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We find the spectrum of the long-wavelength Langmuir turbulence ("condensate") as a function 
of the energy flux entering from outside. We study the interaction between a beam of relativistic 
electrons and the plasma under conditions when the interaction is accompanied by a condensa- 
tion of Langmuir waves. 

1. INTRODUCTION lows is: in section 2 we present the theory of a weakly turbu- 

In the theory of the interaction of relativistic electron 
beams with a plasma there has arisen up to the present a 
paradoxical situation. On the one hand, on the basis of weak 
turbulence theory (WTT) it was possible to describe the in- 
teraction of rather dense beams with a plasma for any damp- 
ing v ,  of the Langmuir waves. On the other hand, a consis- 
tent description of the relaxation of relatively weak  beam^^.^ 
(to which, apparently, WTT would be the better applicable) 
is known only when ve - y  where y  is the growth rate of the 
beam instability and it is even customary to assume that the 
analysis of the more interesting case when v, 4 y  is impossi- 
ble on the basis of WTT. "Relatively weak" are here called 
beams in the stabilization of whose instability an important 
role is played by the process of lowest order in the energy of 
the Langmuir waves their induced scattering by ions. Ac- 
cording to Ref. 1 such beams are those which satisfy the 
condition 

y< ( v , / Q , ) g 3 0 0 .  (1) 

Here 0,-wpk it$ is the width of the Langmuir spectrum, 
k c  ' - c / o p  is the characteristic wavelength of the Lang- 
muir waves excited by the beam, f l ,  and v, are the frequency 
and damping rate of the density fluctuations with spatial 
scale k ;  ', g - R , / w ,  ( 1. Inequality (1) can be satisfied, 
especially when v,  -a,, for very powerful beams which are 
of interest in many applications, amongst which are thermo- 
nuclear applications. 

The aim of the present paper is the study of the relaxa- 
tion of such beams in an isotropic plasma for any values of 
the parameter y / v e .  As the case y/ve  4 1 is uninteresting 
(there is no instability) and the case y /v ,  - 1 has been stud- 
ied, we shall assume below that 

7/ve"1. (2) 

In that case the energy flux produced by induced scattering 
on ions downwards in frequency has no time to be absorbed 
via collisions and leads to the appearance of long-wave- 
length Langmuir waves-the condensate. 

A large number of papers (see, e.g., Refs. 5 to 8) have 
been devoted to the study of the condensate and its effect on 
the spectrum of short-wavelength Langmuir waves. The rea- 
sons for the difference between the results of those papers 
and those obtained below become clear from the contents of 
the present paper. The scheme of the exposition which fol- 

lent condensate, in section 3 this theory will be used to find 
the spectrum of plasma turbulence excited by a beam of rela- 
tivistic electrons. In order that the crux of the effects consid- 
ered be not obscured by an abundance of possible spectra 
and by technical details we limit ourselves to the case of an 
isothermal plasma 

YPQ,, y K g 3 0 0  (1') 

and shall operate on the level of estimates, while exact calcu- 
lations will be made only to the extent to which they are 
necessary to validate for the assumptions used. 

2. HOW IS THE CONDENSATE CONSTRUCTED? 

In the present section we shall study stationary spectra 
of long-wavelength Langmuir turbulence for different val- 
ues of the energy flux 17 flowing into the condensate. 

We assume that the total energy density of the waves in 
the condensate is much smaller than the threshold for the 
modulational instability of the condensate as a whole: 

W , / n o T K k ? ~ ' ~ 2 .  (3) 

We shall elucidate in what follows that this condition is equi- 
valent to the assumption that the characteristic wave num- 
ber kc in the condensate is small compared to the width of 
the kernel k ,  of the induced scattering by ions: 

k , K k , = g k , =  ( m / M ) ' " r D - ' .  (4) 

Under condition (3) the turbulence in the largest part of the 
condensate will be weak and it turns out that the kinetic 
equation 

dh'r /d t=[y .  ( k )  -v,] N r + y i ( k ) N r + I r  (5) 

is applicable. HereN, is the spectral density of the Langmuir 
waves; 

is the growth rate of the induced scattering on ions for the 
waves in the condensate with one another; 

is the dispersive correction to the frequency of the Langmuir 
waves; 
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is the collision term describing the four-plasmon interaction 
in the condensate; 

is the growth rate of induced scattering on ions of waves 
from the region k>k, in the condensate, 

and f (p) is the ion momentum distribution function normal- 
ized to unity." 

