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The instability of a relativistic electron beam in finite-conductivity plasma produced by injecting 
the beam into a gas is investigated. The instability arises as a result of the resonant interaction 
between magnetic-field perturbations and betatron oscillations of the beam particles, and takes 
the form of "snakeu-type macroscopic transverse oscillations of the beam which eventually col- 
lides with the side wall of the drift chamber. The instability development time is much shorter 
than the characteristic time for the diffusion of the magnetic field, and the distance over which the 
instability builds up amounts to a few wavelengths of the betatron oscillations. As the gas pressure 
increases in the range 1 < P (Torr) < 100, the instability development time and length are found to 
decrease. For beam energy E = 450 keV, beam current I, -20 kA, and beam radius a e 3  cm, the 
instability development time in nitrogen turns out to be 10-8-10-9 s, and the corresponding path 
length is between a few meters and 30 cm. A theoretical model has been developed. It can be used 
to explain observed phenomena and to calculate the instability parameters which are in good 
agreement with experimental results. 

1. INTRODUCTION 

The analysis of instabilities and their propagation in gas 
or plasma occupies an important place in the theory of trans- 
port of high-current beams of relativistic electrons. Experi- 
mental studies of the transport of beams with beam current 
I, <I, (I, = ypm, c3/e is the Alfven current) in neutral gas- 
es, performed at different laboratories, have shown that 
there is a relatively narrow pressure range in which the beam 
propagates readily to distances of up to 10 m (Ref. 1). For 
nitrogen, this pressure range lies near P e  1 Torr, where the 
energy loss is related to the development of beam instability 
and elastic scattering of the relativistic particles by atoms 
and ions of the plasma produced by the beam injected into 
the gas.2 At moderate pressures 1 < P (Torr) < 100, several 
experiments have shown a loss of beam stability, accompa- 
nied by the cutting off of the current and a deterioration in 
transport properties. 'p3 The observed phenomena are related 
in Ref. 1 to the development of hose in~tability.~ 

The hose instability of a beam in finite-conductivity 
plasma was first examined by Rosenbluth.* The instability 
mechanism is that particles moving in their own magnetic 
field begin to experience a centrifugal force when the beam is 
subjected to small random bending perturbations. The dis- 
placement of the beam in the lateral direction under the in- 
fluence of this force, to a characteristic distance of the order 
of the beam radius, occurs in a time that is greater than the 
time taken by the magnetic field to diffuse into the ambient 
plasma: 7, = 4ma2/c2 (5 is the plasma conductivity and a 
the radius of the beam). This instability model5 was subse- 
quently developed further in Refs. 4, 6, and 7. 

Another type of hose instability was examined by 
Ivanov and Rudakov.' In high-conductivity plasma, the 
beam and its magnetic field are "frozen" into the ambient 
plasma. The centrifugal force then displaces the beam in the 
lateral direction together with the plasma and, as shown in 
Ref. 8, the rate of propagation of the instability turns out to 

be of the same order as the velocity of sound. The character- 
istic features of hose instability are examined in Refs. 5 and 8 
where it is shown that the wavelength of this instability is 
much greater than the wavelength of betatron oscillations of 
the beam particles. 

The "snake" instability with wavelength approaching 
the betatron wavelength is due to the electrostatic interac- 
tion between beam electrons and the ion background, and 
was considered in Ref. 9 in the "rigid beam" approximation. 
An instability of a relativistic electron beam that deflects the 
beam to the wall of the drift chamber was discovered in Ref. 
10. The characteristic time for the development of this insta- 
bility is shorter by more than an order of magnitude than the 
corresponding time for hose instability, and its wavelength is 
close to that of the betatron oscillations. The phenomenon 
was explained in Ref. 10 by the development of resonant 
resistive instability. Qualitatively, this instability is due to 
the resonant interaction between betatron oscillations of 
beam particles in the resultant azimuthal magnetic field Hop 
produced by the resultant current I, (I, = I, - I,, , where 
I,, is the plasma current) and the magnetic-field perturba- 
tions 6 H. When the phase resonance condition k, V2 = wBo 
is satisfied (k, is the wave number of the perturbations, V, is 
the longitudinal velocity of beam electrons, and wp,  is the 
frequency of betatron oscillations), the Lorentz force ensures 
that the amplitude of the betatron oscillations undergoes a 
resonant variation with time, which is of the form 

When the dependence of the field perturbation on the angle 
e, is SHcc e' (i.e., we have the mode with azimuthal number 
m = I), the variation in the amplitudes of the particle oscil- 
lations leads to the lateral displacement of the beam as a 
whole. 

