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A simple model is proposed which describes the orientational ordering of the molecules of a 
biaxial cholesteric liquid crystal in the mean field approximation. It  is shown that, depending on 
the model parameters, the transition of a cholesteric from the anisotropic to the isotropic phase 
can be either a first-order or second-order transition. The temperature dependence of the compo- 
nents of the orientation tensor of the cholesteric and the temperature dependence of the pitch of 
the cholesteric helix are studied and the results are compared with experiment. The possibility of a 
phase transition between two cholesteric phases differing in the sign of the helix is discussed. It is 
shown that the proposed model can also be used to examine nonhelical cholesteric structures. 

INTRODUCTION 

According to the elementary models a cholesteric liq- 
uid crystal is a locally nematic liquid crystal in which the 
direction of the macroscopic ordering of the molecules (the 
director n) changes continuously from layer to layer, rotat- 
ing about an axis 1 known as the axis of the cholesteric helix. 
Such a model implicitly assume a uniaxial symmetry of the 
cholesteric phase, as is typical of nematic liquid crystals: The 
dielectric-ellipsoid tensor is uniaxial (with a long axis n) and 
rotates about the medial axis 1. 

This simple model is in need of refinement, however, as 
it is intuitively clear that the presence of two distinguished 
directions, n and 1, should lead to biaxiality of the cholesteric 
phase. In fact, as was shown in Ref. 1, the orientation tensor 
of a cholesteric is always biaxial (the corresponding dielec- 
tric ellipsoid is not an ellipsoid of rotation). The degree of 
biaxiality, defined as the square of the ratio of the length d of 
the molecule to the pitchp of the helix, is small (of the order 
of 10-3-10-4) for ordinary cholesterics (derivatives of opti- 
cally active steroids). By now, however, a wide class of so- 
called chiral nematogens has been syn the~ized .~ .~  The pitch 
of the cholesteric helix of these nonsteroid compounds in the 
liquid-crystal state varies (depending on the material) from 
several microns to tens of angstroms. In the latter case the 
pitch of the helix is commensurate with the length of the 
molecules, so that the biaxiality of the cholesteric phase is by 
no means small and its structure cannot be described by a 
single director. Furthermore, the very nature of the phase 
transition of the cholesteric from the isotropic phase to the 
liquid-crystal phase changes as the pitch of the helix is 
changed, from a first-order phase transition forp>d through 
a tricritical point to a second-order phase transition a t p  -d. 
This interesting result was obtained by Brazovskii and Dmi- 
triev' in the framework of the phenomenological theory of 
Landau and de Gennes. 

The conclusions of Ref. 1 have not as yet been con- 
firmed by concrete calculations based on the molecular-sta- 
tistical models of cholesterics. The problem is that in the 
existing models the biaxiality of the helical phase has either 
been ignored ~ o m p l e t e l y ~ - ~  or assumed A recent 
series of studies has considered a cholesteric consisting of 

biaxial molecules, and the equations of the oriented state of a 
biaxial cholesteric have been derived in the mean field ap- 
proximation. The resulting complex system of self-consis- 
tency conditions was not solved in Refs. 7-9, however: The 
authors of those papers assumed /p( 1, whereupon the tem- 
perature dependence of the order parameters of the choles- 
teric becomes the same as in a nematic, in disagreement with 
the experiments of Carr et ~1. ' '  

In a recent paper Schroder" proposed a molecular-sta- 
tistical model which incorporates in a simple way the molec- 
ular and phase biaxiality of cholesterics without assuming it 
to be small. The orientational ordering is described by two 
scalar order parameters (in the models of Refs. 7 and 9 there 
are four). However, Schroder kept only the first nonvanish- 
ing terms in the expansion of the binary-interaction Hamil- 
tonian for the molecules of the cholesteric in irreducible 
spherical tensors and was thus unable to get the temperature 
dependence of the pitch of the cholesteric helix. Further- 
more, instead of numerically solving the system of self-con- 
sistency equations obtained for the order parameters in the 
mean field approximation, Schroder merely expanded the 
free energy in powers of these parameters (the Landau-de 
Gennes approximation). I t  is not surprising, therefore, that 
the results of Ref. 11, as Schroder himself points out, are 
precisely the same as the results of Ref. 1. 

