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Possible steady and time-varying nonequilibrium states of an electron-hole plasma heated uni- 
formly by interband optical absorption are analyzed in the two-temperature approximation. A 
possible dependence of the gap width on the electron and hole temperatures and on the charge- 
carrier density is taken into account. Under certain conditions the steady state of the plasma is 
unstable, and self-oscillations arise in the electron and hole temperatures and in the carrier den- 
sity. The conditions corresponding to this instability are found. When the relaxation times of the 
carrier energy are related in a certain way to the characteristic time for electron scattering by 
holes, two stable steady states and a single unstable state arise in this system. The system may thus 
operate as a flip-flop. 

5 1. INTRODUCTION 

Vladimirov and Gorshkovl have analyzed the onset of 
spontaneous oscillations in an electron-hole plasma, using a 
dc power supply. In the present paper we analyze the non- 
equilibrium states of a plasma which arise when a plasma is 
heated by interband absorption of light. We assume that the 
light intensity is high enough to make the electron and hole 
densities n andp considerably higher than their equilibrium 
values (and therefore to satisfy the condition n z p ) .  We fur- 
thermore assume that we can use the concepts of electron 
and hole temperatures T, and T, (the corresponding criteria 
are well known2g3), but that the electron and hole gases are 
nevertheless nondegenerate. The positive-feedback mecha- 
nism which is responsible in particular for the possible self- 
oscillations of T, and T, , consists of a dependence of the gap 
width E, and of the effective masses m, and m, on the den- 
sity and temperatures of the charge carriers. Another impor- 
tant factor is the density dependence of the characteristic 
time for energy exchange between electrons and holes. 

To simplify the problem we assume a uniform excita- 
tion. This is of course a rather restrictive assumption for the 
conditions in which we are interested here; generally speak- 
ing it would be valid only for sufficiently thin films. Never- 
theless, it does appear to bring out the essential features of 
the problem. We might also note that if the period of the self- 
oscillations is short enough our problem may not apply to 
the entire sample (which may be thick) but only to a surface 
layer in which all the significant light absorption occurs 
[specifically, the oscillation period must be short in compari- 
son with the characteristic times for the diffusion of particles 
and energy tl  = yP2D -' and t2 = y-2x- ', where y, D, and 
x are the absorption coefficient for the light, the ambipolar 
diffusion coefficient, and the electron (or hole) thermal diffu- 
sivity, respectively]. 

We denote by Rr  and g the rates of interband recombin- 
ation and the optical generation of electrons and holes. The 
recombination kinetic equation for the case of interest here 
can then be written 

where 

g=vyJ, R,=ccnZ. 

Here Y is the quantum yield, J i s  the photon flux density, and 
a is the interband recombination coefficient (the recombina- 
tion may be radiative or radiationless). To avoid unnecessary 
complications we assume that a and Y depend on only the 
lattice temperature To, but not on T,, , Tp , or n (this assump- 
tion means, in particular, that we are ignoring the possible 
collisional recombination). For the optical absorption coeffi- 

'cient, on the other hand, we 

Here q = 0 and q = 3/2 correspond to direct and indirect 
optical transitions, respectively; yo " (h - Eg)"2 + is the 
absorption coefficient calculated neglecting the dependence 
of the parameters of the energy spectrum on T,, T,, and n; 
and m and E, are the corresponding values of the reduced 
effective mass of the electron and hole and the gap width 
(minus the energy of the phonon emitted during the absorp- 
tion of the light). E,* and m* denote the renormalized values 
of the corresponding properties. Their dependence on T,, 
Tp, and n may result from, for example, an interaction of 
charge carriers with each other and with phonons. This de- 
pendence was studied in Refs. 4 and 5, in particular, for the 
case of a nondegenerate gas under equilibrium conditions 
(T, = T, = To). Those papers used perturbation theory, 
however, which would hardly be justified under the condi- 

5 2. BASIC EQUATIONS tions of interest here. It thus seems more convenient to use 
the phenomenological equation 

In the problem as formulated here we should use the 
recombination-kinetics equation and energy-balance equa- E,*=E,[I-$(Tn, T,, n )  l ,  (4) 

