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A theory is developed of stimulated Mandel'shtam-Brillouin scattering (SMBS) in a plasma in the 
presence of a reflection surface for the pump wave and the scattered waves. In the model of a 
homogeneous layer of plasma with a reflecting rear wall, a five-wave process ofjoint scattering of 
two pairs of electromagnetic waves by a common sound wave (double SMBS) is shown to be an 
absolute parametric instability whose threshold lies below the familiar threshold for ordinary 
convective SMBS instability. In the case of oblique incidence of the pump wave, the double SMBS 
processes leads to collimated backward as well as specular reflection of the radiation. An exact 
nonlinear solution for the dependence of the nonliner reflection coefficient on the intensity of the 
incident radiation is found for the process with the lowest double SMBS backward threshold. It is 
shown that in the limit of high pump wave intensities, the reflection coefficient saturates at a level 
determined only by the specular reflection coefficient from a reflecting surface in the plasma. 
Inhomogeneity of the plasma density in a direction perpendicular to the reflection surface does 
not affect the double SMBS backward, but does lead to an increase in the double SMBS threshold 
in the specular direction. 

1. Great interest in the study of stimulated Mandel'sh- 
tam-Brillouin scattering (SMBS) in a plasma is due to the 
fact that this process can lead to a limitation on the effective- 
ness of electromagnetic-energy input to the plasma. A char- 
acteristic feature of the interaction of intense radiation with 
a plasma is the presence in the plasma of a region of critical 
density, from which both the pump wave and the scattered 
electromagnetic waves are reflected. Thus, the SMBS pro- 
cess takes place in the field of two coherent pump waves- 
the incident and the reflected. At the same time, the coherent 
effect of the reflected component of the pump wave on the 
SMBS process in the plasma has not yet been investigated. 

We shall show below that in the field of two pump 
waves, a process of double SMBS is possible, corresponding 
to the joint scattering of the incident and reflected compo- 
nents of the pump field from a common sound wave. Such a 
process represents an absolute parametric instability whose 
threshold is below the familiar threshold for ordinary con- 
vective SMBS instability. We emphase that although the 
threshold of the predicted phenomenon of double SMBS de- 
pends significantly on the reflection coefficient of the elec- 
tromagnetic waves from the dense plasma layers and on the 
angle of incidence of the pump wave, it is always below the 
effective threshold of convective amplification in the case of 
ordinary SMBS. 

In the present work, we have found the stationary re- 
gime of reflection of radiation in the case of double SMBS 
and have shown that this process consists in the fact that the 
ordinary specular reflection of the pump is replaced, with 
increase in pump intensity, by back reflection at the frequen- 
cy of the Stokes satellite. Five waves take part in the interac- 
tion here: the two pump waves (incident and reflected), two 
Stokes waves (incident and reflected) and a single sound 
wave. Absolute instability arises because of the distributed 
feedback due to interaction of the opposing scattered waves 

through the common sound wave, and also because of 
lumped feedback, which consists of the reflection of electro- 
magnetic waves from the dense layers of the plasma. Such a 
combination of feedbacks allows us to consider a certain an- 
alogy between double SMBS and the process of stimulated 
Raman scattering in the field of two pump waves in a nonlin- 
ear medium, in which five waves are also coupled. This pro- 
cess was considered by Akhmanov and Lyakhov.' However, 
the coupling of the waves that arises in Ref. 1 does not hold 
for the theory of SMBS in a plasma and does not allow us to 
obtain the nonlinear regime revealed by us below, of double 
SMBS with the lowest threshold of excitation. Processes of 
five-wave interaction were also considered in Refs. 2 and 3 
for backward SMBS in the field of two antiparallel pump 
waves. However, the necessity of excitation of the anti- 
Stokes satellite distinguishes qualitatively the phenomena 
considered in Refs. 2 and 3 from the phenomena predicted 
by us, the conversion of the specular reflection of the pump 
into back reflection of the Stokes satellite. 

At the same time, under conditions of reflection of elec- 
tromagnetic waves from one of the boundaries of the region 
of interaction, as is shown in Ref. 3, an instability is realized 
that can also be called double SMBS and in which the maxi- 
mum number of waves is coupled-eight, to wit, the incident 
and reflected components of the pump wave, the Stokes and 
the anti-Stokes satellites, and also two sound waves. Such an 
eight-wave interaction corresponds to two five-wave inter- 
actions, coupled by common pump waves and boundary 
conditions of specular reflection. As is shown below, under 
conditions of oblique incidence of the pump waves, a process 
of double SMBS that is similar to that considered in Ref. 3, 
with excitation of the anti-Stokes components, leads to scat- 
tering in the specular direction, but has a higher threshold 
than the five-wave double SMBS. 