This effect is illustrated qualitatively in Fig. 1, which 
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FIG. 1. Change in the trajectories 1,2 (broken lines) and of the envelope of 
the particle beam (solid line) under the influence of a perturbation 6H, of 
the magnetic field for three successive intervals of time: to, t,, t,. Dot-dash 
line shows the axis of the drift chamber. 

shows two trajectories (1 and 2) with phase difference of half 
a period at different instants of time. The paticle moving 
along trajectory 1 is in phase with the magnetic-field pertur- 
bations, and the amplitude of its oscillations is increased by 
the Lorentz force, whereas the amplitude of the oscillations 
of particle 2, which are in antiphase, is reduced. The result of 
this is an asymmetry in the beam-current distribution, which 
grows in time and in space in the direction of propagation of 
the beam. If the perturbation in the beam current density is 
Sj, -@job /ar, the equation for the magnetic field in finite- 

a H  c2 conductivity plasma is - = - rot - ( 4T(T 
rotH - -jb , 

at (T ) 
and (1) yields the following estimate for the instability 
growth rate for rd / t )  1: 

In this paper, we present an experimental study of reso- 
nant resistive instability of a beam of relativistic electrons, 
and propose a theoretical model for it. 

2. EXPERIMENTAL SETUP AND DIAGNOSTIC EQUIPMENT 

The macroscopic instability was investigated experi- 
mentally on the "Neptun" accelerator" which generated a 
beam of relativistic electrons with energy E = 450 keV. The 
beam current and pulse length were, respectively, I, = 20 
kA and T = 60 ns. Beam electrons emitted by a flat graphite 
cathode, 4.8 cm in diameter, were injected through an anode 
in the form of a 20-pm titanium foil into the drift chamber 
with an internal diameter of 17 cm. The chamber was filled 
with nitrogen or helium (Fig. 2). The length of the chamber 
was varied in these experiments between 3 cm and 3 m, and 
the pressure range was 1-100 Torr. When the drift chamber 
was made of plexiglas, the return current lead was a metal 
wall placed against the inner surface of the chamber. In sev- 
eral experiments, the drift chamber was in the form of a 
metal tube. 

generator 

FIG. 2. Schematic diagram of the apparatus: 1-Faraday cup; 2--drift 
chamber; 3-water-filled discharger; &gas-filled discharger; 5-image 
converter; GRogowski belts. 

The basic electrical measurements were performed with 
various designs of the Faraday cup. The radial current den- 
sity distributiOnjb (r, t ) in the beam was measured with two 
modifications of a segmented Faraday cup (SFC). Their de- 
sign was similar to that described in Ref. 12. In the first of 
these probes (SFC-I), nine collectors, each of radius 5 mm, 
were located in a plane perpendicular to the chamber axis 
and along one of its diameters. The separation between the 
centers of these collectors was 16 mm. In the second group 
(SFC-2), ten collectors of the same shape were arranged 
along three radii at 120" to one another (with three collectors 
on each radius and one at the center, which was common for 
all the radii). In all these experiments, the SFC's were 
mounted at the end of the drift chamber. 

Relativistic electrons leaving the beam were recorded 
by vacuum Faraday cups with collector diameter of 100 mm. 
They were located on the lateral surface of the drift chamber 
at different distances from the accelerator exit window, and 
at different azimuths relative to the chamber axis. To deter- 
mvne the length over which the beam was deflected onto the 
wall of the drift chamber, we constructed a segmented Fara- 
day cup (SFC-3), consisting of three vacuum probes separat- 
ed from the gas-filled volume by a thin foil (30 p m  thick). 
These probes were on a plane perpendicular to the chamber 
axis. The probes were mounted on the surface of the 
chamber so that their collectors covered almost completely a 
portion of the lateral surface 8 cm wide. The Faraday cup 
was designed so that it could be mounted at any distance 
from the entrance to the chamber. The beam current I, leav- 
ing the drift volume was measured with a vacuum Faraday 
cup whose collector covered completely the transverse cross 
section of the chamber. An aluminum foil, 30pm thick, was 
used in all the vacuum Faraday cups to separate the evacuat- 
ed volume of the probes from the drift chamber. The resul- 
tant current I, was measured by two integrating Rogowski 
belts whose design is described in Ref. 13. The signal risetime 
in the Rogowski belts was 5 ns, and the decay time was 2-3 
ps. The belts could be placed at any distance from the point 
of beam injection. 