- ~ 

tions for the electrons and holes. where 
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$=an (T,/T,) ~ ' + a ,  (T,/T,)q"+bn~, (5) 

and a,, a,, b, p, q', and q" are numbers. These numbers are 
characteristics of the energy spectrum which are just as fun- 
damental as the gap width or the effective masses. In princi- 
ple, these numbers could be derived theoretically, but unless 
we use perturbation theory the problem is no simpler than, 
for example, that of calculating E, "from first principles." 
For the time being it is more convenient to treat these quanti- 
ties as parameters to be determined experimentally. The lat- 
ter approach might prove less hopeless than it appears at 
first glance, since the density and temperature of the charge 
carriers can be measured independently (by optical methods, 
for example). For our purposes it is sufficient to note that in 
the absence of small parameters the numbers a, and a,, 
which are dimensionless, should be on the order of unity. If 
the ratios (T, - T,)/T, and (T, - T,)/T, are small, an equa- 
tion of the type in (4) could easily be guessed, as we will now 
show. Indeed, under equilibrium conditions (at low carrier 
density) we have the known empirical formula 

E, ( T O )  =E,, o (1-aTo), 

where E , ,  corresponds to the limit T,-+O. If there is a small 
deviation from the electron equilibrium (under conditions 
such that we can use the two-temperature approximation), it 
would be natural to use the formula 

E,'=E,(T,) {l-a,(T,-To)lTo-E,(T,-T,)IT,-En*) 
=E, ( T o )  (I+Z,+a,) (1- (a,T,lTo+apTplT,+bn~)), 

a,, ,=a,, p(a,+ap+i)-f,  b=6 (a,+a,+i) - I .  

In the case of large deviations from equilibrium, these argu- 
ments of course lose force and become merely suggestions. 

A few comments are in order regarding Eqs. (4) and (5). 
First, both a, and a,, on the one hand, and b, on the other, 
may depend on To. The numbers q' and q" may be either 
positive or negative. The first case arises under the condi-5 
tions assumed in Ref. 5 (where q' = q" = 1/2), while the sec- 
ond arises under conditions to which the results of Ref. 4 
apply. Furthermore, according to Ref. 4 and 5, the numberp 
seems to lie between 1/4 and 1 (see the Appendix). 

Second, Eq. (5) simplifies slightly: Repeating the calcu- 
lations of Refs. 4 and 5 for the case T, + T,, we easily find 
that these quantities, just as n, generally do not enter in $ as 
separate terms. For the discussion below, however, this 
point is unimportant, since we are interested primarily in the 
case T, % T, . Furthermore, the dependence of E ,* on n or on 
Tn and T,, is important only in the regions T, z To and 
n z n ,  = (g~a )1 ' 2 ,  respectively (the generation rateg, corre- 
sponds to the absorption coefficient yo). 

Third, expression (4) can be meaningful only under the 
condition < 1 [see the discussion following Eq. (1 3) below 
for more details]. 

Fourth, under the conditions q' = q" = 1, T, = T,, 
and bnP( 1, the right side of (4) converts into the expression 
proposed by Van Vechten and W a ~ t e l e t . ~  This circumstance 
should not assigned any great importance, however, since 
Van Vechten and Wautelet were dealing with the thermal 
rather than optical gap width. The optical gap width, how- 
ever, should also depend on T,,  T,, and n, as can be seen 

from perturbation-theory calculations, for example. 
Fifth and finally, we should not be confused by the cir- 

cumstance that the first two terms on the right side of (5) do 
not vanish in the limit n 4 :  The two-temperature approxi- 
mation itself can be justified only if the carrier density is 
sufficiently high. We note in this connection that our'ulti- 
mate results remain qualitatively the same when we choose a 
different form of the function 

IJi= [a, (TnlTo)  q'+ap (T,ITo) q"l (nln,)  P .  

By virtue of (2)-(4) we can write 

Here we are assuming that fiw > E,. 
The energy-balance equations are (we are expressing 

the temperatures in energy units) 

Here R,, R, , and R, are the rates at which energy is trans- 
ferred from electrons to holes, from electrons to the lattice, 
and from holes to the lattice; G, (G,) is the energy acquired 
by electrons (or holes) from the light wave per unit time per 
unit volume. According to Ref. 7, we have 

where E is the dielectric constant of the lattice, and L is 
the Coulomb logarithm. Strictly speaking, this logarithm de- 
pends on Tn , T,, and n but since Eq. (7) has an exact meaning 
only at L% 1 we may ignore this dependence, treating L as a 
constant. 