In this paper, we have also investigated the effect of the 
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inhomogeneity of the density, which is characteristic for 
plasma, in a direction perpendicular to the reflecting sur- 
face, on the double SMBS process. It is shown that the den- 
sity inhomogeneity does not affect backward double SMBS, 
but does lead to an increase in the threshold of specular dou- 
ble SMBS because of the narrowing of the region of spatial 
synchronism of the interacting waves. 

2. As a simplest model, we consider a uniform plasma 
layer of thickness 1 ( 0  < x < 1 ), one of the boundaries of which 
( x  = 0 )  is transparent for electromagnetic waves, while the 
other (x  = 1 ) partially reflects them in the specular direction. 
An s-polarized pump wave of frequency w ,  is incident on 
such a layer from the left. In the approximation that is linear 
in the amplitude of the sound field, the SMBS process is 
described by the following pair of equations for the field 

8, (r, t) =Re E (r, t) e-'"0' 

and for the low-frequency perturbation of the density Sn, : 

where w,, is the electron Langmuir frequency, n,  is the plas- 
ma density, n,  is the critical density, c  is the speed of light, us 
is the speed of sound, y, is the damping decrement of the 
sound wave, x, is Boltzmann's constant and T is the tem- 
perature. 

The double SMBS process corresponds to the scattering 
of two pairs of electromagnetic waves by a single sound 
wave. For the case of oblique incidence of the pump wave, 
this is possible if the sound propagates along the surface of 
the plasma layer (along they axis). Such sound is excited in 
the scattering of the pump wave with wave vector 
k,  = ( k ,  cos 8, k ,  sin 8 ) ( k ,  = (w,/c)  ( 1  - n, /n, ) ' I 2  is the 
wave number of the pump into a Stokes scattered wave with 
wave vector k - ,  = ( k ,  cos 8, - k ,  sin 8 ) and also in the 
scattering of a specularly reflected pump wave kh 
= ( - k ,  cos 8, k ,  sin 8 ) into a reflected Stokes wave k' , 
= ( - k ,  cos 8, - k ,  sin 8 ). I t  is obvious that this process 

corresponds to stimulated backward reflection, since the 
scattered Stokes waves have a y component of the wave vec- 
tor that is opposite in sign to the pump wave and, conse- 
quently, they are propagated counter to it. In accord with 
what was said above, we represent the high-frequency field R 
and the low-frequency perturbation of the density Sn, in the 
form 

E(x, y, t) = [Eo.(x, t) exp (iokox cos O+ikoy sin 0) 
(I=*, 

+E-,,(x, t)exp(iokox cos 0-iko y sin 0+iot) 1, 
6n,(x, y, t) =-in,v, (x, t) exp (2ikoy sin 0-iot) +c.c. (2.2)  

The index a = + 1 corresponds ro waves traveling in the 
direction of the pump wave, a = - 1 to opposite waves, 
w22kbvs  sin 8 is the sound frequency. The boundary condi- 
tions for the electric field 

Eoi (0, t) =Eo, E-1, (0, t) = O ;  
E,-,(I, t) =reiqE,,(I, t) (p=O, -1) (2.3 

take partial reflection ( 0  < r( 1 )  on the rear boundary of the 
layer into account. In addition, we consider the limit of a 
sufficiently strong attenuation of the sound, when the de- 
rivatives in the acoustic equation (2.1)  with respect to x can 
be neglected (the corresponding condition is obtained in Sec. 
3).  We then obtain from (2.1)  the set of simplified equations: 

d ak, 
0-Eoo=- - E-i,vl, (5 - d E-,,= - aka Eo,v,', (2.4) 

dx 2 cos 0 dx 2 cos 0 

where a = n, / (n ,  - n, ), Aw = w - 2k0u, sin 8, and the 
time derivatives are neglected in (2.4)  since v s / c ( l .  

There is significant interest in the stationary solution of 
the set of nonlinear equations (2.4)  and (2.5) .  They allow us to 
obtain the values of the coefficient of back reflection: 
R - , = E -  , - ,(O)/E,, and also for reflection in the specular 
direction: R ,  = Eo- ,(O)/E,. 