In addition to the electrical measurements, we also pho- 
tographed the plasma emission produced in the drift 
chamber by the beam. This was done with the aid of electro- 
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FIG. 3. Oscillograms of the diode voltage U and current I, the signal P 
from the photomultiplier, and the resultant current I,. 

statically-focused imaged converters 5 incorporating fiber- 
optics plates at entrance and exit. An image reduced by a 
factor of ten was produced on the converter photocathode by 
Gelios-40 objectives. The exposure time used for each frame 
(5 ns) was dictated by the length of the electrical supply pulse 
(10 kV), which was delivered by a cable oscillator consisting 
of a single line and a gas discharge 4 (Ref. 14). The discharger 
was fired by a pulse taken from the shunt in the discharger 3, 
which acted as a cummutator for the shaping hydraulic line 
of the accelerator. The time interval between the image con- 
verter frames was determined by the difference between the 
length of the cables delivering the signals from the generator, 
and amounted to 5 ns. This method enabled us to obtain data 
on the nature of beam motion. This conclusion was made on 
the basis of the following experiment. The beam was injected 
into a 12 cm long Plexiglas tube filled with nitrogen (P = 30 
Torr). A Faraday cup, a Rogowski belt, and a photoelectron 
converter with nanosecond resolution were placed in front of 
the exit window of the accelerator in the immediate neigh- 
borhood of one another. The use of short tube enabled us to 
reduce the inaccuracy in the synchronization of these de- 
vices (due to the finite propagation time of the beam in the 
gas) down to 1 ns. Figure 3 shows oscillograms of the signals 
produced by these detectors. It is clear that the emission in 
the visible range appears simultaneously with the beam (to 
within 1 ns) and vanishes practically simultaneously with the 
beam current. At the same time, measurements of the resul- 
tant current passing through the channel produced by the 
beam show that this current persists for a much longer time 
(more than 100 ns). It follows that the beam passing through 

the gas produces a characteristic "autograph" in the form of 
optical emission. 

In each experiment, we recorded the diode current and 
voltage, which enabled us to select those events for which the 
spread in these parameters did not exceed 10%. 

3. EXPERIMENTAL DATA 

Measurements of the beam charge transport as a func- 
tion of pressure show that there is a characteristic valley in 
the transport efficiency, which occurs for pressure 10 < P 
(Torr) < 100. For a given gas, the width and depth of this 
valley depend on the transport length. An increase in pres- 
sure was found to be accompanied by a reduction in the 
length of the current pulse during the propagation of the 
beam through the gas. This was also noted in Refs. 1 and 3. 

Before the above phenomena could be explained, and a 
model capable of describing them could be developed we had 
to perform experiments in which measurements were made 
of the radial beam density distribution, the loss of relativistic 
particles to the wall of the drift chamber, and the deteriora- 
tion in beam transport. The most detailed experiments were 
performed in nitrogen. 

Measurements of the radial distribution of beam cur- 
rent densityj, (r, t ) at different distances from the accelerator 
window at a pressure of P- 1 Torr showed that the profile of 
j, (r, t ) remained symmetric relative to the chamber axis for 
lengths L 5 0.8 m (Fig. 4a). Longer transport lengths were 
accompanied by a departure from the symmetry of the radial 
profile (see Fig. 4b), and this departure was first noticed on 
the trailing edge ofj, (r, t ). For given pressure, the asymme- 
try in the beam density distribution was found to increase 
with increasing transport length and led to the deflection of 
the beam as a whole from the chamber axis. Thus, whilst, for 
P- 1 Torr and distance L2i2 m, the deflection of the beam 
from the axis did not exceed the beam radius, a deflection 
exceeding the beam radius was recorded at the end of the 
beam current pulse at a distance of L e 3  m. 