Furthermore, for strain scattering of energy by acoustic 
phonons we haves 

n~,,,=8"my:~ E:,, ( r ~ ' f i ~ ~ )  - ' n ~ ? , ,  (T,,,-T~), (8) 

where En (E,) is the strain potential for the electrons (holes), 
andp is the crystal density. This energy relaxation mecha- 
nism is dominant both below and well above the threshold 
for the production of optical phonons. We will consider this 
mechanism exclusively below, ignoring the comparatively 
narrow energy interval, slightly above the threshold for the 
production of optical phonons, in which the emission of 
these phonons is substantial (in principle, this interval might 
not be reached at all). 

Finally, we have 

where A, and A, are the fractions of the energy which are 
transferred to electrons and phonons, respectively 
(A, +A, = 1). We will restrict the discussion below to the 
case in which the electron and hole have different masses; we 
will assume, for example, m, gm, . It is easy to show that for 
direct transitions we would have A, /A, = m, /m, , while for 
indirect transitions (and under the condition m, (m,) we 

772 Sov. Phys. JETP 59 (4), April 1984 V. L. Bonch-Bruevich and L. W. Ky 772 



would haveA,/A, = 2mp T, /p,, 2, wherep,, is the quasimo- 
mentum transferred to phonons. In the former case we 
would have A, )A,, i.e., A, z 1. The situation is the same in 
the case of indirect transitions if 2mp T,, bpi,. 

At this point it is convenient to introduce dimensional 
variables: 

From (4') and (9) we then have 

where 

the coefficients a, and a, are found by multiplying a, and 
a, by Eg(& - Eg)-', whilep is found by multiplying b by 
E, (h - E, ) - ' (g,Ja)P". 

So far, the only method which has been developed for 
finding the explicit dependences of the effective mass on the 
electron and hole temperatures and on the carrier density is 
to use perturbation theory. This approach is not very reliable 
in the situation of interest here. We will accordingly take a 
phenomenological approach, simply discarding from (12) 
the factors with the effective masses and treating a,, a,, and 
b as simply parameters which are not necessarily the same as 
those in Eqs. (4) and (5)'; we will correspondingly ignore the 
temperature dependence of the effective masses in Eqs. (7) 
and (8). As we mentioned earlier, the quantities a, and a, are 
not necessarily small, but they could hardly exceed unity. 
Furthermore, expression (13) itself, like (5), could be mean- 
ingful under the conditions q' > 0, q" > 0, and p > 0 only in 
limited intervals of the temperature and the densities, since 
we are working from the condition E, > To. If E, 5 To (and 
this situation itself might be of some interest), the electron 
and hole gases cannot be regarded as nondegenerate. The 
behavior of the function $(x, y, z) under the condition 
E, 5 To (or in the limit Eg+O deserves a special study. We 
will restrict the present paper to a very simple approxima- 
tion, assuming that in the limit x - +  w and/or y-+ a,, and zP 
-+a, the function $, which is positive, has an upper bound 
($($, ), and its derivatives $:, $; and $; are nonnegative. 
- According to Eq. (5) and the relationship betwen $ and 
$ specified above, the parameter $, must satisfy the condi- 
tion 

(E,-To) (Ao-E,) - I .  (13') 

Equations (I),  (6a), and (6b) take the following form in 
terms of the new variables: 

2"-Y) - zx'" (x-  1) zi+zi=- 
T n p  ( ~ p n f  YPP)'  T n  

+ €,, (14) 

We see from (1 8) that a situation corresponding to the condi- 
tion rp < 7, is quite probable, and it is this situation which 
we will be discussing below. 

A frequently encountered situation is 

T,l zo2-zz l - L ~ ~ - Z ' C , p ,  z-'T,, Z- 'Tp.  (21) 

If the condition (h - Eg)/To 2 1 also holds, we can use the 
adiabatic approximation, treating z as a slowly varying 
quantity. We can therefore begin with a "truncated" version 
of system (14), (15), treating z there as some arbitrary given 
number. 