In the region k 4 k, we can nelgect the k-dependence 
of the kernel U,, - ,,,k, and assume that the growth rate 
y, (k) depends solely on the direction of k. The nature of the 
angular dependence of y, (k) depends on the shape of the 
Langmuir spectrum in the region k, - k, which is the region 
over which, in fact, the integration in (8) takes place. If the 
spectrum in that region is anisotropic or even singular, y, (k) 
is a function with an anisotropy of the order unity. For an 
isotropic spectrum y, (k) may be assumed to be constant. 

We start the study of the condensate with the most in- 
teresting case y, > Y,,  when the collisions are unimportant 
and the absorption of the waves can be only non-linear. As 
will be made clear in what follows it occurs in the region 
k - k, g kc through the Langmuir collapse and the collaps- 
ing cavitons hardly affect the weak turbulence spectrum in 
the region k s k, which because of that can be found from 
Eq. (5). 

When k-kc the following estimates are valid for the 
non-linear growth rates in Eq. (5): 

The assumption used here that the energy of the waves with 
kc 4 k g k, is small (which ultimately turns out to be cor- 
rect) is feasible if the time for those waves to reach the main 
part of the condensate due to induced scattering on ions does 
not exceed the time for the four-plasmon interaction. Letting 
k approach kc from above we find 

~ i ( k c ) a ~ j ( k c ) .  (10) 

At the same time when k decreases by several times in the 
region k- kc the non-linear growth rate y, (k ) changes by an 
order of magnitude its characteristic value (and even 
changes sign). To guarantee stationarity this change must be 
compensated by four-plasmon processes. These are possible 
only when 

~ i ( k c )  Gyf ( k c ) .  (1 1) 

It follows from conditions (10) and (1 1) that 

~ z ( k ~ ) - y ~ ( k ~ ) .  (12) 

This estimate in combination with (9) gives a connection 
between Wc and kc : 

Tlo establish the connection between y, and kc we note that 
th~e four-plasmon interaction conserves E = 5 d 3kw, N, 
arid the induced scattering on ions decreases this integral by 
a factor two in a time - y; '(kc). In the stationary regime E 
is maintained at a constant level due to waves leaving the 
region k>k, and hence 

y * - ~ i ( k c )  -UP (k , rD)2(k , / k , )  '. (14) 

Substituting the estimates (13), (14) into the formula 
IZ- y, Wc for the energy flux flowing into the condensate we 
ca.n express kc in terms of 17: 

kc-k* (I-I/II*) " l .  (1 5 )  

A;ssumptions (3), (4) are valid when 

I I ~ I I . = m p n o T  (k r rD) ' .  (16) 

It will become clear in what follows that in the relaxation 
problem of interest to us the inequality ZZ < ZZ, is the same as 
(1'). We shall therefore assume that condition (16) is satisfied 
and turn to the discussion of other problems which remained 
open when we derived the estimates (13) to (15). 

To elucidate how fast the spectrum reaches the interior 
of the region k > kc we note that in that region the growth 
rtite y, (k  ) is much larger than y, since 

y i ( k )  -ap(  W,ln,T)  ( k l k * )  - ( k / k , )  y,>y,. 