For fixed lengths L > 30 cm, the asymmetry of the cur- 
rent-density profile and the size of the deflection were found 
to increase with increasing pressure P >  1 Torr. Figure 4c 
shows the time dependence of the radial profile for transport 
length L = 85 cm and P = 5 Torr. Whereas at P = 1-3 Torr 
there was only a slight asymmetry in the distribution (see 
Figs. 4b and c, at P>5 Torr) the asymmetry increased sub- 

FIG. 4. Radial distribution of beam current density at 
different times: a-P = 1 Torr, L = 26 cm; b - P = 1 
Torr, L = 85 cm; c-P = 5 Torr, L = 85 cm. 
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stantially and the beam was displaced in the radial direction. 
The higher the pressure, the earlier the onset of the profile 
asymmetry and the higher the rate ofits growth and of radial 
deflection. 

The data obtained with the aid of the SFCs are in agree- 
ment with optical measurements. Figure 5 shows photo- 
graphs recorded with the image converters as described in 
Sec. 2. The time was measured from the onset of emission at 
the center of the tube, which was recorded with the collimat- 
ed photomultiplier. Measurements showed that this corre- 
sponded to the arrival of the beam at the midpoint of the drift 
tube. It is clear from the photographs that the beam was 
displaced in the radial direction. The next problem was to 
determine whether the beam was displaced in a single plane 
or whether it was helical in shape. This was done by photo- 
graphing the emission produced by the beam in two mutual- 

FIG. 5. Photographs taken from the image-converter, show- 
ing the deflection of the beam to the wall of the drift chamber: 
a-P=30Torr,L= 1.3m;b-P=60Torr,L= 1.3m;ar- 
row shows the direction of injection of the beam; broken lines 
correspond to the position of the chamber walls, and the ver- 
tical dark bands are distance markers separated by 20 cm (the 
first marker lies at 40 cm from the anode foil). 

ly perpendicular directions, using two image converters. The 
experimental arrangement is shown in Fig. 6. Comparison of 
the two photographs in Fig. 6a shows that the projected 
beam traces are shifted relative to one another by the dis- 
tance Ail = 12 cm, which is equal to a quarter of the wave- 
length of the beam oscillation (A = 45 cm). This confirms the 
helical shape of the beam. Our experiments thus lead us to 
the conclusion that the development of instability results in a 
helical beam trajectory, and that the helix unwinds as the 
beam approaches the end of the drift chamber. 

Analysis of the time dependence of the current-density 
profile recorded with SFC-2 shows that the resulting asym- 

FIG. 6. a-Photographs of the image-converter screen: (arrow shows the 
u 

5, cm 
direction of the beam injection); b-optical arrangement; 1--camera, 
2,3-image converter, &mirror. FIG. 7. Beam current density distribution (A/cmZ) at different times. 
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FIG. 8. Oscillograms of the diode voltage Uand current I, and the current 
densityj, from the SFC-1 collectors mounted at different distancesx from 
the chamber axis; P = 15 Torr, L = 85 cm. 

metry is accompanied by the rotation of the beam around its 
axis. Figure 7 shows the current density distribution in the 
plane perpendicular to the chamber axis as a function of 
time. For the sake of clarity, the collector centers intercept- 
ing equal electron currents are connected by solid lines. The 
angular velocity of the beam determined from these mea- 
surements was found to be 3 X lo8 s- l. Both left- and right- 
handed beam rotation was observed. 

Comparison of the photographs made with the image- 
converters and integrating photographs also shows that the 
instability has a weakly convective character, with the drift 
velocity of the perturbations not exceeding lo9 cm/s. 

For pressures P >  10 Torr, the amplitude of transverse 
oscillations was so large that most ofthe beam was intercept- 
ed by the wall of the drift chamber. Figure 8 shows oscillo- 
grams form the collectors of SFC- 1, which was mounted at a 
distance equal to the distance (l = 85 cm) at which the beam 
hit the wall at a pressure of P = 15 Torr. The beam deflection 
dynamics is illustrated in Fig. 8. For the first 15 ns, the beam 
propagates reasonably symmetrically. After a further 10 ns, 
it disappears from the field of view of the collectors, then 
reappears, but only on half the probes. During this process, 
the beam is deflected in the radial direction with velocity 
v, - lo9 cm/s. A very similar velocity was obtained in ex- 
periments in which the current-density measurements were 
accompanied by a current of relativistic electrons to the side 
wall of the chamber." 