In what follows we propose a simple cholesteric model 
which is free of the shortcomings mentioned above. This 
model yields a description of the observed temperature de- 
pendence of the pitch of the helix and enables one to track 
the influence of biaxiality on the orientational ordering and 
on the phase transition between the cholesteric liquid crystal 
and the isotropic liquid. 

ORIENTATIONAL EQUATIONS OF STATE FOR A BlAXlAL 
CHOLESTERIC 

We shall characterize the orientation of the molecule at 
point ra by the tensor 

where va is a unit vector along the long axis of the molecule. 
Retaining only the first terms in the expansion of the binary- 
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interaction energy of the molecules in powers ofs, , we write 
the Hamiltonian of the cholesteric in the form 

H,, = - IZ A ,  ( r )  sikasik6, HCI=- ~i ( I )  eijh~islla~k157 2 
a z 5  a+B (2) 

He,=- B,  ( r )  eiklrlsijasmnag%s,6, 

where A (r) and B (r) are interaction potentials which depend 
on the distance r = I$ - ra / between the molecules, evk is 
the Levi-Civita tensor. The terms H,, and H,, in (2) are 
responsible for the parallel (nematic) ordering of the mole- 
cules, while Hc, and H,, give rise to the spontaneous helicity 
of the cholesteric phase (the pseudoscalars B1 and B, are 
nonzero only for chiral molecules). By virtue of the condi- 
tion (v" ), = 1, Hamiltonian (2) does not contain scalar invar- 
iants which are odd in s, : For example, the third-degree 
invariant 

reduces to H,, . If only the terms quadratic ins, are retained 
in (2), the resulting Hamiltonian H,, + H,, satisfactorily 
describes the orientational ordering of a biaxial choles- 
teric,12 but does not give the temperature dependence of the 
pitch of the helix. To obtain this temperature dependence 

. one must keep the terms Hn2 and H,, in (2). 
Let us now go over from the microscopic Hamiltonian 

(2) to a mean field Hamiltonian, using the procedure pro- 
posed in Ref. 13. To do this let us write s, as the sum of the 
statistical average (s, ) = vik and a fluctuation (sik - vik ), 
so that, for example, 

s ~ ~ ~ s ~ ~ = s ~ ~ ~ ~ ~ ' + s ~ ~ ~ ~ ~ ~ ~ +  (~a~-vik~) (sit-qikB). 

Hereafter neglecting the fluctuations (the last terms in the 
above expression) and keeping only terms up to second order 
in the gradients in the expansion of the macroscopic tensor 
vik ($) about the point ra ,  we obtain the Hamiltonian of a 
cholesteric in the mean field approximation: 

E=Eni+En2+Eci+Ecz, 

Here we have introduced the notation A =2Al(r)  and 
lu = 2A2(r) for the molecular-field parameters. The contri- 

bution to E from the energy of the inhomogeneities is deter- 
mined by the elastic moduli 

L=nZr2Al ( r ) ,  Lqo=nZr2B, ( r ) ,  

M,=nErZA2 ( r )  , M2qa=nEr2B2 ( r )  , 
where L, MI, and M2 all have the dimensions of force, n is the 
number density of the particles, and q; ', which has dimen- 
sions of length, characterizes the scale of the helical struc- 
ture. In the expression for En, we have dropped the terms 
proportional to the gradients of v;k, as they go to zero for the 
helical cholesteric structure considered below. We note 
further that the systematic application of the mean field 
method to the microscopic Hamiltonian (2) does not give rise 
to terms in E of the form ( b ' ~ ~ ~ / b ' r , ) ~  as are found in the 
phenomenological theories. Besides, these divergence invar- 
iants do not contribute to the partition function for the heli- 
cal structure. 