5 3. SlNGULARlTlES OF THE TRUNCATED SYSTEM OF 
EQUATIONS 

We begin by showing that infinity is absolutely unstable 
in this case. The truncated system of equations is 

~ = Z T , , ~ - '  (x -y)  (xpn+ypp) - % - ~ ~ - ' y " ~  ( y - I )  +z-'Gp 

Multiplying the first and second equations in (22) by x and y, 
respectively, and summing the results, we find the following 
in the limit X-+W and/ory-+ w (we are using the arguments 
of52): 

This proves our assertion of instability. It is easy to see that 
this assertion also applies to the complete system (14)-(16). 

The singularities in the finite part of the x, y phase plane 
are determined by the equations 

P(x,y)=O,  Q(x ,y)=O.  (24) 

The solutions of these equations, x, and y,, determine the 
steady-state electron and hole temperatures. It follows from 
(23) that all the singularities in the finite part of the plane can 
be circled by a limit cycle without any points of tangency; all 
the integral curves which intersect the cycle are directed in- 
ward. It follows that the number of singularities must be an 
odd number; if there is a single singularity then it would have 
to be a node or a focus, as expected, while if there are three 
singularities then one will be a saddle point and the two oth- 
ers will be nodes or focL9 

Equations (24) can be solved easily in the case of a slight 
heating, in which case we can set 

where under the conditions g(1 and 741,  and we can ignore the 
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dependence of ??, and Gp on x and y. We find 

Under the conditions rP ( r , ,  T,, the condition for a slight 
heating reduces to the inequality 

z-'(.cn/7,) ( h a - E g ) / T o ~ l .  (27) 

The appearance of the factor (fw - Eg)/To should not 
be surprising: It is the relationship between To and the differ- 
ence between the photon energy and the gap width which 
determines the heating of the electron gas. 

We turn now to the case of a more pronounced heating 
of the electrons, with 

z-iZnGn> I , (28) 

and the function $on the right side of (1 2) cannot be ignored. 
We begin by showing that Eqs. (24) impose certain restric- 
tions on the electron and hole temperatures. Using (20), we 
easily see that under the conditions x, > y, we have the in- 
equalities 

and the funct ionb 1 has an upper bound. 
The meaning of inequalities (29) is obvious: The lower 

temperature (the hole temperature) must still exceed To, 
strictly speaking, while the higher temperature (the electron 
temperature) remains bounded. If rp gr, ,  the first of these 
restrictions is inconsequential, however, and under the con- 
ditions rp 4rnp and m, (m, we may assume y, - 1 ( 1, pro- 
vided that the ratio (fw - E,)/T, is not too large. Incidental- 
ly, in this situaton we can assumex, > y, as long as inequality 
(27) does not hold. 

If y, - 1 4 1, the first of Eqs. (24) becomes 

cp (x.) =A (x,- I) x," +xf (I-x,-') =C (x) , (30) 

where 

and we have introduced the notation f (x) = f (x, 1; z)  for bre- 
vity. The quantity 5, is determined by the second relation in 
(3 1). Here we do not need the second equation, which deter- 
mines the small difference y, - 1. In accordance with the 
discussion above, the function C (x) is monotonic in the re- 
gion of interest here (if g' > 0). 

Atx, < l ,x,  = l,andx,-rn wehavep<O,p=O,and 
p+w, respectively. Since the function C (x) is bounded, 
Cmin < C  (x)< C,,, , Eq. (30) has an odd number of roots in the 
region of interest here. The actual number of roots depends 
on the parameter A: If A <A, = 169, there is only one singu- 
larity, which is a node or focus. At A = A,, two real roots of 
the derivative p' arise: x; and x;, both greater than unity. 
Correspondingly, the function p(x) becomes nonmonotonic 

at x > 1. If the inequalities 

also hold, Eq. (30) has three real roots in this interval. Under 
these conditions, the value A = A, determines a bifurcation 
point. The node or focus which exists at A <A, converts into 
a saddle point (x, = x,), and two more singularities appear. 
These new singularities are nodes or foci; one of them, x, 
= x , ,  lies to the left of the point x i ,  while the other, x, = x,, 

lies to the right of x; . 
Under the conditions A>A, and A - A, (A, we find, re- 

spectively, 

x,'= (h/3) '"+9+0 (A-I") , xi1=3, 

and 
~, '=4.22+7.5~, x,'=4.22-7.5q, (33'3) 

cp (xz') =69.1-0.175q"2, 

rp (xll) =69.l+O.I75q"~, q= (A-A,) A,-'. 