Measurements performed with SFC-3 show that the 
distance L over which the beam is deflected to the chamber 

FIG. 9. Distance L for the deflection of the beam to the wall as a function 
of pressure P. 

wall depends on pressure (Fig. 9), and that L decreases with 
increasing pressure. The fact that, in all these experiments, 
we always recorded a current of relativistic electrons to only 
one of the three probes, leads us to the conclusion that the 
beam as a whole was deflected to the wall. 

Photographs made with the image converter confirmed 
the above results and provided us with additional informa- 
tion on the instability development. Figure 5a shows three 
successive photographs of the deflection of the beam to the 
wall of the drift chamber at a pressure P = 30 Torr. It is clear 
from the first frame that, for 10 < t (ns) < 15, the beam was 
near the chamber axis. On the next frame, the beam is dis- 
placed in the radial direction to a distance of the order of the 
radius in a time 15 < t (ns) < 20 and, finally, the third frame 
[20 < t (ns) < 251 shows the interception of the beam by the 
chamber wall. It follows from Fig. 5a that the characteristic 
length of the perturbations is A = 45 cm. This wavelength 
decreases with increasing pressure, and, for example, 
amounts to /1 = 30 cm for P = 60 Torr. The characteristic 
instability development time was found to decrease with in- 
creasing pressure. For comparison, Fig. 5b shows the beam 
deflection dynamics for P = 60 Torr. It is clear from the 
photograph that, in about 1 ns after the appearance of the 
photomultiplier signal, the beam has traversed a distance of 
40 cm from the anode foil. After 6 ns, this distance became 
60 cm and the beam was practically undisturbed but, at 
about 11 ns, it touched the wall. The instability development 
time in this case did not exceed a few nanoseconds. Analysis 
of the photographs obtained with the image-converter for 
different pressures shows that the average transverse dis- 
placement velocity increases with increasing pressure. As 
the pressure was varied from 5 to 60 Torr, the velocity was 
found to rise from 5 X lo8 to 2 X lo9 cm/s. 

We have found that there is a critical distance from the 
point of injection (approximately 30 cm) over which the 
beam remains undisturbed. This is in agreement with electri- 
cal measurements in which it was established that, for 
lengths shorter than the critical value, the deflection of the 
beam to the chamber wall was not observed. This length is 
equal to the wavelength of betatron oscillations of the elec- 
tron beam. 

The magnetic-field diffusion time in the pressure range 
employed in our experiments (a = 3 cm, 0 5  1012 s-') ex- 
ceeds 100 ns (Ref. 15). Hence, it follows from the experimen- 
tal results that the instability that we have investigated de- 
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velops in a time that is much shorter than the magnetic-field 
diffusion time, i.e., t ( ~ ,  . Since the magnetic field is "fro- 
zen" into the plasma channel produced by the beam, the 
resultant current I, flowing through the channel does not 
vary along the chamber as the beam is deflected to the wall. 
This is in agreement with measurements of the resultant cur- 
rent made with the two Rogowski belts positioned as shown 
in Fig. 2. The distance between the point of injection and the 
first and second belts was 30 cm and 70 cm, respectively. A 
vacuum Faraday cup was placed at a distance of 7 cm from 
the second Rogowski belt. The pressure was chosen so that 
the beam was deflected to the wall between the two Ro- 
gowski belts. It follows from the experimental results that, 
when the beam is deflected to the wall, the resultant current 
does not vary with distance from the accelerator exit win- 
dow. When the beam is injected into helium, the instability 
develops at higher pressures (P k 25 Torr) as compared with 
nitrogen. It follows from the experimental results that, in the 
pressure range that we have investigated, the amplitude of 
transverse beam displacements did not exceed the radius of 
the chamber and there was practically no deflection of the 
beam to the wall. 

4. THEORY OF RESONANT RESISTIVE INSTABILITY OF A 
RELATIVISTIC ELECTRON BEAM IN PLASMA 

We shall consider the stability of a relativistic electron 
beam within the framework of the Vlasov transport equation 
with self-consistent fields but without the collision integral, 
which is valid for sufficiently tenuous plasma. If the charac- 
teristic time of instability development is such that ut<l ,  
and the beam particle density is much less than the plasma 
density, n, (n,, , the effect of electrostatic fields on the mo- 
tion of beam particles and the displacement currents in Max- 
well's equations can be neglected. The basic set of equations 
can then be written in the form 

cs d A  c ---- P AA= j b ,  j .=a J - fd3p, div A=0, 
c d t  4n Yme 

where f is the beam particle distribution function and A is the 
vector potential of the electromagnetic field. 