The orientational ordering of the helical phase of a cho- 
lesteric can be described by the tensor 

which is expressed in terms of the unit vectors 

n= (cos qz, sin qz, 0) , I= (0,0,1), k= [ l  x nl (5) 

and scalar order parameters 
1 

R = ( P , ( ~ . v ) ) ,  Q = - : ( P 2 ( n * v ) - P 2 ( k 0 v ) )  (6) 
113 

(P, is the second Legendre polynomial). The normalization 
in (4) is chosen such that vik = Q + R '. The tensor vik 
admits three uniaxial structures with director 1, n, or k .  In 
each of these cases, of course, only one independent order 
parameter remains in (4): For Q = 0 we have a uniaxial ne- 
matic with director 1, while for Q = RV3 we find, using 
the identity n,nk + kikk + lilk = S,, a uniaxial structure 
with director k or n, respectively. This structure could in 
principle be cholesteric, but, as we shall show, such a uniax- 
ial solution is thermodynamically unstable. 

Writing the macroscopic orientation tensor in form (4) 
corresponds in fact to isolating the normal orientational 
modes1: a longitudinal mode (optic axis 1) corresponds to the 
order parameter R and the transverse mode to the order pa- 
rameter Q; the simple model (5) of the helical structure does 
not support a longitudinal-transverse (conical) mode. 

Hamiltonian (3) permits calculation of the free energy 
of the cholesteric 

N 

F=-T ln J . . . fl dva erp ( - E / T )  . 
a=i  

Using the explicit form of the tensors sik and vik, we obtain 
after integration 

AF/AN=aQ2/2+R2/2-R-yR3-~RQZ+3/, 

x(yRZ+bQ2) (R2+Q2)  -T In $; (7) 
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Here AF = F - Fo, where Fo is the free energy of the isotrop- 
ic phase, r = T / A  is the dimensionless temperature, 
x = 1 . v, IO is the modified Bessel function of the first kind, 

The quantities q and go appearing in (9) are dimensionless: 
the length unit is taken to be (2L /nil )'I2. 

The conditions of thermodynamic equilibrium, dF/  
dQ = 0 and d F  /dR = 0 lead to the orientational equations of 
state: 

which, of course, coincide with the self-consistency condi- 
tions 7, = (s, ). Finally, minimizing the free energy with 
respect to q gives the equation for the pitch p = r /q  of the 
cholesteric helix: 

Equations (8)-(11) form a complete system for the tem- 
perature dependence of the order parameter and pitch of the 
helix. We note that this system admits an isotropic solution 
Q = R = 0 at all temperatures. One is readily convinced also 
that for go = 0 equations (8)-(11) describe uniaxial nematic 
phases with Q = 0 and Q = + R d .  In the case Q = 0 one 
obtains for the nematic order parameters, = R (T)  the famil- 
iar equation of the Maier-Saupe theory: 

3 d l n 0  1 
I 

s ~ = ~ ( ~ - ~ ) ~  o ( 0 )  = j erp (ox2)  ax, 
0 

The same equation can also be obtained for Q = + R f l  by 
setting So = -2R and using the identity 

I 

J exp [+(1-x2)] I, [ + ( I - ~ z )  ax= e ~ p  (0x2) ax. 1 
0 

For q,#O equations (8)-(10) admit the existence of a uniaxial 
cholesteric with 

q=2qo(1+yzSo2)/(I+yiSo2)) (13) 

whereSo2 = Q * + R ,; this solution is not thermodynamical- 
ly stable however [cf. (13) and (1 I)]. Equations (8)-(1 I), which 
describe a biaxial cholesteric, have a definite parity with re- 
spect to Q, so that the states with Q >  0 (long axis of the 
dielectric ellipsoid along n) and Q < 0 (long axis along k) de- 
pend in an identical manner on temperature and have the 
same stability [see (7)]; for this reason we shall henceforth 
discuss only positive Q. 

Formula ( l l ) ,  in which y, and y, can have any sign, 
gives three types of temperature dependence for the pitch of 
the helix: falling, rising, and inverting (for which the pitch of 
the helix changes sign at a certain temperature ri). The first 
of these types is most often found in pure cholesterics (see, 
e.g., Ref. 14), the second is rather rare,I5 and the third is 

observed in mixtures of right-handed and left-handed cho- 
lesterics and has been detected only once, by Durand16 in 
cholesteryl-2-(2-ethoxyazoxy) ethyl carbonate, but his re- 
sults have not been confirmed by later experiments.I5 We see 
no fundamental reasons, however, why inversion of the pitch 
of the helix should be forbidden in pure cholesterics. 

