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The self-energy part of the quasihole Green function of an atom is used to calculate the spectral 
density of photoelectrons with allowance for many-electron correlations. A number of relation- 
ships is established between the Hartree-Fock and exact energies of quasihole states and the 
intensities of the corresponding photoelectron peaks. It ir; shown that allowance for many-elec- 
tron correlations does not affect the resultant intensity or the "center of gravity" of the photoelec- 
tron spectrum. 

1. INTRODUCTION 

Certain general properties of the photoelectron spec- 
tum of an atom that are due to correlation effects will be 
established in this paper. In the single-particle approxima- 
tion, the photoelectron spectrum consists of individual 
peaks, each of which is associated with the ionization of a 
particular atomic shell. Many-particle effects produce a con- 
siderable complication of the photoelectron spectrum, so 
that a single-particle peak becomes transformed into a set of 
discrete lines and a continuous band. 

If many-particle effects are taken into account by modi- 
fying the Hartree-Fock self-consistent field, the "center of 
gravity" of the many-particle spectrum occurs at the binding 
energy of the removed electron, and its resultant intensity is 
equal to the intensity of the corresponding single-particle 
peak.' It will be shown below that this result is quite general. 
It does not rely on the features of the Hartree-Fock approxi- 
mation, and remains valid when account is taken of the di- 
rect interaction between the electrons, i.e., of many-electron 
correlations. 

We shall take these correlations into account by using 
the many-body formalism in which the removal of an elec- 
tron from an atom is looked upon as the production of a 
quasihole in the ground or excited state of the system. Gen- 
erally speaking, the energies of the quasihole excitations dif- 
fer from the energy of the ith ionized shell, and can be found 
as the poles of the quasihole Green function G, ( E ) ,  regarded 
as a function of the binding energy.2 This involves the solu- 
tion of Dyson's equation with the self-energy part 2, (E) of the 
Green function, which can be found by summing the pertur- 
bation-theory series over the interelectron interaction. 

The binding energy region in which Z,(E) is complex 
determines the continuous band in the photoelectron spec- 
trum. For binding energies for which 2, (&) is real, the photo- 
electron spectrum consists of discrete lines that correspond 
to the poles of G,(E). The line intensity is proportional to the 
residues of G, (E) at these poles.3 

The effect of electron correlations on the photoelectron 
spectrum can be taken into account by including them in the 
self-energy part. In Section 2, we obtain an expression for 
2, ( E )  in the first nonvanishing order of small quantities in the 
interelectron interaction, which corresponds to the inclu- 
sion of simple correlations in the atom, namely, the virtual 

decay of the Hartree-Fock hole into two other holes and an 
excited electron. In this approximation 2, (E) can be repre- 
sented by the sum of individual terms, each of which corre- 
sponds to a virtual transition to an intermediate state of two 
holes plus one electron, and an integral over the continuous 
spectrum of these states. We shall show that this representa- 
tion of 2, (E) is a consequence of the Lehman expansion for 
Green's function, and is valid when correlation corrections 
of any degree of complexity are introduced. 

In Section 3, we investigate the analytic properties of 
Green's function and the spectrum of quasihole states. We 
show that the shape of this spectrum depends on whether the 
EIartree-Fock hole is capable of real decay. When decay does 
not occur, the quasihole ground state lies above the energy of 
tlhe Hartree-Fock hole. Excited quasihole levels correspond 
to discrete virtual states over which the-expansion of 2, (E) is 
performed (in the simplest case, these are states of the form 
two holes plus one electron) and lie below the Hartree-Fock 
energies of the corresponding virtual states. When real decay 
becomes possible, the Green-function pole that previously 
corresponded to the quasihole ground state is found to ap- 
pear in the complex plane of the binding energy of its non- 
physical sheet. All the quasihole levels, including the ground 
si.ate, are then determined by discrete intermediate states in 
the expansion of 2, (E), and their energies lie above the corre- 
sponding Hartree-Fock energies. It will be shown that, in 
both cases, the sum of the Hartree-Fock energies of the 
"bare" hole and the discrete intermediate states is equal to 
the sum of the energies of the quasihole levels. 