Linearizing the basic set of equations relative to the 
equilibrium values f, and A, for wa/c(k,a<l, p, <p,, we 
obtain the following set of equations for the perturbation Sf 
of the distribution function and the perturbation SA, of the z 
component of the vector potential: 

cs d6A, c 
A6Az=6j2, 

c d t  4n 

and substituting Sf in (4), we obtain 

PI as-4, at. 
biz=-e2J -5 P.- - 

m e  c dr, dp, 
-m 

To evaluate the integral in (5), we must know the equations of 
the undisturbed trajectories and the equilibrium distribution 
function for the beam particles. 

We shall consider a cylindrical beam of radius a, propa- 
gating in the direction of the z axis in plasma that occupies 
uniformly the space (r, p ,  z). In the original (undisturbed) 
state, the beam particles travel along the z axis, executing 
transverse (betatron) oscillations of frequency wp.  Since we 
are assuming that wp7, > 1, we may suppose that the motion 
of beam electrons takes place in the quasistatic magnetic 
field H,(r) = rot,A, due to the beam and the plasma cur- 
rents, so that the particle energy is conserved: ym,c2 
= const. Moreover, since the magnetic field is axially and 

azimuthally uniform, the z components of the generalized 
and angular momenta are conserved: 

M,=p,r=const=iV. 

The ratio ~ / y  has the significance of the energy of lateral 
motion. For times t < T,, the distribution of the magnetic 
field is determined both by the distribution of the beam cur- 
rent and of the induced current of plasma electrons. We shall 
take the vector potential within the beam (r<a) in the form 

Particle oscillations described by (6) in the field (7) are 
nonlinear, and the associated trajectories must be expressed 
in terms of the Jacobi elliptic functions. We shall examine 
the case where p, >p, , 

wheretheparticlecoordinates [r,(t ), p (t ), z(t )I canbeapprox- 
imately written in the form 

to,po, zo are integration constants, E,,, = - ey PA ,, (a), and 

Integrating (2) along the trajectories of undisturbed motion, Equations (8)-(10) describe the trajectory of a beam particle 
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in the form of an elliptical helix, whose pitch depends on the 
amplitude. 

The equilibrium distribution function f,, which de- 
pends on the constants of motion, will be taken in the form 

where @and Yare arbitrary functions, and the parameters7 
and characterize the spread of the generalized and angu- 
lar momenta of beam particles: 

We must now determine the perturbation of the beam 
current density (5). We shall suppose that the perturbations 
Sj, and SA, are functions of coordinates and time, as follows: 

We shall confine our attention to fast processes for which 
m r d  ) 1. The perturbation of the vector potential outside the 
beam is then negligible, and the condition on the boundary of 
the beam is SA, (r, p ) 1, = = 0. In the interior of the beam, 
and right up to the boundary (rga), we have the expansion 

m 

where p, is the k th positive root of the Bessel function of 
order m. The current density perturbation will also be taken 
in the form of an expansion: 

where the expansion coefficients are given by 

We now substitute the current density perturbation (5) and 
use (1 1) and (12), so that, after integrating along the trajec- 
tories (8)-(10) with respect to the momenta and coordinates, 
we finally obtain 

j %- -- 4ngm.c2e2 2 nAA ysl;txm+n) nl 
a2 

k-I 
n=-m 

where we have introduced the dimensionless variable v = (E/ 

E,, , )~ ' *  and 

are, respectively, the frequency of betatron oscillations and 
the average velocity along the z direction of particles with 
lateral energies E = v2~,,, . We have also introduced the di- 
mensionless function 

In the expression forj, , the term containing the derivative of 
the distribution function is connected with the change in the 
energy of transverse motion, whereas the term proportional 
to the distribution function is connected with the change in 
the angular momentum of the beam particles about the z 
axis, which occurs only for perturbations that are inhomo- 
geneous in the angle e, (i.e., for m +O). 

Let us consider (3), into which, after the transformation 
given by (12), we substitute j ,  (14): 

The presence of the factor cos2 [1/2(m + n ) ~ ]  in (16) shows 
that the current-density perturbation in the beam is nonzero 
only for modes with the same m and n parity. 