As expected, inequalities (32) define a rather narrow 
interval in the case (33b); the case (33a), on the other hand, 
requires either an intense photoinjection of charge carriers 
or the condition r, )T, . 

Since the second of inequalities (32) is based on a very 
simple model ($<$, ), it may not be altogether convenient. 
However, this inequality is not necessary if the point x, also 
lies in the region in which Eq. (3) is applicable (in the case the 
quantity a n x f  may also be greater than unity). Ifq' = q" = 1 
and A)A,, the situation is the same for direct optical transi- 
tions, provided that the following inequalities hold: 

In this case we have 

x3= [A (Go.cna: -1) -']'". 

then inequalites (32a) can be satisfied only under the auxil- 
iary condition 

On the other hand, it is not difficult to show that in the 
case of indirect optical transitions (and under the conditions 
q' = q" = 1, as before), the point x, must lie outside the 
range of applicability of Eq. (13). This situation arises under 
the inequalities 
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FIG. 1. Sketch of the function q ( x )  under conditions (32). 

Here we have 

Under conditions (32), (32a), and (32b), with A > 169, 
this system thus has three stationary states, with different 
electron temperatures x,, x,, and x, (Fig. 1). In this connec- 
tion we note three circumstances. 

First, we have been working on the basis of only some 
rather general properties of the function $(x, y, z), not the 
specific form of this function. The assumption that the heat- 
ing of the holes is slight is also not crucial: A generalization 
to higher hole temperatures requires only some more com- 
plicated calculations, but the ultimate results are not 
changed significantly. Furthermore, inequalities (32) may 
hold even if we ignore the dependence of the gap width and 
of the effective masses on the electron and hole temperatures 
[in which case we would have f = 1 and C (x) = const]. The 
role played by the dependence of E, on the electron tempera- 
ture and on the carrier density becomes clear, however, 
when we examine the stability of the singularities and also- 
a particularly important point-when we analyze Eq. (16) 
[§51. 

Second, according to our arguments one of the three 
singularities (x = x,) is a satellite point, so that there is no 
corresponding stationary state. The two other singularities 
correspond to nodes or foci. 

Third, the number and positions of the stationary states 
of the system are controlled by the frequency and intensity of 
the light. 

5 4. STABILITY OF THE SlNGULARlTlES 

The question of the stability of a singularity arises if the 
singularity is a node or focus. Carrying out a standard linear- 
ization of Eqs. (22) around a singular point (x,,  y,) of this 
type, we conclude that the singularity is stable (unstable) if 
r < 0 (r > 0), where 

and x and y should be replaced by x, and y, . 
Since infinity is absolutely unstable, the condition r > 0 

may imply the appearance of a stable limit cycle, i.e., self- 
oscillations of the electron and hole temperatures (in the ab- 
sence of other-stable-singularities, this would necessarily 
be the case). 

Using Eqs. (22) and (24), we find 

where (we are omitting the subscripts "s" from x and y for 

brevity) 

A=(XCL,+ Y - ' [  (1,5+q) (5-Y) ($~'-gv ' )  (I+*)-' 

-2+1,5(x-y) (yn-YP) (xpn+yy,)- 'I ,  
B=(1,5+q) XI"[ (x- l )$ ' ( l+$)- ' -  (1-113s) ( l+Z/ ,q ) - i ] ,  

c= (1,5+q) Y'"[  (y-l)$,'(l-+I$)-'- ( I - 1 1 3 ~ )  ( I + Z / s q ) - ' ] .  

It is easy to see that in the case of a slight heating we would 
have r < 0, as expected. The situation is the same in the limit 
x+ W ,  y + ~ .  By virtue of the assumed boundedness of the 
function $, the derivatives, $: and $; must tend to zero (the 
inverse relationship disappears). It is meaningful, however, 
to consider the case in which, on the one hand, the heating is 
intense (x>y) 1) while, on the other, Eqs. (12) and (13) still 
hold. We assume that the parameter A = ZT,/T, is not too 
large (thereby eliminating the case of three singularities). 
The only singularity in whose stability we are interested is 
therefore a node or focus. 

