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As part of an investigation of the feasibility of experimentally observing simultons (multiparticle 
optical solitons in resonant multilevel media), the stability of their propagation in the presence of 
transverse inhomogeneities is investigated. The growth raites of various transverse inhomogene- 
ities are obtained analytically. It is shown that under certain conditions a one-dimensional evolu- 
tion of multiparticle pulses can be realized in experiment. 

1. Problems involving the interaction between short 
multifrequency light pulses and resonant multilevel media 
have been attracting great interest of late.'-6 Multifrequency 
operation enhances the possibility of laser separation of iso- 
topes, of photostimulation of chemical reactions, as well as 
of spectroscopic investigations. The possibility of simulta- 
neous stable propagation of two-frequency pulses with a 
common envelope 

t - z l u  
~ N s e e h  (7) 

(called simultons) in a three-level medium was investigated 
in Refs. 2-6. It was found that in media with a common 
lower or upper level ( V or A configuration of the transitions) 
such a propagation is possible only if the oscillator strengths 
of the resonant transitions are equal, p:wl = p:w2b,,, are 
the dipole moments and w,,, are the frequencies of the tran- 
sitions). The application of the method of the inverse prob- 
lem of scattering theory to a three-level system with com- 
mon lower level ( V  configuration of the transitions) has 
shown that the "simulton" solution 

is the simplest soliton solution of the inverse p r ~ b l e m . ~  
Multisoliton solutions describe propagation and interaction 
of N simultons, such that their shape, velocity, and relative 
amplitudes remain unchanged. Thus, within the framework 
of the one-dimensional model, the simulton is a structurally 
stable soliton formation. 

To our knowledge, no simultons have been observed in 
experiment so far. To observe simulton evolution one must 
choose a medium with resonant transitions that coincide 
with the frequencies of the known sources of coherent radi- 
ation. One possibility of such an experiment was recently 
indicated in Ref. 7. At the same time, simulton-propagation 
t h e ~ r y ~ - ~  is based on a one-dimensional model. An investiga- 
tion of the propagation of monochromatic light pulses in 
two-level medias-" has shown that coherent propagation of 
pulses in resonantly absorbing media is unstable to the evo- 
lution of small-scale transverse perturbations. The trans- 
verse structure evolves as the pulse traverses in the medium a 
distance of the order of its length Lp = urP  . The characteris- 
tic scale of the resultant transverse structure for resonant 
pulses coincides with the diffraction dimension -(ALP )'I2, 
where A is the wavelength of the light. In the case of nonre- 

sonant pulses, the instability growth rate depends on the 
magnitude and sign of the detuning of the light frequency 
from the transition frequency of the medium." The decrease 
of'the instability growth rate following the frequency detun- 
ing explained the experiments n which the propagation 
lengths of 27.r pulses increased with increase of the detun- 
ing. l2  

Just as for a monochromatic 277 pulse, in the multifre- 
quency case the pulse propagation length can be restricted 
by evolution of a transverse structure. The feasibility of real- 
izing in experiment one-dimensional propagation of simul- 
tons depends on which of the processes, one-dimensional 
simulton evolution or development of transverse inhomo- 
geneities, is the faster. The purpose of the present paper is an 
investigation of the stability of simultons to transverse per- 
turbations. 

2. We investigate the instability, using as an example a 
two-frequency pulse in a three-level medium ( V  configura- 
tion) (see Fig. 1). The system of equations for the envelopes 
E ,,, of the resonant fields and the amplitudes a,,,,, of the 
levels that participate in the interaction with the field is giv- 

(ne recall that we are considering the case of equal transition 
oscillator strengths p:w, = p:w,). Here N is the density of 
the resonant particles and n is the nonresonant refractive 
index. The one-dimensional simultaneous solution is of the 
form 

FIG. 1. Level diagram. 
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2ii t-zlv 
E ~ : ~ ) = C ~ , ~  - sech - ( c ~ ~ + c ~ ~ = I ) ,  

P1,ztp T P  

t-zlu ( 0 ) -  t-zlv 
(2) 

al(0)=-th - , a ~ , ~  - c 1 , ~  sech-. 
T P  T P  

The duration rp and the velocity v of the simulton are con- 
nected by the condition cn/u - 1 = a 2$, where 
a = 2rNP2a/fin2. 