The set of equations (2.4)  has three first integrals, which 
can be written in the following form with the help of the 
boundary conditions (2.3):  

IEoi12+IE-ii(2=IEo12, 

IEo-,(~+ IE-l-~12=IEo)z(IRo12+IR-,12)=IEo12r2, 

E~~E-~-~+Eo-,E-li=Eo2R-i. (2.6)  

We note that even this indicates that the reflection coeffi- 
cients R ,  and R - , cannot exceed the limiting value r that is 
determined by the reflection coefficient of the rear wall. The 
equations (2.6)  allow us to transform from the system (2.4)  to 
an equation for the function 

u(x) = (E~~E-',,+E~-,E~,-,)/I E,I~, 

that enters in the right side of Eq. (1.5) ,  which has the form 

The solution of the boundary-value problem (2.7) ,  supple- 
mented by stationary solution of Eq. (12.5)  at Aw = 0 ,  

V,=OU (x) I Eo 1 2/32nn,~BTy,, 
leads to the equation 

2(r2-IR-112)'i~[2qr-(l-i-) (r2-IR-i12)'irl 
exp (2x9) = - 

(I+$) (2q-I+?-2 I R-,I 2, , (2.8)  

that determines the reflection coefficient lR -, 1'. Here 

q= [ ' l r  (I-?) '+ 1 R-I 1 2 ]  
while x is the usual coefficient of convective SMBS amplifi- 
cation: 

aoIkol 
x =  , I =  

IEo12 
8 b  cos 8 8nn,x~T ' (2.9)  

The simplest form of Eq. (2.8)  occurs in the case r = 1, when 

I R-,  I =th (2% (R-, I ), I RoI =l/ch (2% I R-, I). 
Figure 1 shows a graph of the dependence of 1 R - , 1 2/? on x ,  
i.e., on the thickness of the layer and on the intensity of the 
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Fig. 1. Dependence of the coefficient of back reflection lR-,I2/r ,  on the 
parameter x = akdol /8ys cos 6' for r = l(1); 0.5 (2); 0.1 (3).  Allowance for 
pump exhaustion. 

radiation. The presence of the threshold of stimulated back 
reflection 

follows from (2.8). It achieves its minimum value %Ai,, = 1/2 
at r = 1. In the near-threshold region, we have 
lR-, 1 2 -  (X - ~t, ). The limitation of the back reflection 
upon significant excess over threshold is manifest in that 

I R - , I  2-+r2 according to the law 

Thus, Eq. (2.8) describes the switching over from specular 
reflection at the fundamental frequency to back reflection at 
the shifted frequency. The effectiveness of such switching 
increases with increase in the angle of incidence. 

Even for a small reflection coefficient r( 1, the double 
SMBS threshold x,, zln(1/2?) is small in comparison with 
the logarithm of the ratio of the intensity of the pump to the 
intensity of the thermal fluctuations in the plasma. This al- 
lows us to suppose that it is precisely the double SMBS that is 
the reason for the back reflection in the plasma at moderate 
fluxes of laser radiation. Thus, for example, if the absorption 
is 95%, then x,, = In 1 0 ~ 2 . 3 ,  and at x > x,, the back-reflec- 
tion coefficient should saturate at a level of -5% (cf., for 
example, Ref. 4). 

The solution of Eqs. (2.7) and (2.5) (at d /at = 0, Aw = 0) 
allows us to find the distribution of the sound field in the 
layer: 

u ( x )  =2qs exp (-2qxxll) [l+s2 exp (-4qxxll)I -', 
s= [q+'/,(l-rZ) + I R-, 1 2 ]  l I RoR-' 1'. 

The amplitude of the sound field increases monotonically 
with the coordinate, reaching its maximum value 

at the rear boundary of the layer. Here the intensity of the 
pump wave falls off monotonically from IEol at x = 0 to 

It is important to note that even under the conditions of 
maximum reflection (R-, = r),  the intensity of the pump at 
the rear boundary of the layer is less than half its intensity at 

Fig. 2. Dependence of the thresholds of the absolute instability on the 
reflection coefficient ? at the rear boundary of the layer. The solid curves 
correspond to double SMBS backward, for the lower number of the excit- 
ed mode, n = 0, for the upper, n = * 1. The dashed curves correspond to 
double SMBS in the specular direction, for the lower curve, n = 0; 1, for 
the upper, n = 2, - 1. 

the input. This means that the double SMBS does not hinder 
effective absorption of the pump wave in the plasma. 

