in which 
there are no real transitions to the volume, leads to only a 
slight renormalization of the frequency w ,  so that the diffu- 
sion falls off montonically (as it does in the purely 2 0  case). 
The zero-charge situation (0, > 0) described above prevails 
if the Fermi surfaces of the 2 0  and 3 0  bands intersect, and it 
becomes possible for electrons to tunnel into the volume 
[case (7a)l. 

We turn now to the case of potential scattering. The 
equations of the renormalization group are, with a = - 1 
and N = 0, 

FIG. 2. The charges associated with the symmetry-breaking gradient 
termsversus thelogarithmicvariableg = In /i -'. 1-Potential scattering; 
2-magnetic case. 
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Here r = TI - r2 and i= = 7, - T2. We have ignored the 
term r, in (64), since in the case of potential scattering the 
magnitude Ir31 decreases [see (53)l. The initial conditions 
for Eqs. (64)-(66) are given in (60) and (61), but we should 
substitute a different value for To, namely - 3/4 Po, into 
these equations. 

As in the magnetic case, T and i= are coupled even in the 
initial stages of the renormalization: T = 2 F  
= C ( l  - The proportionality coefficient is C = 2/ 
3( r0  + d / 4 )  =Po. Consequently, as in the magnetic case, 
r (f ) is positive ifPo > 0 (despite the opposite sign of the un- 
renormalized value of To). The qualitative behavior of i (f ) 
and r (f ) is the same as in the magnetic case (Figs. 1 and 2). 

Interestingly, the zero-charge asymptotic behavior 
which 2 (f ) reaches in the casePo > 0 is precisely the same as 
the zero-charge asymptotic behavior in the magnetic case, 
(62). The same asymptotic behavior in a magnetic field has 
been derived for a purely 2 0  disordered system with a Cou- 
lomb interaction." 

The primary distinction from the magnetic case is that 
the Gell-Mann-Low function in (64) vanishes at = 1/2, 
i.e., at the boundary of the range of applicability of the r 
expansion. At f)i; I, the parameter r tends toward the 
asymptotic value r = 3/2. This result indicates that the r 
expansion remains applicable at least qualitatively in the 
case of potential scattering. 

We recall that the effective diffusion coefficient 5 in 
(35) consists of two parts: 

D= (2n2vT) -' ( I+I '+) ,  (67) 

where r+ = rl + r2 + r3 [and where we have discarded a 
term yli -I, which remains constant during the renormaliza- 
tion according to (54)l. In the nonmagnetic case, as in the 
magnetic case, the quantity T+(l )  is proportional to r (f ) 
even in the initial stages of the renormalization. In the case of 
potential scattering, the two contributions to the diffusion in 
(67) are comparable in magnitude even near the minimum of 
D, and they remain comparable in the asymptotic limit 
f > i,- I .  In the magnetic case, the additional contribution to 
the diffusion becomes important only in the asymptotic re- 
gion (62). 

What are the physical consequences of the results de- 
rived by the renormalization-group approach? The resis- 
tance i (ff ), where ff is that .value of the parameter 
f = In A -' at which the renormalization process is topped, 
has a physical meaning. This stopping occurs when the diffu- 
sion modes cease to be Goldstone modes (i.e., at Dk :A -6) 
or when the finite size of the system becomes important 
(A ko-L -I). At T = 0 we thus have 

Ef=min {'/z ln ( a ~ )  - I ,  ln ( L / & ) } .  (68) 

At T #O, the quantity ff is determined by temperature- 
dependent-inelastic scattering13: ff ( T  ) - I ln(Tr) 1. The t (6 ) 
dependence (Fig. 1) is actually a dependence on lf (T) as long 

asff ( T )  is smaller thanff in (68). At lower temperatures, the 
T dependence of the resistance dissapears. With w = 0 and 
L = co, the temperature dependence reaches saturation at 
ff (T)-ff ((n ) = 1/2ln((nr)-'. If ff ((n ) is greater than the 
value at which the resistance t reaches its maximum (Fig. I), 
this maximum may also be manifested in the temperature 
dependence of the resistance. 

7. CONCLUSION 

Can the effects predicted here be observed experimen- 
tally? If so, it will be of fundamental importance to prevent a 
shunting of the resistance of the 2 0  system by a conducting 
substrate. 

A shunting results from the penetration of the electric 
field into the volume even if there is no direct contact 
between the current-carrying electrodes and the substrate. 
The shunting effect is described formally by the correlation 
function 4 j, j, >, which, along with the correlation func- 
tion ( j, j, ), contributes to the surface conductivity in ac- 
cordance with the Kubo formula (the operators j, and j, are 
the volume and surface current densities). This contribution 
is proportional to /(n (w + i/r,)-'1, where l(n I is the tunnel- 
ing frequency (7a), and r, is the mean free time of the elec- 
trons in the substrate. This contribution diverges in the limit 
a-0, T ~ + w .  