We transform to the dimensionless variables 

z,, 2=pl, 2 ~ 1 ,  2 ~ P / 2 h ,  t= ( t - z I ~ ) / t ~ ,  g= ( I -nv lc )  z lLp,  
p,= [Lp/2k , ( l -nv lc )]  -'"r, 

and linearize Eqs. (1) near the stationary solution (2) with 
respect to the small perturbations @,,, and ii,,,,, , which we 
choose to be proportional to cos xr, , 

where 

(0) z 3c2 LP 
Z,,z=c,,z sech T ,  q1,2= ---- 

2k1,, I-nulc 

We note that all the coefficients in these equations are inde- 
pendent of 6, so that the solutions of the linearized system 
are proportional to exp(y6 ), where y is the growth rate of the 
transverse perturbations. We consider two types of pertur- 
bation: "proportional" 

and "orthogonal" 

2 )  ofi=+c2, ( f + i G ) ,  

where t ,yand  ii, 5 are the real and imaginary parts of the 
perturbations. For perturbations consisting of proportional 
and orthogonal parts, the equations (3) can be reduced to the 
following system for the quantities 

r 

1 , u=e-'Ez, f=e-"f ,  u=e-"l, 
- @ 

namely 

where 

Q'=c 1zq12+~2zq22,  P ~ = c ~ ~ ~ ~ ~ + c ~ ~ ~ ~ ~ ,  R2=c1cz (qi2-qzZ). 

Our problem, in analogy to Refs. 8 and 11, is to determine 
the spectrum of the eigenvalues y(q,, 9,) and of the corre- 
sponding eigenfunctions that satisfy zero boundary condi- 
tions as r-+ + co . 

3. At 9, = 9, = 0 the spectrum of the eigenvalues of the 
operator (6) was investigated quite fully (see, e.g., Ref. 13). It 
consists of a discrete level y = 0 and a continuum spectrum- 
y = * iil, A>2 .  It can be shown that the eigenvalue spec- 
trum of Eq. (7) at 9, = 9, = 0, which corresponds to non- 
increasing solutions at + co , coincides with the spectrum of 
the operator (6). We can therefore use standard perturbation 
theory and seek the corrections at small 9, and 9, for the 
fourfold degenerate eigenvalue y = 0. Corresponding to this 
eigenvalue are four linearly independent eigenvectors: 

with (8a) corresponding to a small displacement of the initial 
position of the common envelope, (8c) to a small change of 
the relative amplitudes c,-x, + ac,, c,+, - ac,  (a is the 
perturbation amplitude), and (8b) and (8d) to small shifts of 
the high-frequency content of the simulton. 

To find y(g,, 9,) we must calculate the eigenfunctions at 
least up to first order in the parameter y (since, as will be 
shown below, ysq;,,). At this accuracy we have 

wherep, andp, are constants as yet unknown. 
The condition for the system (6), (7) to have a solution is 

orthogonality of the adjoined unperturbed equations. The 
adjoined equations for the operators (6) and (7) have the solu- 
tion sech 7. We use this to find the connection between P, 
andp,. Multiplying (6) by sech r and integrating with respect 
to 7 we obtain a system of algebraic equations, and from the 
condition that it have nonzero solutions leads to the disper- 
sion equation 

y4= ( l 6 l S )  Q4.  (10) 

One of the roots of (lo), y = (2/3'l4) Q, corresponds to an 
exponential growth of the perturbations 

t h t  i 1 
2 1 , z =  [ac1,2 (= + FPi;;) + o ( ~ Q ) ]  e" cos xr,, (1 1) 

where a is the initial amplitude of the perturbations, and 
0 (aQ ) are terms of order aQ. This unstable mode coincides 
with the stable mode of a 27~ pulse in a two-level medium 
and, of course, goes over into the latter when the simulton 
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degenerates into a 27~ pulse. In contrast to the two-level case, 
however, a perturbation of the other type ("orthogonal") is 
possible for the simulton. The corresponding branch of the 
dispersion equation yields a pure imaginary growth rate 

and for the perturbation we obtain 

QiQa 
%1,2= [ * c , ,  -(a, sin yo\+% cos yo\) 