3. The phenomenon of stimulated reflection under con- 
ditions of strong sound damping that is discussed here corre- 
sponds to an absolute parametric instability if we assume the 
pump waves Eol and Eo- , to be specified." Actually, a test of 
the system (2.4) and (2.5) in the linear approximation 
[Eol = E, = const, Eo-, = r exp(ip )Eo] for stability 
[Y ,  a exp(Ay, t )] leads to the following dispersion equation: 

where n is an integer. The threshold of the absolute instabil- 
ity (A = 0) which represents the threshold of generation of 
the Stokes component in the plasma layer, is given by the 
equation 

1 l+P 
xbh = 7 [ln + (2nn) ' ln-' 

1-r 

The nonlinear solution obtained above corresponds to the 
excitation of a mode with n = 0 when Aw = 0. The presence 
of higher modes (n #O,  Aw f 0) indicates the possibility of 
nonstationary nonlinear states corresponding to scattering 
at the several frequencies w, = 2k0v, sin 8 + Awn . It follows 
from (3.1) that for the mode with number n f 0 the maximum 
threshold is achieved at ?-exp( - 2.rrlnl) and is equal to 
xmi, -4.rrln I. Graphs of the dependence of the threshold of 
the absolute instability, determined by Eq. (3. I), as functions 
of the reflection coefficient r for the modes with n = 0 and 
n = 1 are shown in Fig. 2. 

The phenomenon of double SMBS is realized only for 
waves that are scattered almost along the direction of the 
pump (A8-x/kol< I), when the beats between both pairs of 
electromagnetic waves excite a single sound wave, i.e., it cor- 
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responds to the collimated stimulated back reflection. 
The condition for neglect of the spatial derivatives (d '/ 

ax2) in the equations of Y ,  (2.5) has the form 

8y,/o> (allsin 0 cos 0 )  ' I3 ,  

which indicates a violation of the strongly dissipative ap- 
proximation at small incidence angles. We note that upon 
decrease in 8, the DSMBS threshold increases:I,, cc 8 - 2 .  

The considered effect is also preserved in a spatially 
inhomogeneous plasma, if its density depends only on the 
coordinate x. Since the x components of the wave vectors of 
the interacting electromagnetic waves are equal, the in- 
homogeneity of the density does not lead to a disruption of 
the spatial synchronism. All the formulas given above are 
preserved here with the replacement of x (2.9) by the follow- 
ing expression: 

1 o ooL0 ooL0 2/8 x=-Io-- cos 0,. ln (- cos 0. ) , 
8 y, c c 

7,'. 0=200 - sin 0,, 
C 

(3.2) 

where I, = E :,,/8.nn, x, Tis the intensity of the pump field 
in vacuum, 8, is the angle of incidence of the pump wave, Lo 
is the scale of the inhomogeneity of the plasma density at the 
turning point of the electromagnetic waves. 

An inhomogeneous flow of plasma along the x axis has 
no effect on the considered phenomenon since the sound is 
propagated in the perpendicular direction and therefore 
does not experience a Doppler frequency shift. 

The considered effect is preserved also when account is 
taken of the motion of the reflecting surface along the x axis. 
Such motion leads to equal Doppler shifts of frequencies of 
the reflected pump wave and Stokes satellite, keeping their 
difference unchanged. Since the ponderomotive force in (2.5) 
is created by the beats between the waves traveling into the 
interior the plasma and the reflected waves, its form does not 
depend on the velocity of the reflecting surface. 

4. The nonlinear state found in Sec. 2 in the case of 
double SMBS corresponds to allowance for only a single 
nonlinear effect-exhaustion of the pump wave. In this sec- 
tion, we discuss the effect of the nonlinearity of the sound 
wave on the stimulated backward reflection. In a sufficiently 
dense plasma, in which the sound wavelength is much 
greater than the Debye electron radius rDe(k,rDe(l), the 
equation of 6ne in the set (2.1) must be replaced by the equa- 
tion of nonlinear acoustics (see Refs. 7 and 8): 

Account of the last term in this equation, which describes 
the generation of the higher harmonics of the sound, be- 
comes significant if ISn, /ne I > 2ys /o. A comparison of this 
inequality with the estimate (2.1) of the maximum sound am- 
plitude gives the condition for the necessity of consideration 
of the acoustic nonlinearity. 

In particular, at I R - , / - r, we have 

Consequently, the exhaustion of the pump determines the 
stimulated reflection only in the case of relatively low inten- 
sities of the pump and relatively strong damping. In the op- 
posite limit, the sound wave becomes strongly nonlinear al- 
most immediately after exceeding the threshold of absolute 
instability. Here the nonlinear term on the right side of (4.1) 
turns out to be significantly larger than the linear terms on 
the left side. Therefore, following Ref. 8, we solve Eq. (4.1) 
with negleci of the left side when, for Sn, (x, y - v, t ), we have 

a 
I - Re { u  ( x )  exp (2ikoy sin 0- iot ) )  S - a ( - B n e ) z  =0. (4.3) 

ay a y  n. 