RESULTS OF CALCULATIONS AND COMPARISON WITH 
EXPERIMENT 

The order parameters of a cholesteric change from zero 
in the isotropic phase to Q = 0 / 2  and R = - 1 at r = 0. 
Near the Curie-Weiss temperature r., where Q and R are 
small, one can construct a solution of the system of self- 
consistency conditions from a series in powers of (r - r, )'I2. 
In zeroth order of perturbation theory the Curie-Weiss tem- 
perature is 7. = (1 + qi)/5. Subsequent approximations 
give the temperature dependence of the order parameter and 
the pitch of the helix near r. as 

Here we have introduced the notation 

As can be seen from (14), the character of the branching of Q 
at the Curie-Weiss point (and, hence, the order of the choles- 
teric-isotropic phase transition) is governed by the sign of x:  
for x > 0 there exist nonzero solutions for Q and R in a cer- 
tain temperature region r > T., and the transition is of first 
order; the temperature 7, of the equilibrium transition (the 
so-called clearing point) is determined in this case from the 
joint solution of the self-consistency equations and the equa- 
tion AF  = 0. For x < 0 the parameter Q branches to the left 
(the Landau law), i.e., the phase transition is of second order, 
with 7, = 7.. Finally, the special case x-' = 0 corresponds 
to a tricritical point, near which Q-(r. - r ) ' I 4  and 
R - (r. - r) ' I2.  

If only the terms H,, and H,, are retained in (2) (the 
"simplified" cholesteric model),', then the coefficients, y, 
y,, and y, vanish; here it follows from (1 1) that q = go-the 
pitch of the helix does not depend on temperature, and only 
the first term remains in expression (15) for x. The tricritical 
value q, in this case is equal to (10/7)'12, corresponding to a 
helix pitchp = r(7L /5nil )'I2; for n - lo2' cmP3, L-  loP6 
dyn and il - 10-l3 erg, this amounts to tens of angstroms. 
Thus the "simplified" model, in agreement with the pheno- 
menological theory,' admits a second-order phase transition 
for cholesterics with a short pitch. The complete model lifts 
this restriction: as can be seen from (15), at suitable values of 
y, yl, and y, the parameter x can turn out to be negative for 
go< 1 also. 

To determine the temperature dependence of the order 
parameters and helix pitch over the entire existence region of 
the mesophase, equations (8)-(11) were solved numerically 
for various values of go, y, y,, and y,. For the purpose of 
comparing the calculated results with experiments it proved 
convenient to transform from the normal modes Q and R to 
their combinations: 
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As is seen from the definition, S characterizes the de- 
gree of ordering of the molecules in a quasinematic layer, 
while D serves as a natural measure of the biaxiality: If the 
dielectric ellipsoid with long axis n were an ellipsoid of revo- 
lution, D would be identically zero. Unfortunately, experi- 
menters have been captive to the orthodox point of view that 
a cholesteric is a helically twisted uniaxial nematic and have 
not attempted to measure D, and the experimental data on S 
are extremely scanty (the methods of measuring S in choles- 
terics are in the development 

Figure 1 demonstrates the influence of q, on the degree 
of ordering and on the measure of biaxiality of a cholesteric 
in the "simplified" model. It is seen that as q, increases (i.e., 
as the pitch of the helix decreases), the jump in the parameter 
S at the point T, decreases from a value of 0.429 at q, = 0 
(the Maier-Saupe model) to zero (second-order phase transi- 
tion) at go2> 10/7. The biaxiality parameter D increases with 
increasing go and T; at values ofqo greater than the tricritical 
value, D (T) goes through a maximum in a narrow pre-transi- 
tion temperature interval and falls to zero at the point of the 
cholesteric-isotropic transition. 