The right-hand side of (16) contains the denominator 
(w - k, V, - nup)  and, when the phase resonance condition 
w - k, V, = nap is satisfied, the beam particles undergo a 
resonant interaction with periodic perturbations of the mag- 
netic field, and excitation of the instability may be expected. 

We shall examine (16) in two limiting cases. 
(1) Let us suppose that the spread 2 is small, i.e., 

Suppose that, for a certain n = n,,, , both (17) and the follow- 
ing resonance condition are satisfied: 

It is then sufficient to retain only the term with n = n,,, in 
the sum over n in (16) and, since the spread 2 is unimportant, 
the resonance denominator can be taken outside the integral 
sign. 

To explain the experimental results on macroscopic in- 
stability, we shall confine ourselves to the case where m and 
nl are small, and consider fast processes for which 
(w T, Ism2 n2. Small-scale perturbations withpk > l m ~ ,  (' 'Z 

on the right-hand side of (16) can be neglected because they 
are dissipated by diffusion during the instability develop- 
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ment time w-'. Equation (16) then yields the following dis- 
persion relation: 

io't,j(o-k,c@-noe) =4n (Ib/I,) ofioLr (19) 

where R is an eigenvalue of the matrix (a,, ) with dimen- 
sionless elements 

It follows from (19) that the instability growth rate has a 
maximum for k, = - nw8, /c/3 and is given by 

By virtue of (17), all the beam particles are then in resonance 
conditions with the field oscillations. Expression (20) is iden- 
tical to within a numerical factor with the estimated growth 
rate obtained on the basis of qualitative considerations for 
the mode with m = In1 = 1. The growth rate that we have 
obtained exceeds the reciprocal of the diffusion time by the 
factor [ (I , / I ,W~,T~ ] 1. 

When the resonance condition (18) is not satisfied, the 
growth rate is comparable with T, - I .  

2. When the condition opposite to that given by (17) is 
satisfied for certain n = n,,, and u = v,,,, namely 

E I 4k,cp:nop0 I o-k,V, ( u )  -noB ( u )  / 
y2p2mec2 

i.e., only particles with energy E lying in the neighborhood - 
SE - y% 'm; c2 I w / /wgO (E of the point E,,, = v2,,, E,,, are in 
resonance with the field. By virtue of (1 8), it is then sufficient 
to retain the term with n = n,,, in the sum over n in Eq. (16). 
This term exceeds all the other terms in the sum by the factor 

/3 2m, c2/& 1. For reasons indicated above, we retain a fin- 
ite number of terms in the sum over k k, < /wrd 1 'I2). 

Comparing the right- and left-hand sides of (16) for 
k, V, z - nag $W and ord$ 1, we can write 

-iUTd= ( 4 n I b I ~ / I x ~ ) k , ( k ~ ) ,  P I  
where R (k,) is an eigenvalue of (v,, j for given k, and 

The instability occurs for Re R > 0. It is clear form (23) 
that, whatever the sign of the derivative d@ //dv, we can find 
k, in the range 

3 Emox 0 8 0  ~<~nl%-~k,l<---  In1 
4 8 y2P2mec2 cp 

such that the signs of the principal parts of the integrals of 
the diagonal elements of the matrix (23) will be positive, so 
that we shall have R with a positive real part. 

For the "snake" mode (m = 1) with wavelength ap- 

proaching the betatron wavelength (n = I), the growth rate 
is particularly high, and this occurs for wavenumber 
k, = 5 wW /c/3, i.e., for u,,, -0 in (21). The numerator in 
the integrand in (16) for v-0 is then proportional to 

- n + im + n - 1 - - v, and the integral increases logarith- 

mically with increasing 

Neglecting the spread in the frequency of oscillation of elec- 
trons with different angular momenta: 

Im o>M/a2ym,, 

and assuming that 

we obtain the dispersion relation 

where 

In our experiments, the beam is injected into the plasma 
at one end of the drift chamber. This means that both the 
development of perturbations in time and amplification of 
oscillations in space can take place. 