As an additional condition for Eq. (4.3) we have the require- 
ment of the constancy of the plasma density over the period 
of the sound field: 

n/Ao 00s 0 

J dy 6n. ( x ,  y-u,t) =O. (4.4) 
0 

The solution of (4.3) with the condition (4.4) gives a sawtooth 
sound wave (cf. Ref. 8): 

6n,=n, (21 1 u (x) 1 ) '" sin [koy sin0-'lzot+'12$ ( x )  -nn] , 
(4.5) 

$ ( x )  =arg u ( x ) ,  -n/2<koy sin 0-' /zot+i12$-nn~n/2.  

According to Refs. 7 and 8, Eq. (4.5) must be made more 
precise close to the surface of discontinuity 

koy sin 8-i/20t+'/z$=n (n+t/2) .  

However, this fact turns out to be insignificant for the prob- 
lem of the value of the reflection coefficient of interest to us, 
since only v ,  enters into the equation for the high-frequency 
field (2.7); here Y ,  is the amplitude of the fundamental of the 
nonlinear field (4.5): 

& n f b  8ln 9 
i 

v, = - ko sin 0 exp (-2ikoa sin 0 )  
n ne 

Substituting Eq. (4.6) in (2.7), we obtain a closed equation for 
lu(x)l: 

dlul w 4akol (ql )"  
dx 1 3n cos 0 

(4.7) 
The solution of this equation has the form 

where cn is the elliptical cosine. From (4.8), with account of 
the boundary conditions (2.7), we obtain a set of two equa- 
tions for the determination of the constant 77 and the reflec- 
tion coefficient 1 R - , I as functions of the parameter w: 
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where 0 < 7, 7 - w < K (1/d), K is a complete elliptic inte- 
gral of the first kind. In the simplest case r = 1, we get from 
(4.9) 

1 R - ~  I ~ = I - - C ~ ~  (ZU,  i / v T ) .  

It must be emphasized that Eqs. (4.9) describe the de- 
pendence of the back reflection coefficient on the thickness 
of the layer only in the case in which the sound field obeys 
the equation of nonlinear acoustics (4.3), which corresponds 
to satisfaction of the inequality u(x )  > 8 ( y , / ~ ) ~ / I .  This con- 
dition is violated at small reflection coefficients 
IR-, I < 8(y,/w)*/rI, when we must use Eq. (2.8) instead of 
Eq. (4.9). It is important to emphasize that such a violation 
also occurs as lR - ,  1-+r, i.e., upon a significant excess over 
threshold. Namely, at 

(r2- 1 R-i 1 Z ) " 1 ~ 8  ( y I / a )  ' / r I  (4.10) 

the set of equations (4.9) determining jR - ,I should be modi- 
fied, since the sound amplitude is so small near the left 
boundary of the layer that the solution (4.5) is inapplicable, 
and we must use the expression Y ,  = wIu/4yS in Eq. (2.7), an 
expression that follows from (2.5). The solution of (2.7) in 
this case yields 

I u ( x )  1 =r(r2- I R-i 1 2 ,  ' j2  exp [(rl+r2) xxl l]  . (4.11) 

The region described by such an approximation is bounded 
by the coordinate of the point x ,  at which the amplitude of 
the sound wave reaches the value u ( x , ) ~ 8 ( y , / w ) ~ / I  and 
therefore the sound wave becomes strongly nonlinear. The 
coordinate x,, in accord with (4.1 I),  is determined by the 
relation 

At x > x ,  the sound wave is described by the relation (4.8) 
with a certain value of the constant 7 = 7, that differs from 
the value following from the set (4.9). The condition of 
matching the solutions (4.8) and (4.11) at the point x,, and 
the boundary condition for the amplitude of the sound wave 
at the right end of the layer yield a pair of equations for the 
determination of the constant T~ and of the reflection coeffi- 
cient I R - 1 : 

By virtue of the relation (4.2), the first of the equations (4.13) 
yields 71 - w x o / l z K  ( l / d ) ,  while it follows from the sec- 
ond [by virtue of (4. lo)]  that 7 ,  cc w. We then find the length 
of the region I. = I - no, B in which the sound wave is 
strongly nonlinear: 

1 , = 3 x ~ ( l / f i )  cos 0/2ccka [ ( I + ? )  I]'". (4.14) 

Fig. 3. Dependence of R-,I2/? on the parameter 
6, = k k , l  C/3n cos 6 ,  at ? = l(1); 0.5 ( 2 ) ;  0.1 (3).  Allowance for gener- 
ation of higher sound harmonics. 

Upon satisfaction of (4.10) we have x,>l, as is seen from 
(4.12) and (4.14). That is, on the greater part of the region the 
sound wave is linear, and only in a comparatively small re- 
gion, adjoining the right boundary of the layer, do higher 
harmonics of the sound appear. The expression for the re- 
flection coefficient IR _, I in the vicinity of its maximum val- 
ue r, under the conditions of (4. l o ) ,  has the form 

Plots of the back reflection coefficient IR - ,  l 2  as functions of 
the layer thickness I under conditions of a developed acous- 
tic nonlinearity are shown in Fig. 3. 