PQ 
R2 

(ai DOS y&+a2 sin yo\)] oos xr,, (13) 

where a, and a, are the initial amplitudes of the perturba- 
tion. The oscillatory character of the "orthogonal" pertur- 
bation can be easily understood. Indeed, for sufficiently 
small amplitude changes c,+, + ac,, c,+, - ac,  (a( 1) 
the relation ci + c: = 1 + a2 =: 1, is valid, i.e., the simultori 
parameters are constant over the transverse cross section. 
This means that the simulton-component amplitude fronts 
that are perturbed in antiphase move at constant velocity 
over the cross section. The curving of either the amplitude or 
the phase front, however, leads to the appearance of diffract- 
ed oblique waves8 that interfere with the fundamental wave 
and lead to weak (of the order of a) oscillations of its ampli- 
tude and phase. The character of the evolution of the pertur- 
bations remains oscillatory so long as the perturbations per- 
taining to the different frequency components of the 
simulton remain in "antiphase" (this will be dealt with be- 
low). 

The principal role in the instability evolution is played 
thus by perturbations connected with the "proportional" 
curving of the amplitude and/or phase front of the simultor~ 
along the transverse coordinate. The point is that the oblique 
diffracted waves, which are due to the proportional curving 
of the amplitude (phase) fronts, are in phase. Interference of 
these waves with the fundamental wave leads to in-phase 
modulation of the simulton amplitudes. The pulse sections 
with the larger amplitude move more rapidly, so that the 
curvature of the wave front increases, leading to an increase 
of the modulation amplitude, and so on. In our case of a two- 
frequency pulse the perturbations of each of the fields evolve 
as a result of the interference of the oblique wave with a field 
of like frequency. The perturbations are therefore propor- 
tional to the relative amplitudes of the corresponding fre- 
quency components of the simulton and, in addition, in- 
crease jointly, since the different frequency component!s 
move jointly. 

We recall that we are considering for both fields pertur- 
bations proportional to cos xr, ,  so that when the wave 
numbers are different, k, # k, (i.e., R #O), oblique waves per- 
taining to different components of a simulton propagate at 
different angles to the pulse propagation direction. As a re- 
sult, purely "proportional" or purely "orthogonal" pertur- 
bations evolve into combinations of perturbations of both 
types, owing to the spatial mismatch. This can be easily seen 
from (9) and (13), as well as directly from the system (6), (7), 
where the coefficient R connects 11 and u with f and v. In 

addition, at k, # k, one can expect the instability growth rate 
to decrease on account of the rescattering of the growing 
cnode into a non-growing one. In fact, by calculating the 
eigenfunctions of the system (6), (7) up to terms of order Q 
vve obtain a more accurate expression for the growth rate 

It can be seen therefore that the larger the mismatch between 
the wavelengths of the simulton components, the slower the 
evolution of the transverse structure and the stronger the 
interaction between the two types of perturbation. 

At R = 0 (the simulton either degenerates into an ordi- 
nary 2 pulse and c,c, = 0, or k, = k,) the next correction (of 
third order in Q ) to the growth rate is equal to 

The maximum growth rate is reached at the limit Q- 1 of 
a.pplicability of perturbation theory. This corresponds to a 
characteristic transverse dimension 

h,- [L ,  (ci2hif  c,'h2) ] I", (16) 

where A ,  and A, are the wavelengths. 
4. We have thus shown that in the vicinity of the appli- 

cability of perturbation theory (Q < 1) the most stable pertur- 
bation is of type (11) with a characteristic dimension (6). 
This, however, raises the question of perturbations with 
smaller transverse dimensions. It might seem that the in- 
crease of the number of degrees of freedom compared with 
the two-level case, the difference between the transition fre- 
cluencies, and other factors can cause some perturbation 
with Q > 1 to evolve more rapidly than (1 1). In addition, en- 
ergy transfer between simulton components, or other nontri- 
vial processes not accounted for in perturbations of the form 
('4) and (5), can occur. Interaction between the growing and 
oscillatory modes may lead to saturation of the instability at 
some finite level. To answer these questions, numerical ex- 
periments were performed. In the upshot, besides verifying 
the analytic results, the calculation should yield the maxi- 
rnum possible distance that a simulton can negotiate in a 
medium. 