Under these assumptions the term Az/rnP on the right 
side of (35') can be ignored, and if q' = q" = 1 the condition 
for the instability of the singularity becomes 

where 

The quantities u and a can be calculated from Eqs. (24) (the 
terms with z/rnp are ignored). Using (18), we find 

We see from (36) that no instability occurs if q = 0. If 
q = 1.5, condition (36) reduces to the system of two inequal- 
ities 

a< (I-a-p) (I-o+p),  p+a<l. (38) 

We will now show, however, that these inequalities cannot 
be satisfied. According to (24), with (z/~,)x-"241, and 
q = 1.5 we have 

( C C , Z ) ~ = C ( I + ~ Z ~ )  +C ( I+o)  a n s ,  c=a~" ( Z - ~ T ~ F ~ ) " ' ,  

and in the limit c-+O we have anx+O.  Hence 

where the equality holds under the condition 

c2 (I+o) ( I + ~ Z P )  =I/,. 

We thus find 

p> (l+pzp)4c2(1+a) = I ,  

in contradiction of (38). 
Under the assumptions adopted above, the unique sin- 

gularity of the truncated system of equations must necessar- 
ily be stable. This result means that for any fixed value of z 
there will be no spontaneous oscillations of the electron and 
hole temperatures. A more interesting situation arises when 
we take into account the time dependence of the electron 
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density under conditions such that there are three singulari- 
ties in the truncated system of equations. This case is dis- 
cussed in the following section. 

5 5. TIME DEPENDENCE OF THE ELECTRON DENSITY 

We turn now to Eq. (16), considering case (32), in which 
there are three singularities in the truncated system of equa- 
tions, and we have q = 1.5 (indirect transitions). In the adia- 
batic approximation, adopted above, the quantity zi is given 
by the second of Eqs. (19), in which x and y should be under- 
stood as the coordinates x, and y, of one of the stable singu- 
larities. We then find two equations, which we assign indices 
i = 1, 3, denoting the values of x and y in them as xi(z) and 
yi(z). We then find, in place of (16), the equations 

~ , z =  [I+$, (z)  1'-z2=Ri ( z ) ,  (39) 

where the functions Ri(z) are determined by this equation. 
According to $3, $, can be found from (13) by replacing x, y 
by x,(z), y,(z) and by setting $, = $, . 

The singularities of the complete system of equations 
are found from equations 

Generally speaking, however, these equations may not be 
satisfied. In particular, we might have the case 

R1<O, R,>O. (40) 

Sufficient conditions for this case with A>A, can be found 
easily by noting that we havex,(3 andx,>(A /3)'12 accord- 
ing to (33a), and we can use Eq. (30) to find upper and lower 
estimates of z. We find 

z , ~  (hm-Eg) / ~ ~ T ~ > p ( ~ - ~ p ) / ~ ( ~ - p ) ,  (414 

where 
p 2 ( 1 - 2 ~ ) / ( 1 - ~ )  >>I 

Condition (41b) was adopted to simplify the final results; 
inequalities (41a) and (41c) ensure the satisfaction of the first 
and second inequalities in (40), respectively. In this case we 
find spontaneous oscillations of the electron and hole tem- 
peratures, with a period apparently on the order of 7,. Let us 
assume that at some initial time the state of the system corre- 
sponds to the point x = x,; i.e., z decreases as time elapses. 
According to Eq. (30), as z decreases the value of x, will 
increase, ultimately reaching x ; .  There will be an abrupt 
transition (Fig. 1) to the point x,, and by virtue of (40) the 
value ofz will begin to increase, while x, will decrease. When 
x, reaches x;, there will be an abrupt transition to the state 
x = x,, etc. 

Let us examine inequalities (41a)-(41c) in somewhat 
more detail for the casep = 1/4, which corresponds to Ref. 5 
(see the Appendix). In this case we have (1 - 3p)/ 
2(1 -p) = 1/6, and for all reasonable values of /3 (, 1) the 
right side of (41a) can be replaced by unity without introduc- 
ing any great error. This inequality nevertheless remains the 
most restrictive one, since we would most frequently have 

rnp (7, = (g#)-112. At the highest energy flux densities and 
lowest temperatures which are actually attainable, inequa- 
lity (41a) could apparently be satisfied only in a narrow-gap 
semiconductor (with a gap width no more than a few hun- 
dreths of an electron volt). 