The shape of the "tail" is therefore determined by the condi- 
tion for the balance between induced scattering on ions in- 
side the condensate and four-plasmon processes. One can 
guess the result without calculations. Indeed, when there is 
no energy flux from the short-wavelength (k>k, )region into 
the condensate the quantity kc decreases by a factor two in a 
time - y; '(kc) which is large in comparison with the time of 
the non-linear interaction of the waves of the "tail." The 
decrease in kc can be interpreted as the cooling of the gas of 
plasmons due to their friction by the "thermostat," the role 
ofwhich is played by the plasma ions. In view of the slowness 
of the cooling in the above mentioned sense the distribution 
of Ithe "tail" plasmons must manage to approach the equilib- 
rium one. It is obvious to assume that the latter turns out to 
be a Boltzmann distribution2': 

An. exact calculation described in the Appendix confirms 
thi,s guess. 

We note that the problem solved in the Appendix of the 
search for the short-wavelength asymptotic behavior of the 
condensate was already discussed earlier in Ref. 11 and the 
result was different: the spectrum decreased as a power law. 
The reason for this divergence consists in the error allowed 
by the authors of Ref. 11 when averaging over the angles of 
the kernel of the four-plasmon interaction. The subsequent 
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use of the same incorrect formula for averaging the kernel 
led to the conclusion that there exists a stationary conden- 
sate without waves arriving from the region k>kc (see Ref. 5, 
p. 193).3' The impossibility of such a stationary situation 
even when there are no collisions follows from the already 
mentioned fact that E is conserved in the four-plasmon inter- 
action and that that quantity decreases in the induced scat- 
tering on ions. 

Turning to a discussion of the shape of the spectrum in 
the region k ( kc we assume that there the energy flux is 
practically independent of k up to some k, g kc and is pro- 
duced by the local four-plasmon interation. Let W(k ) be the 
total energy density of waves with wavelengths oforder k - ': 

W ( k )  -opk3Nk. 

The following estimate is valid for the inverse time of the 
local four-plasmon interaction: 

From the condition that the energy flux along the spectrum 
be constant, yf(k ) W(k ) -17- y, W, , we find4': 

yf ( k )  -7, (kC/k) ' " .  

In accordance with the assumptions made above the four- 
plasmon interaction turns out to be very fast when k ( kc : 

y f  ( k )  %(k) -y* .  

Substituting the spectrum (19) into the four-plasmon colli- 
sion term one checks easily that the assumption about the 
local nature of the interaction with respect to k is also satis- 
fied (see Ref. 9): the main contribution to the integral comes 
from the region k, -k,-k3 - k. Finally the energy flux 
617 (k ) - y, W(k ) entering from the region k 2 k, to the scale 
k ( kc is much smaller than the flux 17- y, Wc transferred 
along the spectrum and the latter can therefore be assumed 
to be constant. Following the scheme proposed in Ref. 12 
one shows easily that the flux 17is, indeed, directed towards 
the long-wavelength region and one also evaluates easily the 
coefficients in Eqs. (19). 

The lower limit k, of the spectrum (19) is determined 
from the condition for its modulational instability which for 
waves of wavelength of order k - ' has the form 

Kr(k)  <6f7, ( k )  -n0T(krD)' .  

The ratio 

increases with decreasing k and when k - k, becomes of the 
order of unity. Using (13) and (15) we find 

km-k*(II/II*)"l.  (20) 

When k- k, the growth rate of the four-plasmon process is 
approximately equal to the dispersive correction to the wave 
frequency: 

'f+ (k,) -o,-o~ (kmrD) '. 

The growth rate of the modulational instability is a quantity 
of the same order when W(k )/ W, (k ) - 1 - 1. A threshold 
excess ratio of the order unity is clearly reached already 
when k-k, after which the whole energy flux is absorbed 
through collapse. The cavitons present at the initial stage of 
the collapse have a spatial size k; ' and densely fill the 
whole of space. The scattering of waves with k > k, by 
those cavitons is weaker than the four-plasmon interaction: 

~ , . ( k ) - a , ( k , l k ) ~ ~ y f ( k )  

and therefore hardly affects the weak turbulence spectrum 
in the region k ) k, . The effect of deeper cavitons turns out 
to be unimportant as they occupy a small fraction of the 
plasma volume: for cavitons of size k - ' 4 k ; ' this fraction 
is of order (k, /k ).5 