The theory of functions of a complex variable will be 
used to show that the residues of Green's function G, (E) and 
also the products of the residues by the energy of the corre- 
sponding quasihole states satisfy simple sum rules. In Sec- 
tion 4, we shall obtain an expression for the spectral density 
O F  photoelectrons, which takes into account many-electron 
correlations. It follows from this expression that the rela- 
tionships obtained in Section 3 can be interpreted as an equa- 
tion between the integrated intensity of the multiparticle 
spectrum and the intensity of the corresponding single-parti- 
cle peak, and as a correspondence between the center of gra- 
vity of the multiparticle spectrum and the Hartree-Fock 
bmding energy of the electron that is being removed. The 
validity of these results will be illustrated by the photoelec- 
t ~ o n  spectrum of the 3s shell of the argon atom. 
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2. GREEN'S FUNCTION FOR A QUASIHOLE 

We shall suppose that, in the absence of correlations, 
the hole can be described by a single-electron wave function 
of an occupied state in the self-consistent field of the atom 
(bare or Hartree-Fock hole). The Green function for this 
hole is diagonal in the basis of single-particle Hartree-Fock 
wave functions. The diagonal matrix element is given by 

where wi is the Hartree-Fock energy of the hole. 
Inclusion of many-electron correlations corresponds to 

the introduction of an interaction between the hole and other 
more complicated states, for example, two holes plus one 
electron. Instead of the isolated hole, we must speak of a 
quasibole excitation in the atom and a quasihole Green func- 
tion. 

The exact Green function of a quasihole will not, in 
general, be diagonal in the basis of the Hartree-Fock single- 
particle wave functions. If we suppose, however, that the 
energies of the atomic shells are essentially different, and 
correlations do not appreciably modify the shell structure, 
we can neglect the off-diagonal matrix elements. The exact 
Green function is thus assumed to be diagonal: 

where Zi(&) is the diagonal matrix element of the self-energy 
part. 

As noted in the Introduction, the matrix element Zi(&) 
can be evaluated by summing the perturbation theory series 
over the interelectron interaction. The first nonvanishing 
terms in the expansion of 2, ( E )  correspond to the virtual cre- 
ation of an additional particle-hole pair, and are illustrated 
graphically in Fig. 1. We use the usual symbols of the dia- 
gram method of the many-body formalism: a straight line 
with an arrow pointing to the right represents an electron in 
the Hartree-Fock field, either in a vacant level or in the con- 
tinuous spectrum, whereas an arrow pointing to the left rep- 
resents a Hartree-Fock hole; a wave line represents the Cou- 
lomb interaction between the electrons. The indices I, m, k 
represent the set of quantum numbers defining the single- 
particle state. 

If we confine our attention to the diagrams of Fig. 1, we 
obtain the following expression: 

x i  ( 8 )  

=SC ~(ik~V~Lm)+<iklVlmL)12+31<iklVlLm)-<ikIVIm1)12 E-wm-w,+EUk 
k 1,m 

(2) 
where the symbol S represents summation over discrete 
states of the excited electron k and integration over the con- 
tinuous spectrum, and (ik 1 V I Im) is the Coulomb matrix ele- 
ment. The expression in the numerator includes summation 

FIG. 1 

over the spins of the particles and holes in the intermediate 
state, and w,,  w,,  w, are the energies of the corresponding 
Hartree-Fock single-particle states. 

The hole states 1, m will be considered as given, and this 
will result in a considerable simplification of the derivation. 
All results obtained in this way are readily generalized to the 
case of an arbitrary number of hole states. 

Let us denote the energy of the intermediate state in the 
form of two holes and one particle, as follows: 

Expression (2) can then be written in the form 

where the positive coefficients a , ,  a(&') are expressed in 
terms of the Coulomb matrix elements. Moreover, 
E ,  = w, + w,  is the limit of the continuous spectrum. The 
sum in (3)  is evaluated over an infinite number of terms, since 
the wave function of the excited electron k is calculated in 
the field of the ion, whose asymptotic behavior at infinity is 
l/r. The discrete spectrum of the states k has a condensation 
point. It can be shown that, at the threshold, the discrete 
spectrum passes continuously into the continuous spectrum 
in the limit as k+oo : 

ak ak 
lim - = lim = a(E,). 