Inequalities (41b) and (41c) are considerably less strin- 
gent. We first note that under the conditions assumed here 
we would have E, - To z Eg)fio - Eg . We thus need to ex- 
amine only the second of these conditions. Atp = 1/4, it can 
easily be rewritten 

where, as before, no = (g,Ja)'l2. 
For a rough estimate of the parameter b we will use (for 

lack of a better approach) Eq. (A3), found from the perturba- 
tion theory of Ref. 5. We thus write 

where E, and To are expressed in electron volts, and no in 
particles per cubic centimeter. Noting that the condition 
T,(E, implies fio - E, >To, we can rewrite inequality (42) 
as 

To (fio-E,)-'> (E,E,',,)~, (44) 

where 

E,, ., =0.00403[n0. lo-'' (12~-I) 3 ] ' 1 3  eV E,<E,, .,. 
In particular, with fio - E, = 2T0, no = 10" cm-,, and 
E = 12, inequality (44) yields Eg(0.0032 eV. 

5 6. PHYSICAL CONSEQUENCES 

For obvious reasons, spontaneous oscillations of the 
electron and hole temperatures must imply oscillations of 
any other kinetic and optical properties which are related to 
these temperatures. We would expect, for example, to find 
oscillations in the current in the circuit connecting the sam- 
ple to the dc power supply (or in a voltage in this circuit), and 
we would expect to find oscillations in the absorption and 
reflection coefficients for intraband absorption of light. 

Furthermore, case (32) seems to be interesting even if 
condtions (40a) and (40b) do not hold, and the complete sys- 
tem of equations has two singularities which are stable (on a 
small scale). Here we would expect to find flip-flop effects. 
Formally, the initial conditions determine just which of 
these two states will occur experimentally (Fig. 2), but in 
practice the initial conditions can be adjusted, by varying the 
frequency and intensity of the light, for example. 

FIG. 2. Phase plane of a system with three singularities under conditions 
such that the singularitiesx, andx, are stable. The curves nominally show 
separatrices of a saddle point (for simplicity it is assumed that the condi- 
tion y, - 1 (1 holds for all three singularities). 

776 Sov. Phys. JETP 59 (4), April 1984 V. L. Bonch-Bruevich and L. W. Ky 776 



APPENDIX 

The effect of the electron-electron interaction on the 
energy distribution of the electrons (or holes) in a nondegen- 
erate semiconductor was analyzed in Refs. 4 and 5. If the 
interband interaction is ignored, the equations derived in 
those papers can be used immediately to find the corre- 
sponding change in the gap width. We are interested here in 
the case with T, =. Tp =: To and mp (m, . 

We denote by ro = ( & ~ ~ / 8 7 ~ n e * ) " ~  the plasma frequen- 
cy. We introduce the parameter 

h=e2To /~ro f iZ~oZ-as -1  ( ~ T ~ / 2 n n e ' )  "', 

where a, = &+?/m,e2. 
It is easy to see that the equations of Refs. 4 and 5 are 

valid under the conditions A 4 1 and A % 1, respectively. 
For these two cases we find, respectively, 

AE,=- ( ;aeZh2/2~Tgmn)  n=- ] AE,I, (Al )  

and 

AE,=-2(e2To/~ro)'"=- (AEBI2 (A21 

Assuming AE, = - E, bnP, we find from (A2) 

p='/ , ,  b= [ 2 7 ~ T o  ( e Z / & )  3] li*Es-l. (A3 

The inequalities A ( 1 and A )  1 eliminate an extremely 
interesting region of parameters (as expected!). For lack of a 
better approach, we might use the simple interpolation for- 
mula 

h 1 
IAE I - -  lAE81~-k-lAE~li. - h f l  h+ I 

However, we know of no reliable experimental data for com- 
parison with results from this formula. 

'' If Eq. ( 1  3) holds at all experimentally, then it will be the coefficients a,, 
a,, and b introduced here which will be determined experimentally. 

'V. V. Vladimirov and V. N. Gorshkov, Fiz. Tekh. Poluprovodn. 14,417 
(1980) [Sov. Phys. Semicond. 14, 247 (1980)l. 

Translated by Dave Parsons 
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