Figure 2 shows the function S ( T )  for fixed values 
go = 0.5 and y = 0 with various values of y,  and y,. With 

FIG. 1.  Temperature dependence o f  the order parameter S (a) 
and the biaxiality parameter D (b ) in the "simplified" model 
( y  = y, = y, = 0 )  for various valuesofq:: 1 )  0.5,2) 1,3) 10/7 (the 
tricritical curve), 4)  2; the dashed curve corresponds to the 
Maier-Saupe model o f  a uniaxial nematic (q, = 0). 

increasing y, the jump in the order parameter at the transi- 
tion point decreases: The first-order phase transition be- 
comes progressively closer to second order. It follows from 
(15) that the chosen value go = 0.5 is tricritical for 
y = y2 = 0 and yy -, 8.42; the second-order transition is real- 
ized for y> y:. For positive values of y,  the pitch of the helix 
decreases with increasing temperature, while negative val- 
ues correspond to an increase of the pitch with temperature; 
as we know, both types ofp(T) behavior occur in cholesterics. 
Values y, > 0 affect the orientational state and the pitch of 
the helix of cholesterics in approximately the same way as do 
values y,  < 0, and vice versa. The lower curve in Fig. 2, cor- 
responding to y2 = - 0.5, is in good agreement with the 
ESR-spectroscopy data" for cholesteryl benzoate. 

As was mentioned in the Introduction, for esters of cho- 
lesterol in the liquid-crystal phase the period of the helical 
structure is large (go2< l), i.e., the biaxiality D is small (see 
Fig. 1). Therefore, for calculating the temperature depen- 
dence of the helix pitchp(T) of steroid compounds, one can 
neglect the biaxiality, setting q = 0 in Eqs. (8)-(11). In this 
approach the pitch of the helix is determined by formula (1 I), 
where now Q + R must be replaced by Si from (12). The 
expression thus obtained gives a good description of both 
types of behavior observed forp(T)-the falling (Fig. 3) and 
the rising (Fig. 4). 

The most interesting effect described by formula (1 1) is 
the inversion of the pitch of the helix: at a certain tempera- 

Plpc, 

- 

0.2 I I I I 1.0 - , , , , , , 
0.32 0.96 7, OD 

TITc 0.96 498 1.0 
TITc 

FIG.2.S(T)curvesforqo = 0.5and y = 0. Curve l ) y ,  = 0, y, = - 0.5;2) 
y, = 0.5, y, = 0; 3 )  y, = y, = 0; 4)  y, = - 0.5, y, = 0; 5) y, = 0 ,  FIG. 3. Temperature dependence o f  the pitch o f  the helix in cholesteryl 
y, = 0.5; the dashed curve is for q, = y = y, = y, = 0. The experimental pelargonate (data o f  Ref. 14). The theoretical curve was constructed for 
data for cholesteryl benzoate are taken from Ref. 10. y = y1 = 0, y, = - 0.715. 
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FIG. 4. Temperaturedependence of the pitch of the helix in cholestery 1-2- 
(2-ethoxyazoxy) ethyl carbonate (data of Ref. 15). The theoretical curve 
was constructed for y = y, = 0. y,  = - 2.194. 

ture r i  determined by the relation Q + R = - y; ' the 
wave vector q changes sign, passing through zero. This is 
possible for y2 < - 1 (recall that Q 2  + R '<I). Figure 5 
shows the solution of system (8)-(11) for go = 0.5, 
y, = - 2.5, and y = y, = 0. It is seen from the figure that at 
these values of the parameters that in addition to the choles- 
teric-isotropic phase transition at the point r, = 0.250 there 
is another, first-order transition at r, = 0.202 in the exis- 
tence region of the mesophase; this transition is between two 
cholesteric phases differing in the magnitude and sign ofp  
= ~ / q .  The inversion point q = 0 corresponds to a tempera- 

ture ri = 0.197 and lies on the unstable (shown by dashed 
curves) sections of the S and D curves. Therefore, the choles- 
teric-nematic phase transition discussed in Refs. 5 and 6 can- 
not occur: The pitch of the helix does not go to infinity any- 
where but undergoes only a finite jump and inversion of the 
sign at a temperature 7/, . 