AE, k + ~  E k + I - E k  

3. ANALYTIC PROPERTIES OF GREEN'S FUNCTION 

We shall show that the structure of the expression for 
the self-energy part X i ( & )  in (3)  determines the nature of the 
spectrum of quasiholes. The explicit form of the coefficients 
a, ,  a(&') and energies E, is then unimportant. We shall also 
show that the structure of expression (3)  for the self-energy 
part remains unaltered when correlations of any degree of 
complexity are taken into account. At the same time, the use 
of the diagrams in Fig. 1 enables us to find the explicit 
expression for the parameters in (3),  which is essential for 
numerical calculations. 

The spectrum of the quasihole states is determined by 
the poles of Green's function, which need not lie on the real 
axis. We must therefore determine the Green's function for 
the entire complex plane of the binding energy. This will be 
done by first examining its behavior on the real axis, and 
then constructing the analytic continuation into the com- 
plex plane. 

We shall omit the subscript i on the functions Gi(&) and 
8, ( E ) ,  when we employ the corresponding matrix elements. 
The Hartree-Fock energy of the initial hole wi will be de- 
noted by E,. Moreover, it will be convenient to consider the 
function 

whose roots lie at the poles of G ( E ) .  

Consider the behavior of F ( E )  on the axis I r n ~  = 0. On 
the segment E > E ,  , the function F ( E )  is real. The points E, 
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a 

FIG. 2 

are simple poles ofF  (E). The function F (E) has a discontinuity 
at each of these points and experiences a change of sign. At 
the continuous spectrum limit, F(E, )is finite. Although the 
integral in (3) diverges logarithmically, we can show by using 
the continuity condition (4) that, as E+E, - 0, the diverg- 
ing part of the integral is cancels with the infinite sum over 
the discrete spectrum. On the segment E < E, , the integral 
in (3) must be interpreted as meaning its principal value. 
Accordingly, the function F(E) can be defined as the limit 
F (E + is) as 6-0. At infinity, F (E)-+E - E,, since Z ( E ) ~  as 
E-+ + cc . Figure 2 shows the graph of F(E) on the real axis. 

The roots of F (E )  on the segment E > E, are the poles of 
the Green function. On the segment E < E m  , the function 
F (E) has a nonzero imaginary part, so that the roots of ReF (E) 

are not the poles of G (E). It is clear from Fig. 2 that the behav- 
ior of F (E) for E > E m  is determined by the ratio of the Har- 
tree-Fock energies Eo and E,. When E, > Ei,  i.e., the origi- 
nal hole cannot actually decay into two other holes and an 
electron, the function S (E) has a root E~ > E, (quasihole 
ground states). Moreover, for each discrete state k, there is a 
root E, + , < E, < Ek . Thus, the number of real roots o fF  (E) is 
greater by one than the number of poles (Fig. 2a). On the 
other hand, when Eo < E, , i.e., real decay of the hole is pos- 
sible, the root E, falls into the regions where ImF (E) #O, and 
is not a pole of G (E). For each discrete state k, there is, as 
before, one root E, , but now E, - , > E, > E, (Fig. 2b). 

Let us now consider the analytic continuation of F(E) 
into the complex plane. To do this, we introduce a cut along 
the half-axis E < Em.  From the upper edge of the cut, we 
continue F ( E )  into the upper half-plane and, from the lower 
edge, into the lower half-plane. Since the cut is introduced 
along the half-axis, we can choose a contour that connects 
the two edges of the cut. Hence, the analytic continuation 
determines unambiguously the function F(E) on the entire 
complex plane. 

We showed above that the number of roots o fF  (E) on the 
real axis is either equal to or exceeds by one the number of 
poles. We shall now show that F(E) has no other roots. We 
shall use the well-known relation between the number N of 
zeros and the number P of poles of the function F (E) in the 
interior of a contour C (Ref. 4): 

Let us take the contour Cin the complex plane of the binding 
energies as shown in Fig. 3. The radius of the large circle C, 
will be allowed to tend to infinity, and that of the small circle 

(:, to zero. The contour C', which is a mapping of C by the 
function F (E), can readily be constructed with the aid of Fig. 
2:. This contour is shown in Fig. 4a (for E, > E l )  and in Fig. 4b 
(:for Eo < E m  ). The increase in the argument of the function 
F(E) along the contour C ' is either 0 or 2, depending on the 
ratios of E,, E l ,  and E m ,  and corresponds to the number of 
zeros and polees o fF  (E) on the real axis. We have thus shown 
that all the roots of F (E) are real. 