To determine the space-time picture of the development 
of the resonance instability for the dispersion relations (19) 
and (24), we substitute w-id/&, k,+ - id/& and apply the 
resulting operators to the beam current-density perturbation 
Sj, (z, t ), which we assume'to be close to the resonance value 
1.e., 

. o 6 0  
6iz (a ,  t )  = j  (z, t )  exp ( - L  

z  ) , 
where j(z, t ) is a slowly-varying function of z. For j(z t ) we 
then obtain the following two equations (m = n = 1): 

2 n Z b  

' t d  I ,  
A, (25) 

a . sz, {ln a i a t + c p a / a z  
-I=-- 
d  t  I r % d  b a ~ o  

4 I b  3 1, 
(26) 

q=--gz, L=-- 
3 Ir 8 In ' 

The self-similar solutions of (25) and (16) can be written (to 
within a constant factor) as follows: 

IA rl zo~O% j ( z , t ) = e x p  -- t - -  In- , % ; c 1 

where I" ( x )  is the gamma function. 
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5. DISCUSSION 

Our experimental and theoretical study of the propaga- 
tion of a high-current relativistic beam in plasma produced 
by the injection of a beam into a gas at pressures P >  1 Torr 
has shown that a fast macroscopic beam instability leading 
to an abrupt deterioration in beam transport will occur. The 
result of the instability is that the beam as a whole is spontan- 
eously deflected in the transverse direction. In our view, this 
instability is due to the resonant interaction between beam 
particles executing betatron oscillations and periodic pertur- 
bations of the magnetic field in finite-conductivity plasma 
(the resonance condition is k, zw,, / c  fi ) . 

The instability develops much more rapidly than mag- 
netic-field diffusion because of the finite conductivity of the 
plasma. Hence, the deflection of the beam to the wall of the 
drift chamber in the time At(% is accompanied by only a 
slight change in the current flowing through the chamber: 

This has been verified by measurements of I, before and 
after the deflection of the beam to the wall. 

The instability development time and length vary with 
the conductivity of the ionized gas, and hence, depend on the 
pressure and type of gas. In nitrogen at pressures in the range 
1 < P (Torr) < 10, appreciable deflection of the beam from 
the axis of the drift chamber occurs over a distance of about 1 
m in a time comparable with the length of the pulse. The 
associated conductivity is then a- 1013 S-' (Ref. 15), and the 
development of the mode with azimuthal number m = 1 and 
wavelength equal to the betatron wavelength (n = 1) pro- 
ceeds during the linear stage in accordance with (26'): 

1.4 r Gj,(z , t ) -exp -i-z exp -- t - -  In- ( ;: ) [ 1 2  T d  ( ,;) ,,,, 
X r I+-- t-- "" ;,)IF1* r [ I , ,  (27) 

For comparison, let us take the trial distribution function for 
the beam particles to be the monoenergetic function with the 
Bennett profile. For I, /Ib z 0.4, I, / I A  z 0.6, and Pe0 .8 ,  
we then obtain 7 - 100. The time for the development of the 
instability over a distance of a few betatron wavelengths is 
then - lop8 s. 

An increase in the pressure P >  10 Torr and, corre- 
spondingly, a reduction in the conductivity (a- 1012 s-') is 
accompanied by a change in the development of the current- 
density perturbations,which now assumes the form (25'): 

instability is found to develop in a time - lo-' s, and the 
beam is deflected to the wall of the drift chamber over a 
distance of the order of the betatron wavelength ( -  30 cm). 

As a result of the instability, the beam propagates along 
an unwinding helix whose pitch corresponds to the wave- 
length of the betatron oscillations of the particles. The ob- 
served rotation of the trace of the beam in the plane of the 
section through the drift chamber with angular velocity 
c-0-3 X lo8 s is in qualitative agreement with (28), where the 
real part of the frequency is of the same order as the imagi- 
nary part. 

In the gas-pressure range that we have investigated, the 
instability in helium develops more slowly and occurs with- 
out the beam being deflected to the wall. Actually, the esti- 
mated balance of plasma electrons shows that the depen- 
dence of r on the type of gas for pressure P >  1 Torr is 
described by a- B - ', where B is the coefficient in the Town- 
send formula.16 In helium (B,, =25), the conductivity is 
therefore greater by an order of magnitude than in nitrogen 
(B, ,e250). '' Since the characteristic instability-develop- 
ment time is approximately proportional to a (27), it is 
greater in helium by an order of magnitude as compared 
with nitrogen, and turns out to be comparable with the 
length of the beam current pulse in the pressure range that 
we have investigated. 

The authors are grateful to L. I. Rudakov for fruitful 
discussions. 
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