For estimates of the acoustic nonlinearity, we remark 
that the characteristic length of the layer I, over which, be- 
cause of the pump exhaustion, saturation of the reflections 
takes place, is found from the condition x - 1: 

k,l,-8y, cos 0/1aaZ. 

The ratio I .  /IB - f l o / y ,  ) 1.  Therefore, the back reflection 
coefficient tends to the saturation level (R -, ( = r at signifi- 
cantly higher intensities of the pump in comparison with the 
case considered in the second section, in which only the 
pump source was taken into account. 

5. Along with the double SMBS process considered 
above, which is connected with the excitation of sound along 
the plane of the layer, another process of double SMBS is 
also possible, associated with the excitation of a sound wave 
in the direction perpendicular to the plane of the layer. It 
corresponds to the scattering of electromagnetic waves with 
a change in the x component of the wave vector and, conse- 
quently, to radiation of scattered waves in the specular direc- 
tion. In the case of normal incidence of the pump wave, such 
a process has already been considered in Ref. 3; it is charac- 
terized by the presence in the scattered radiation of not only 
Stokes, but also anti-Stokes satellites. 

We present the high-frequency electric field in the plas- 
ma layer in the following form: 

x exp (iok,x cos O+ikay sin 0 ) .  (5.1) 

The beats of the Stokes (E-,,) and anti-Stokes (El,) waves 
with the pump wave excite the sound waves 
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he=-in. v. exp (2iuk.x cos 0-iwt) +c.c. (5.2) 

Under the assumption of sufficiently high sound damping, 
y, /w > @/4 cos 8, the following set of simplified equa- 
tions follows from the set of equations (2. l )  for the amplitude 
of the scattered fields (5.1) and the density perturbation (5.2): 

d aka 0-E d 
i a -  

aka 
E o - o ~ o ,  (S -E-lo = - Ea-ov-o'; a x  2 cos 0 dx 2 cos 0 

where Aw = o - 2k, us cos 8. The boundary conditions for 
this set of equations are similar to (2.3): 

E,,, ( 0 )  =O. E l  ( 1  = r e 1 E i i  ( 1 ,  Eo-I ( 1 )  =roeqoEo, ( I ) .  

(5.5) 
For purposes of calculation of the nonlinear properties of the 
reflection, it is assumed that the reflection coefficient of the 
intense pump wave roe1" can differ from the reflection coeffi- 
cients of the weak scattered waves. 

The set of equations (5.3) has two first integrals: 

This allows us [by setting yo a exp(Ays t ), and by assuming a 
given field of the pump wave] to obtain the following disper- 
sion equation from the set (5.3), (5.4) with the boundary con- 
ditions (5.5): 

this determines the growth rate /lys and the frequency Aw of 
the excited waves: 

where U = f + (f - 1)lI2 and n is an integer. 
The instability threshold for a mode with number n is, 

according to (5.8), equal to 

xbh= [In2 U(r ,  r0)+(2n-1)2n2] l ( l+ro2)  In U ( r ,  r o ) .  (5.9) 

This expression corresponds for the case of normal incidence 
of the pump wave 8 = 0 to the result obtained in Ref. 3. The 
case of normal incidence (8 = 0) and of the absence of reflec- 
tion for the scattered waves ( r  = 0) was considered in Ref. 2. 

It follows from Eq. (5.9) that the instability does not 
occur at all values of the reflection coefficients r, and r. The 
criterion of the possibility of the development of an instabil- 
ity is the inequality f >  1, which leads to the condition 
r < (1 - G)/2ro. In particular, for equal reflection coeffi- 
cients r = r,, an instability is possible at 6 < 1/3; under con- 
ditions of the absence of reflection of scattered waves (r  = O), 
an instability is possible at 0 < r, < 1. Plots of the dependence 
of the threshold amplification coefficient x,, (5.9) of 3, = 2 
for the first few modes with the lowest thresholds (n  = 0; 1 
and n = 2; 1) are shown in Fig. 2. It is seen that these curves 
are located significantly above the threshold curves for dou- 

ble SMBS that corresponds to back reflection. The minimum 
threshold of "specular" double SMBS 

is achieved under the condition U = em or r& e - ". By virtue 
of the smallness of r& < 1, the value of the minimun thresh- 
old (5.10) is practically independent of the quantity r and 
therefore, increasing with decrease in 8, it is identical at 
8 = 0 with the minimum threshold obtained by Zel'dovich 
and Shkunov.* 