If we cont inueF(~)  from the upper edge of the cut to the 
l'ower half-plane, we obtain the nonphysical branch of the 
function F (E) and, correspondingly, the unphysical branch of 
the Green function. Similarly, it can be shown that, when 
ti', < E, , the unphysical branch of the Green function ac- 
quires two additional complex-conjugate poles. 

We shall now establish the relationship between the en- 
ergies Ek of intermediate states, over which the expansion of 
I;(E) is performed, and the energies E, of the quasihole levels. 
We shall use the relationship between the sum of roots and 
poles of the function F (E) that lie inside the contour C (Ref. 
4) : 

To be specific, we shall consider the case where E, > El and 
the sum Z,E, begins with zero. The integral over C, yields 
E',, whilst the integral over C, is zero. A circuit around the 
cut is equivalent to repeated integration along the half-axis 
E < E, in different directions. Since, on different edges of 
the cut, the real parts of F (E) are equal, whereas the imagi- 
nary parts have opposite signs, we obtain 

1 E m  d 2 (e,-E,) + E arg F ( e )  dr=O. 
k=O -m 

We must now establish the expression for the sum of 
rt:sidues of the Green's function of a quasihole at its poles. 
We shall use the Cauchy residue t h e ~ r e m : ~  

712 Sov. Phys. JETP 59 (4), April 1984 M. Ya. Arnus'ya and A. S. Khelfets 71 2 



The contour C will be the same as before (Fig. 3). The inte- 
gral over C, yields unity, whilst that over C, yields zero. A 
circuit along the cut reduces to an integral over the real half- 
axis. The final result is 

We shall now show that a sum rule similar to (6) can also 
be established for the products of the residues of Green's 
function at the poles z, and the energy E, of the correspond- 
ing poles. We shall do this by applying the Cauchy residue 
theorem to the function E[G (E) - (E - Eo)-'1. Apart from 
the poles of G (E), this function has the additional pole Eo. We 
have 

since E, - Eo - Z(E,) = 0 and Z ( E ~ ) / ( E ~  - Eo) = 1. The in- 
tegral over C can readily be evaluated, and the final result is 

We have thus established the properties of the poles of 
the Green's function, using an explicit expression for the 
self-energy part (3). It is possible to proceed in another way. 
The representation of Green's function by the sum of dis- 
crete pole terms and an integral over the continuous spec- 
trum follows from the Lehman expansion and is unrelated to 
the inclusion of any particular diagrams.' We have shown 
that the analytic properties of the functions G (E) and Z(E), 
such as the number of poles and the cut along the real half 
axis, are related to one another. The discrete pole terms can 
be extracted from the function Z(E), and the remaining ana- 
lytic part can be represented by a Cauchy-type integral over 
the boundary of the region of analyticity, i.e., the contour C. 
The integral over the large circle yields zero and integration 
over both edges of the cut yields the expression given by (3). 
However, in general we cannot explicitly determine the pa- 
rameters a, and E,: they depend on which particular dia- 
grams have been included in the self-energy part. 

4. SPECTRAL DENSITY OF PHOTOELECTRONS WITH 
ALLOWANCE FOR MANY-ELECTRON CORRELATIONS 

When many-electron correlations are taken into ac- 
count, the photoionization amplitude can be represented 
graphically by the sequence of diagrams shown in Fig. 5. The 
dashed line represents the absorbed photon and the index f 
indicates the state of the photoelectron. The first diagram in 
Fig. 5 shows the photoionization amplitude without correla- 
tions. We shall suppose that the photoelectron energy is high 
and that its state can be adequately described by the single- 
particle Hartree-Fock wave function. It is therefore suffi- 
cient to take into account the effect of correlations on the 
hole, and this is shown in Fig. 5. Using correspondence rules 

FIG. 5 

and summing the diagrams, we obtain the following expres- 
sion for the photoionization amplitude: 

where E = wf - W, w is the frequency of the absorbed pho- 
ton, Cf lrli) is the photoionization matrix element, and Zi(&) 
is the diagonal matrix element of the self-energy part of the 
Green's function. The symbol iS indicates the way the pole in 
the denominator is bypassed when the integral with respect 
to the energy of the emitted electron is evaluated in the 
expression for the photoionization cross section. 