We have thus consistently expressed all parameters of 
the condensate in terms of the energy flux 17 flowing in it and 
moreover have established between the parameters y, and 
17, which are external to the condensate, the relation neces- 
sary to determine uniquely the spectrum in the region 
k k k * :  

y*-ap (k*rD)  2(n /n . )"7 .  P I )  
These results were obtained assuming that y, ) v, which is 
satisfied for not too weak energy fluxes5': 

nBn,- ( ~ ~ / g ~ a ~ ) ' / ~ ~ . - a ~ n ~ T ( k ~ r ~ )  "' ( - ~ ~ / o ~ ) " ~ .  (22) 

When the flux 17 decreases all estimates remain adequate as 
long as the difference y, - v, entering in Eq. (5) is positive 
and approximately equal to y, , i.e., as long as y, - v, k v,. 
The opposite case 

Gy.=max y,-v,ev, 

corresponds to a small energy flux along the spectrum and is, 
as will become clear below, possible only for extraordinarily 
weak beams. We shall therefore not describe that case in 
detail but simply give the main estimates. 

The total energy density of the waves in the condensate 
is at once determined from the energy balance condition 

W,-rtlv,. (23) 

Reasoning in the same sense as when we derived (12) and 
(14), we easily establish that the spectrum is concentrated in 
a region where 

y*-v,-Gy*, (24) 

and satisfies the relation 

yi(kc) -yi (kc)  -67.. 

Condition (24) gives the connection between the angular 
width of the spectrum $and 6y, and conditions (25) togeth- 
er with (23) enable us to express these quantities and kc in 
terms of the flux 17. The result, clearly, depends on the sym- 
metry of y, . 

If the growth rate y, is isotropic, the condensate is also 
isotropic. The estimate (9) then remains valid and also Eq. 
(13). Determining kc from (13) and (23) we can then use (25) 
to evaluate Sy, which gives 

6y.-v, (II/IIv)"'.  (26) 

If y, does not possess any symmetry properties its max- 
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imum is reached for some direction e and the spectrum is 
concentrated in a cone with opening 

$- (6y*lv,) I A  (27) 

close to the given direction. The first estimate (9) remains 
valid also for such a spectrum and on the right-hand side of 
the second estimate there occurs an additional factor6' 
In $- '. As a result a similar factor appears also in the esti- 
mate (26): 

The stability criterion for the condensate as a whole 
with respect to modulation in directions at right angle to the 
direction e has the form 

W,/noT< ($kcrD)  '. (29) 

Due to the factor $2 on the right-hand side, this criterion 
gives a lower bound for the flux fi 

Nelgecting the logarithmic factor it follows from this that 

II>Hm=op~zoT ( v , / op )  2. (30) 

We shall show below that when the turbulence is excited by a 
beam this last inequality is satisfied automatically and with a 
large margin due to (2). 

3. TURBULENCE EXCITED BY A BEAM OF RELATIVISTIC 
ELECTRONS 

The kinetics of Langmuir turbulence in the short-wave- 
length (k ) k, ) region might in principle be determined by 
the following processes7': induced scattering of the waves on 
the ions, scattering on induced density fluctuations with a 
spatial size k -' 4 k c  I ,  and scattering on long-wavelength 
density fluctuations which are connected with the conden- 
sate. The following estimates hold for the reciprocal times of 
the processes enumerated here: 

Here 

$(k ) is the angular scale of the changes in the spectral density 
N, of the waves. As the latter two processes do not change 
the frequency of the Langmuir waves, the energy flux with 
respect to frequency is generated by the induced scattering 
on ions. The energy density W (k ) of waves with wavelengths 
of order k -' is determined from the condition that this flux 
be constant: 

The spectrum (32) extends to the region of small wavenum- 
bers up to the scale I? at which damping of the waves due to 

tlheir induced scattering in the condensate is equal to the 
time for spectral transfer and the spectrum breaks off. To 
estimate we cannot turn to a consideration of the conden- 
sate but must use the connection obtained above between the 
parameters y, and 17 external to the condensate. Using (8), 
(;!I), (32) we get the following equation for k: 

Eken without assuming a Maxwellian form of the ion distri- 
bution function and exponential damping of the kernel Ukmk 
with respect to the parameter (k /k,)2 it is clear from this 
that I? depends very weakly on the flux 17 and is practically 
the same as k, . 