6. The inhomogeneity of the plasma density n,(x) de- 
pends essentially on the threshold of specular double SMBS, 
because the dependence of the wave vectors of the pump (k,) 
and the scattered (k, , ) waves on the coordinate x does not 
permit us to satisfy the conditions of spatial synchronism of 
the beats of the electromagnetic waves with the sound simul- 
taneously over the entire region of the plasma. We now con- 
sider the conditions of excitation of specular double SMBS in 
the case in which the density n,  (x) increases monotonically 
from n, (0) = 0, such that there are turning points both for 
the pump wave [k,, (x,) = 01 and for the scattered waves. 
Here we neglect the difference between the x components of 
the wave vectors of the electromagnetic waves 
k, z k ,, z k - ,, = k, . This corresponds to satisfaction of 
the inequality (u, /c)k+, < 1 which is usually satisfied under 
the condition of the effect of radiation on the plasma. 

Similar to (5.1) and (5.2), we represent the high-frequen- 
cy electric field E, (x, y,t ) and the perturbation of the density 
Sn, (x, y,t ) in the following form: 

X 

X exp ( i o  k, dx1+ikVy) , 

Here 8, is the angle of incidence of the pump wave on the 
plasma. The amplitudes of the pump field are assumed to be 
given: Eol = E,, Eo-, = roei'o~o. For the amplitudes of the 
scattered waves, we impose boundary conditions similar to 
(5.5): 

Using (6. l) ,  we obtain simplified equations from Eq. (2.1) for 
the amplitudes of the interacting waves: 

- - k,kx(0) va2 
(E,B: i - , + ~ o ' - o ~ , , ) .  

8nn,xBTo 
(6.4) 

The equations for the electromagnetic waves (6.3) differ 
from the Eqs. (5.3) only in the fact that w,, and k, depend on 
the coordinatex. Consequently, the first integrals (5.6) occur 
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also for the system (6.3). It follows from Eq. (6.4) that scatter- 
ing with specified frequency w takes place in the vicinity of 
the resonance point x ,  (a) at which w2 = 4k f, (x, )v:. We con- 
sider the case of sufficiently strong damping of the sound: 

'ya/o>oLe2/2kx3h (I,) cL"', (6.5) 

where L (w) is the scale of the inhomogeneity of the density at 
the resonance point x,. Here the spatial derivative in Eq. 
(6.4) can be neglected, and the system (6.3) and (6.4) at the 
instability threshold (a /at = 0) reduces to two equations for 
the amplitudes of the Stokes and anti-Stokes waves: 

d ~ : ~ - ~  (2) 
.I 

= - i ~  [E:,-~ (z) (l+ro2) -rO2EIl-I (0) 1, 
UZ 

1-1 z 
(6.6) 

dE ( = iQIEl-, (z) ( l+rz)  -r2E,-l (0) 1 ,  
ax 

where the function Q ( x )  describes the interaction of the 
waves: 

Solution of the system (6.6) with the boundary conditions 
(6.2) leads to the dispersion equation [compare with (5.7)] 

ch [i(l+ro2) Q dx] =- 
I-2?r,Z+r," 
2rO2 (l+r2) 

=-f(r, ro).  (6.8) 
0 

We emphasize that the condition (6.5) is not a necessary one 
for obtaining (6.8). It was used by us only for simplicity of 
exposition. Under conditions of weak damping of the sound, 
the system (6.3) and (6.4) reduces to two equations of second 
order for the amplitudes E - , and El -  ,. Far from the 
resonance point x, , these equations are solved in the approx- 
imation of geometric optics. In the vicinity of the resonance 
point, where the density can be approximated by a linear 
function of the coordinate, the solutions of these equations 
are expressed in terms of parabolic cylinder functions. The 
matching of the obtained solutions (this was described by us 
in detail earlier9 in application to another problem) and the 
use of the boundary conditions (6.2) again lead to the disper- 
sion equation (6.8). 

Similar to (5.7), Eq. (6.8) can be represented in the form 
of two equations that determine the threshold intensity of 
the pump wave and the shift of the frequency of the scattered 
waves: 

( d 4 )  (1+ro2) Z0 f h ( o O L I ~ )  cos OO=ln U (r, r,) , (6.9) 

=n(2n-1). (6.10) 

Comparing (6.9) with the threshold of specular double 
SMBS in a homogeneous layer (5.9), we note that the in- 
homogeneity of the plasma turns out to have a two fold ef- 
fect. On the one hand, the absence of the large factor w/y, on 
the right side of (6.9) leads to an increase in the threshold due 
to a narrowing of the resonance region but, on the other 
hand, the term (2n - 1)2/ln U is absent on the right side of 
(6.9), which lowers the threshold. The latter circumstance is 

connected with the fact that, as is seen from (6.10), in an 
inhomogeneous plasma the region of change of phase of the 
interacting waves is significantly wider than the resonance 
region. 