The photoelectron spectral density is proportional to 
the square of the photoionization amplitude: 

Using the definition of the S-function, we can show that 

Thus, 

In the above derivation, we have used the property of the S- 
function of a complex argument, and the definition of the 
residue of the Green function at a pole: 

where o:(w) is the photoionization cross section of the ith 
shell without taking correlations into account. 

Apart from the diagrams shown in Fig. 5, we must also 
take into account the diagrams in which the hole undergoes 
real decay (Fig. 6). The contribution of this sequence of dia- 
grams to the photoionization amplitude is 

The contribution to the photoelectron spectral density is 
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TABLE I. Relative intensities and energies of main 
lines in the photoelectron spectrum of the 3s shell of 
airgon. 

FIG. 6 

Thus, the many-particle photoelectron spectrum is 
found to consist of two nonoverlapping regions. In the first 
region, where the binding energy E = wf - w is insufficient 
for real decay of the hole (ImZ,(w) = 0), we observe discrete 
lines that correspond to the poles of Green's function [see 
(8)]. In the second region, where ImZ, (w) # 0 and real decay 
is possible, we observe the poles of the continuous spectrum 
[see (911. 

The resultant intensity of the photoelectron spectrum is 

We assume that the energy of the absorbed photon is high. 
The lower limit in the last integral can therefore be replaced 
with - m, so that, using (8) and (9), we obtain 

0 

o. (a) = J deo," (a) Z,S (e-E,) + - 
- m  {C k=O 

since the expression in braces is equal to unity, according to 
(6). 

The center of gravity of photoelectron spectrum is de-, 
fined by 

Using (7) and (lo), we obtain 

Im Zi ( e )  
=o+E,. (11) 

n 
k=O - z 

Thus, the center of gravity of the photoelectron spectrum 

State Energy, eV 
Spectroscopic 
factor 

Aote. The last row refers to the continuous spectrum. 

ox-responds to the energy of the ionized shell, E, = w,, and 
the total intensity of the spectrum is equal to the intensity of 
the corresponding single-particle line (T?(W). 

The equations (6) and (7) can be used to analyze experi- 
niental photoelectron spectra. It follows from (8) and (9) that 
E:q. (6) is the normalization condition for the relative intensi- 
ties of discrete photoelectron lines and the continuous band. 
These intensities can readily be measured. If we know the 
energy of the photoelectron lines, we can determine the left- 
hand side of (7) and compare it with the single-particle Har- 
tree-Fock energy of the ionized shell. When all the discrete 
lines and the continuum have been correctly taken into ac- 
c ~ ~ u n t  in the experiment, Eq. (7) should be satisfied. As an 
ertample, consider the photoelectron spectrum of the 3s shell 
of the argon atom. The relative line intensities and their en- 
eirgies are listed in Table I and were taken from the experi- 
lr~ental results reported in Ref. 6. The nonrelativistic Har- 
tree-Fock energy of the 3s shell, calculated by computer 
using the program reported in Ref, 7, is equal to 2.55 Ry. 
Comparison of the experimental data with calculations 
sliows that there is good agreement: 

C z h c h = 2 . 5 6  Ry. 

5. CONCLUSION 

We have established general relationships for the pho- 
toelectron spectrum of an atom. However, these results are 
valid for a wider class of spectra. For example, consider the 
ionizaton of an atom by a fast electron [the (e, 2e) reaction]. 
The expressions for the ionization cross section remain unal- 
tered when the electromagnetic vertex in the graphs of Figs. 
5 and 6 is replaced by some other, for example, the inelastic 
scattering vertex. The main point is that the ionization pro- 
a:ss must involve sufficiently large energy transfer and the 
removal of a fast electron whose interaction with the ion can 
be adequately taken into account in the Hartree-Fock ap- 
proximation. 

The properties of the self-energy part and of the quasi- 
hole spectrum are not connected with the Coulomb interac- 
tion between the particles. Our results are therefore valid for 
other many-particle systems, for example, the nucleus. They 
ciin be used to interpret nucleon-separation spectra [the (e, 
e'p), (p ,  2p), (y,p), etc. reactions]. 
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