The numerical experiment consisted of the following: 
various sinusoidal small-amplitude perturbations with dif- 
ferent wavelengths A, were superimposed on a simulton that 
is homogeneous in the transverse direction and propagates 
allong thez axis [see the system of equations (I)]. The calcula- 
tion region was a rectangle with sides A, and 15L, along the 

F'IG. 2. Dependence of the growth rate of the perturbations on their trans- 
verse scale. Solid curve--calculated from Eqs. (14) and (15); points-re- 
sults of numerical experiments. At Q Z  2 the perturbations no longer in- 
crease in the numerical calculations. 
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FIG. 3. Field intensities: a--common envelope I P 
during the initial stage of the instability evolution 
(1P11,212=~:,21g!2;b,~-lP,12and 9,I2respective- 
ly during the nonlinear stage. 

x and z axes, respectively. Periodic boundary conditions 
were imposed at x = 0 and x = A,. 

It was found that the analytic results agree well with the 
results of the numerical experiments. The calculations show 
that at sufficiently small Q all the initial perturbations first 
end up on the "growing" eigenfunction (1 I), and then evolve 
jointly with the growth rate (14), (15). Figure 2 shows a plot 
of the growth rate vs q,  for a simulton with parameters 
c, = 0.8, c, = 0.6, k,/k, = 1/3. in accord with the instabil- 
ity-evolution mechanism, the fastest to evolve are the pertur- 
bations with Q- 1. Perturbations with Q) 1 do not grow, as 
can also be demonstrated analytically in analogy with Ref. 8. 

The evolution of the perturbations with the fastest 
growth was investigated numerically up to the nonlinear 
stage of the instability evolution, where the analytic results 
cited above no longer hold. Figures 3-5 show the distribu- 
tions of the simulton intensity components and of the exita- 
tion energy of the medium during the nonlinear stage. It can 
be seen that the joint evolution of the perturbations leads to 
formation of radiation filaments and to a broadening of the 

maximum-excitation region. Through exchange of oblique 
waves, the excited regions contained in the medium go out of 
phase and cease to emit. Light is radiated only from the lead- 
ing front of the excitation region and propagates in accord 
with linear diffraction theory. 

The results can be easily generalized to include the case 
of an N-frequency simulton in an (N + 1)-level medium. The 
fastest to grow in this case are perturbations with transverse 
dimension 

and the growth rate is, in first-order approximation, 

In all other respects the character of the instability de- 
velopment does not differ from the considered case of a two- 
frequency simulton. 

FIG. 4. Excitation of medium: a--common envelope 
l a 2  during the initial stage (a, , ,  l 2  = c:,, la2) ;  b, c- 
la,2 and la, respectively in the nonlinear stage. 
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FIG. 5. Field intensities (a) and level populations (b) aver- 
aged over the transverse coordinates. Curves 1 4  pertain 
to four successive instants of time. 

v 

4 6 8 10 z/L, Y 6 8 70 z/LF 

In conclusion, we recall once more that we have dealt in 
the present paper with a purely "soliton" situation (transi- 
tions with equal oscillator strengths). Joint propagation of' 
two-frequency pulses is possible also in media with arbitrary 
ratios of pfw, and p:o, (Ref. 4). Recent investigations,'' 
however, have shown that such pulses are not solitons in the 
sense of structural stability. The numerical analysis in Ref. 6 
has shown that these pulses decay not only as a result of' 
development of a transverse structure, but also via one-di- 
mensional collisions with other similar ~ulses.  The interac- 

that experimental realization of multifrequency solitons in 
resonant media is feasible. 
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