According to (6.9) and (6.10), specular double SMBS is 
possible only under the condition r < (1 - <)/2ro, when 
f > 1, in particular, in the case r = r, at r, < 1/3. However, in 
contrast to the model of a homogeneous layer, the minimum 
threshold is achieved not at roi = e - " , but at the maximum 
possible coefficient r,, when U- 1. A more accurate condi- 
tion of generation for specular double SMBS depends on the 
form of the plasma density distribution over the entire region 
occupied by the electromagnetic field. 

For example, in a plasma with an exponential density 
profile, 

ne=nc cos2 0, exp (x/Lo) , 

assuming r = r,, we have for the minimum threshold of 
specular double SMBS 

3nc o 
10 min In-' - . 

ooL0 cos 0, 2y, 

This is realized for waves with a frequency shift 
w w =. 2 2 v s  cos 6, and for 
C 

A comparison of the threshold of specular double 
SMBS (6.11) with the threshold of backward double SMBS 
[Eq. (3.1) at n = 0 with account of (3.2)] shows that just this 
latter process should determine the reflection in experiments 
on SMBS under conditions of oblique incidence of the pump 
wave in moderate energy fluxes, since its threshold is ap- 
proximately an order of magnitude smaller. 

7. Much lower values of the thresholds for backward 
double SMBS follow from Eqs. (3.1) and (3.2). For example, 
for a plasma with an inhomogeneity - loop,  created by the 
radiation of a neodymium laser, the threshold of backward 
double SMBS amounts to not more than 1012 W/cm2. Prac- 
tically all the published experiments on the interaction of 
laser radiation with a plasma have been carried out at large 
energy fluxes. Starting out from the theory developed above, 
we assume that a radical revision of the interpretation of 
already published experiments is necessary. The effects of 
collimated back reflection and saturation of the coefficient 
of SMBS reflection find simple explanations. There is no 
need for introducing an assumption that the plasma contains 
intense sources of above-thermal noise1' for the explanation 
of the observed level of reflection. Since the double SMBS 
threshold is significantly lower than the effective threshold 
of convective SMBS, it can be thought that either the esti- 
mates made earlier of the scale of the inhomogeneity of the 
plasma density are much too high, or the values of the tem- 
perature of the plasma are too low. It follows from Eq. (3.2) 
that the shift in the frequency of the back scattered radiation 
gives a direct possibility of the determination of the plasma 
temperature in the vicinity of the point of reflection at least 
in the case of moderate energy fluxes. 

762 Sov. Phys. JETP 59 (4), April 1984 Zozulya eta/. 762 



Finally, an extremely important consequence of the our 
theory is the fact that processes of double SMBS actually do 
not prevent effective absorption of the heating radiation, be- 
cause more than half of the energy of the pump wave passes 
into the dense plasma layer even under conditions of devel- 
oped double SMBS. Here the back reflection cofficient 
(which is equal in order of magnitude to the reflection coeffi- 
cient of the radiation from the dense layers of the plasma) 
provides a direct estimate of the absorption coefficient. 

On the basis of what has been said above, we can draw 
the conclusion that the pessimistic estimate of the role of 
stimulated scattering processes for the estimate of the ab- 
sorption of intense electromagnetic radiation [see, for exam- 
ple, Ref. 111, based on the results of the convective theory, is 
invalid. 

For an experimental confirmation of the important role 
of double SMBS processes, it is desirable to make special 
measurements of the dependence of the back reflection coef- 
ficient from the energy flux of the pump and of the depen- 
dence of the back scattered spectrum of radiation on the 
angle of incidence of the pump wave for moderate energy 
fluxes (for the neodymium laser, 5 1014 W/cm2). Limitation 
of the reflection coefficient should be observed here, while 
the frequency shift of the Stokes satellite w(3.2) should in- 
crease with increase in the angle of incidence 0,. 

It should be noted that the recent experiments in 
Garching on the iodine laserI2 correspond to the pheno- 
menon of double SMBS with conversion of the specular re- 
flection into collimated backward reflection. Here the SMBS 

threshold actually turns out to be significantly lower than 
follows from the convective theory and agrees satisfactorily 
with the threshold (3.1) of our absolute SMBS instability. 

"We emphasize here the fact that under conditions of strong sound damp- 
ing, the ordinary SMBS instability is convective. Only under conditions 
of negligibly small sound damping did the theory of SMBS for a layer 
with transparent boundaries lead earlier to absolute i n~ t ab i l i t y .~ .~  
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