Substituting the spectrum (32) into the estimate (3 1) we 
c,an express the non-linear growth rates in terms of the flux 
L1: 

II ' " k .  rI 1 k .  
yi(k)  -ap (-1 > y j ( k )  -UP--- ' 

opnoT oonoT (k.rD)2 k ' 

The ratio of the times of the first two processes is indepen- 
dent of k: 

y y ( k ) / y , ( k )  -(rI/rI*)"2. (35) 

This ratio is small because of the assumption (1') that the 
four-plasmon process is slow when8' k-k,. The inequality 
hr< I7, is therefore in fact satisfied in the case of interest to 
US. 

The ratio D /yf a (k, /k )2 increases with decreasing k 
but still remains small in the whole region k > k, . Scattering 
on the condensate can therefore only have some value for 
strongly anisotropic spectra. 

If it is unimportant in the resonance region, i.e., 

the angular width of the spectrum in that region is given by 
the estimate 

[ ~ i  (kn)/yt(ko)l '". (37) 

Substituting (37) in the last of estimates (34) we establish 
easily that (36) is satisfied when 17> ( g/A8 )417,. 

If 17 < ( g/A8 )417,, we have yf (k,) < y, (k,) and the 
width of the jet of Langmuir waves lying close to the maxi- 
mum growth rate of the beam instability is determined from 
the condition 

y,(ka) (1 l j lA0 )~ -~e (ko ) ,  (38) 

which gives 
$- (gA0)I1* (rI/rI*)'J8. 

The estimate of the quantity y, used above refers to the case 

$>kc/kn-g(II/TI*) 'I7, 

In that range of values o f A 8  the assumption $ < A 8  is satis- 
fied automatically. It is also satisfied for smaller A@, since 
the angular scattering of the waves of the jet caused by the 
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condensate is for t,b < kc /k, not diffusive and y, no longer 
increases with decreasing $. The condensate therefore does 
not affect the stabilization of the beam instability. 

The stabilization condition yi (k,) - y enables us to con- 
nect the flux I7with the growth rate y of the beam instability: 

H-o,n,T ( ylgo,)  ' .  (40) 

As all parameters of the spectrum have already been ex- 
pressed in terms ofI7, it is easy to express them also in terms 
of y. We have already mentioned earlier that the restriction 
Z7<17, then reduces to inequality (1'); collisions do not af- 
fect the condensate (ZZ> 17,) in a wide range of parameters: 

y>glOOO(ve/y)', (41) 

and inequality (30) assumed to study the case 17 < 17, is auto- 
matically satisfied with a margin of (y/gv, )' times. 

We do not give formulae for the angular spread of the 
beam, the energy release, relaxation lengths, and so on as 
they are all determined by the spectrum in the resonance 
region and remain, according to what we said earlier, the 
same as when there is no condensate. 

4. CONCLUSION 

The main results of the present paper are the following. 
The occurrence of a condensate does not change the 

mechanism of the stabilization of the beam instability. The 
absorption of waves brought out of resonance with the beam 
by induced scattering on ions occurs in the long-wavelength 
part of the condensate through Langmuir collapse. The col- 
lapsing cavitons hardly affect the spectrum of most of the 
condensed waves. It is possible to find that spectrum without 
going beyond the framework of weak turbulence theory. It 
depends on the energy flux entering the condensate from the 
short-wavelength region. When the flux increases the con- 
densate "inflates." If the flux is not too small (so that colli- 
sions are unimportant) scaling occurs: the spectrum of the 
"inflating" condensate remains unchanged in shape and this 
is determined only by the symmetry of the excitation. 