This formal divergence, however, has no bearing on the 
effects discussed above. The density correlation function 
( p, p, ) (which is coupled to only the single correlation 
function < j, j, ), by virtue of the Einstein relation) remains 
finite in the limit rb -+a. The possible zero-charge decrease 
in the resistance with the temperature is thus totally unrelat- 
ed to the shunting effect of the substrate. 

In a real situation (with a nonideal substrate and a finite 
value of T, ), the shunting contribution proportional to lar, I 
is finite and can be ignored if the tunneling frequency (n is 
sufficiently low. In the calculation of the correlation func- 
tion ( p, p, ), on the other hand, the finite value of rb leads 
to only small corrections - ( E ~ T , ) - ~ .  It is thus completely 
legitimate to ignore the fact that the volume is not ideal in a 
description of surface diffusion. 

Experimentally, shunting can be suppressed by separat- 
ing the conducting film and the conducting substrate by an 
insulating barrier (by depositing a film on an oxidized metal, 
for example). Let us calculate the tunneling frequency in a 
three-layer system of this sort. The hybridization constant 
[see (1)] A 312e~p( - d /A ), whered is the thickness of 
the insulating layer, and A is the characteristic tunneling 
length (on the order of 1 A). The quantity (n in (7a) is thus 

I fiQ I -gZn (v,fi)-'-exp (-2d/h) . I eV. 

Here n - lo1* cmP2 is the electron density in the 2 0  band, 
and vF - lOcm/s. Consequently, with an insulating layer 
only a few angstroms thick, the parameter Orb is small even 
for ultrapure metal substrates. On the other hand, the tun- 
neling effects which depend logarithmically on (nr may be 
important even at very small values of (n. 

Experimentally, tunneling effects may be manifest, in 
particular, as a saturation of the temperature dependence of 
the resistance. At sufficiently low temperatures (below lK), 
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one ordinarily observes a logarithmic increase of the resis- 
tance with decreasing temperature. This temperature depen- 
dence disappears when the temperature decreases to the 
point that the phase relaxation time determined by tempera- 
ture-dependent inelastic-scattering processes14.2 becomes 
shorter than the phase relaxation time determined by the 
effects of the finite size of the system and the tunneling into 
the substrate. The tunneling effects outshadow the effects of 
the finite size of the system if IO I >uF2r/L 2 .  Adopting 
7 -  10-l4 s and L - 1 mm for an estimate, we find that this 
inequality holds for an insulating layer with a thickness 
d ~ . i o ~ - i 0 - 2 o A .  

It would be particularly interesting to examine the con- 
ductivity of a rather dirty metal film (with E,T not too large) 
in this three-layer system. In this case we may see at 

a maximum in the temperature dependence of the resistance 
associated with the maximum in the t (( ) dependence (Fig. 1). 

The effects discussed here are single-particle effects and 
do not depend on the statistics, so that the results derived 
here may be qualitatively applicable to the quantum diffu- 
sion of arbitrary surface excitations. The most interesting 
systems (from the standpoint of a study of the effect of the 
volume) are those in which it is possible to study surface 
diffusion directly. The surface diffusion of excitons in molec- 
ular crystals, for example, can be detected by measuring the 
emission from these excitons at molecular traps (see the re- 
view by Agranovich15). In such systems, the band of surface 
excitations is not spatially distinct from the volume band, so 
that interband transitions should have an extremely impor- 
tant effect on surface diffusion. 

We are deeply indebted to V. M. Agranovich, who 
called our attention to the role played by substrate effects in 
a description of quantum diffusion, and to V. I. Yudson for 
many useful discussions throughout this study. We are deep- 

ly indebted to K. B. Efetov, N. A. Efremov, A. G. Mal'shu- 
kov, and V. I. Rupasov for useful discussions of the results. 

''Condition (22) is equivalent to the condition ( A  /E,)'( 1, where is the 
spread of the levels in distribution (2), corresponding to a slight diagonal 
disorder in (1). 

"Then terms lowers the symmetry group of the action functional (9), (10) 
from Sp(2N) to Sp(N) X Sp(N) [Sp(N) is the symplectic group]. 

"Taking the effect of the magnetic field on the volume states into account 
leads to only some unimportant and small renormalizations in U, [See 
Eq. (6); these renormalizations are on the order of ( e H / m c ) ~ ,  -'I. 

4)This means that Sp(N) X Sp(N) is an isotropy group of manifold (23); i.e., 
these conditions detrermine a quaternion Grassmann manifold Sp(2N )/ 
Sp(N) X Sp(N) (Ref. 12). 
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