ALLOWANCE FOR MOLECULAR BlAXlALlTY 

We have heretofore considered only the phase biaxiality 
due to the anisotropy of the intermolecular interaction in the 
cholesteric; the molecules themselves have been assumed 
uniaxial. In actuality, of course, chiral molecules are nonaxi- 
symmetric, and their biaxiality makes an additional contri- 
bution to the macroscopic (phase) biaxiality of cholesterics. 

The orientation of a biaxial molecule can be described 
by the tensor 

Here vp is a unit vector along the 0 (th) principal axis of the 
molecule, andp is the form factor of the molecule b2( 1). For 
p = 0 we recover a rod-shaped molecule with long axis 

V-V [cf. (I)]; the v a l u e s p ~  + 1 correspond to disk-shaped 
molecules with normals to the plane of the disk along v, or 
v,, respectively. The normalization in (17), as in (1), is chosen 
such that sfk = 1. 

With allowance for the molecular biaxiality, the macro- 
scopic orientation tensor vik = (sik ) describes, as before, 
two scalar order parameters [see (4)], for which we obtain, 
using ( 17). 

1 

For p = 0 these formulas go over to (6). 
By substituting expressions (4) and (17) into the mean 

field Hamiltonian (3),  we can perform the averaging in (18); 
we obtain as a result a system of self-consistency equations in 
which the integration is over the three Euler angles specify- 
ing the orientation of the principal axes of the molecule with 
respect to the laboratory coordinate system. Let us merely 
give one result without writing out these equations. In the 
"simplified" model (y = y, = y, = 0) the Curie temperature 
r. = (1 + q$)/5 does not depend on the molecular form fac- 
torp, and we find for the order parameters near r, 

where we have introduced the notation for the critical wave 
number 

In the case of uniaxial molecules [either rod-shaped @ = 0) 
or disk-shaped @* = 1)] equation (20) gives the value 
q: = 10/7 indicated above, and formula (19) goes over to 
(14). Recall that the latter describes a biaxial cholesteric. The 
biaxiality of the molecules ( O q 2  < 1) only enhances the 
phase biaxiality of the cholesteric. In fact, for biaxial mole- 
cules one has q: < 10/7, so that at the same temperatures the 
parameter Q turns out to be larger than for uniaxial mole- 
cules [see (19)l. The degree of biaxiality D (16) of the choles- 
teric phase near the Curie temperature is simply equal to Q / 
2. 

The cholesteric-isotropic phase transition is of first or- 
der for materials with parameter qo < q. and of second order 

/ 
FIG. 5. Temperature dependence of S (a), D (b), and q (c) 
for q,=0.5, y,= -2.5, y=y ,=O.  The vertical 

I I straight-line segments correspond to a first-order phase 
4~ 0.25 transition between right- handed and left-handed choles- 

Z tarics. 
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for go > q.. As is seen from (20), the biaxiality of the mole- 
cules decreases the tricritical value q. , which goes to zero at 
p2 = 1/9. One can therefore expect that if the biaxiality of 
the molecules is sufficiently high, second-order phase transi- 
tions should also occur in cholesterics with a large helix 
pitch. This is perhaps the most important consequence. Gen- 
erally, however, allowance for the biaxiality of the molecules 
does not lead to qualitative changes in the picture of the 
orientational ordering of cholesterics from that described in 
the previous sections of this paper. The situation is quite 
different in nematics (go = 0), which are made up of nonaxi- 
symmetric molecules. In nematic liquid crystals the uniaxial 
phases with p2 close to zero and with p2 close to unity are 
separated in the ( T , p )  plane by a biaxial phase.'8 Such a 
structure of the phase diagram of a nematic is, of course, due 
to the fact that the biaxiality of the molecules is the only 
factor capable of causing macroscopic biaxiality of the ne- 
matic. In a cholesteric, on the other hand, because of the 
specific anisotropy of the intermolecular interaction and the 
consequent appearance in Hamiltonian (2) of the pseudosca- 
lar potentials B,(r) and B,(r) responsible for the spontaneous 
helicity, the wave number go +O, so that the phase biaxiality 
is nonzero even for uniaxial molecules and grows with in- 
creasing go (see Fig. 1). 