APPENDIX 

Short-wavelength asymptotic behavior of the condensate 

As is clear from the estimates of section 2 the spectrum 
in the region kc ( k ( k, satisfies with reasonable accuracy 
the equation 

" f t  ( k ) N k + I k = ~ .  (All 

We now obtain the Boltzmann asymptotic behavior guessed 
in the same section, as well as the pre-exponential factor, 
directly from the kinetic Eq. (Al).  

To simplify the formulae we introduce dimensionless 
variables 

x=k/k, ,  w , = ( k C 3 o p / W , ) N ~ .  (A21 

Substituting (A2) into (6), (7), (Al )  and putting 

we get for w, the following equation 

The only possible solution of (A4) in the region x ) 1 has the 
form 

w,=@ ( x / x )  xa exp ( - x 2 ) .  (-45) 

Equality of the coefficient in front of - x2 in the exponential 
to unity must be considered to be the quantitative definition 
of the quantity kc.  For such a definition of kc the quantity 
Wc evaluated using Eq. (A3) differs from the total energy 
density of the waves in the condensate by a factor 

We substitute (A5) into (A4) and retain the main terms 
in the parameter x- ' 4 1 .9' For instance, on the right-hand 
side of (A4) we retain only the first of all the combinations of 
the spectral functions w, . Cancelling identical exponentials 
we get 

J 

(xx l )  ( ~ 2 x 8 )  $. ( ~ ~ 3 1  ( ~ 1 ~ 2 )  
' 

X 4  ( x , / s . )  4 (x,/x,$d3x2e-x+w., - [ xx,.,., I - 
(-46) 

The right-hand side of (A6) behaves x as x2" + ' as function 
of. Comparing the exponents of x in (A6) we find 

a=O. (A71 

The condition that the coefficients of the powers of x are the 
same gives an equation for the function @J (n): 

n-n' 

nang- (n,ng1+na'ng) (nn') +n,'ne' (nn')  
X 

I - (nn' ) ('48) 

Here n = x/x; Id 'n' indicates integration over all directions 
of the unit vector n'; the coefficients 

are determined by the spectrum in the region x - 1, and their 
symmetry depends on the symmetry of y, . Solving Eq. (A8) 
one can express the pre-exponential coefficient @J (n) in the 
symptotic expression (A5) in terms of the integral character- 
istics (A9) of the condensate. For instance, for isotropic y, 
and, hence, isotropic condensate, we find 

2 - P1 - 1 

@ ( n )  = - dxz2ru. [ d ~ x ' ~ e - ~ ' ]  . 
ax 

0 0 

"To fix the ideas we assumed in deriving Eq. (6) that the function f is 
Maxwellian. 

2'These considerations are not connected with a specific interaction and 
therefore applicable in all cases when the quasi-particles in any part of 
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the spectrum interact faster than the spectrum as a whole evolves. For 
instance, one can, without doing calculations, state that the short-wave- 
length asymptotic form of the self-similar spectrum of capillary waves, 
considered in Ref. 10, must be Boltzmannian. The difference between the 
result obtained in Ref. 10 and the Boltzmannian one is connected with 
the incorrectness of the diffusion approximation used by the authors. 

''This conclusion was not formulated explicitly although it followed di- 
rectly from the results obtained. 

4'The spectrum (19) was first obtained in Ref. 9 as an exact solution of the 
kinetic equation describing the four-plasmon interaction of waves with 
k < k * .  

5iWe note that automatically II, 4 II, by virtue of (1),(2). 
6'We note that the main part, in the parameter In$-', of the four-plasmon 

interaction does not change the wavenumber k, it merely "regularizes" 
the width $ of the jet. This fact strongly simplifies the problem of the 
analytical search for the spectrum. 

"It is understood that the electron non-linearities are unimportant. 
"We recall that the opposite case has already been studied.' 
"Taking corrections into account goes beyond the accuracy of (Al).  
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