NONHELICAL STRUCTURES IN CHOLESTERICS 

The proposed model can also be used to consider cho- 
lesteric phases of other (nonhelical) symmetry. For example, 
to describe the conical phase of a chole~teric '~ we must sub- 
stitute the following unit vectors [rather than those of (5)] 
into formula (4) 

n= (sin @ cos qz, sin p sin qz, cos p )  , 

1= (-cos p cos qz, -cos p si!l pz, sin p ) ,  k=  [In] (21) 

(herep (T)  is the "tilt" angle between the local director and 
the axis of the helix) and include in the mean field Hamilton- 
ian the divergence invariants which were dropped in (3). In 
the expression for E n , ,  for example, a term (L ' / n ) d ' ~ , ~ /  
ar, ar, will appear in the sum with (L /n)Avik. The tensor yik 
obtained upon substitution of (21) in (4) will contain three 
independent orientational modes: longitudinal, transverse, 
and longitudinal-transverse; for fi  = 77/2 (the helical case) 
the first two go over to R and Q, respectively, while the third 
vanishes. The solution of the self-consistency equations for 
the conical phase of the cholesteric can be found in Ref. 19. 

There is currently a very active research interest2' in the 
cholesteric blue phases, which are observed in a narrow tem- 
perature interval between the isotropic and helical phases. 
The blue phases can be studied in the framework of our mod- 
el by assigning the corresponding symmetry to the tensor 
Tik . 

A possible blue-phase structure which has been dis- 
cussed2' is a uniaxial conical phase with a "magic" tilt angle 
between the director and the optic axis, viz. p. z 54.74 ", at 
whichP2(co$, ) = 0. In fact, forp = 0. and Q = + R v ~  the 
longitudinal orientational mode responsible for the birefrin- 
gence vanishes, i.e., such a phase is optically isotropic; this is 
precisely typical of the blue phase. The self-consistency 

equation obtained for the "magic" phase is of the form of 
(12), but with So = - 2R and 

where h = L '/L, and for the orientational part of the free 
energy we find 

Expressions (12), (22), and (23) differ from the equations of 
the Maier-Saupe theory for nematics only in the scale of the 
temperature (T is replaced by T/( ), so that one can immedi- 
ately give the temperature of the first-order phase transition 
between the blue phase and the isotropic liquid as 
r1 = 0.2205. By comparing the free energies of the helical (7) 
and "magic" (23) phases, one can infer that if the tempera- 
ture T, of the transition of the helical phase to the isotropic 
liquid lies below T,, then in a certain temperature interval 
AT = r1 - T2, where T, 5 7, , the "magic" blue phase is sta- 
ble. At the point r, there is a first-order phase transition 
from the blue phase to the helical cholesteric. The width AT 
of the existence region of the blue phase is nonzero for 
- 3 < h < - 1 and grows with increasing q,, as has been 

confirmed experimentallyz2: the blue phase has only been 
observed in cholesterics with small pitches. Numerical cal- 
culations carried out by the present authors for h = - 1.5 
and for two values of go gave r1 = 0.2298, r2 = 0.2251 for 
qi = 0.05 and T, = 0.2395, T, = 0.2300 for qi = 0.1. The in- 
terval AT is thus very narrow: for r1zr2-300  K the exis- 
tence region of the "magic" phase is of the order of 1 K. 
Qualitative agreement with experimentz2 is also found for 
the calculated jump in the order parameter corresponding to 
the transverse orientational mode: The blue phase turns out 
to be less ordered than the helical phase of the cholesteric. 

Three blue phases are currently distinguished." The 
"magic"phase considered here can evidently be identified 
with the low-temperature blue phase I (Ref. 23). The use of 
the mean field model to study blue phases having more com- 
plicated symmetry is made rather difficult by the need for 
self-consistency of a large number of equations. 

Note added in proof (February 2 7,1984): A recent paper 
by Z. Yaniv, G. Chidichimo, and J. W. Doane [Phys. Rev. A 
28, 3012 (1981)] reported measurements of the degree of 
biaxiality of a number of cholesteric mixtures. The experi- 
ments showed that the biaxiality of a cholesteric liquid crys- 
tal is larger for shorter helix pitches and grows with increas- 
ing temperature, in complete agreement with our calculated 
results shown in Fig. lb. 
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