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We show in the framework of the Maxwell-Bloch model and neglecting relaxation processes and 
inhomogeneous broadening that the pulse shape of superfluorescence is self-similar. The shape 
depends on one random, but experimentally measurable parameter-the individual pulse delay 
time. There is convincing agreement between the theory and experiments on cesium atoms. 

INTRODUCTION 

The superfluorescence phenomenon-the generation of 
coherent electromagnetic radiation in an open laser without 
mirrors-was predicted by Dicke' in 1954 and first observed 
experimentally by Skribanowitz eta/.' in 1973. A large num- 
ber of theoretical and experimental papers has up to the pres- 
ent been devoted to the superfluorescence effect (see, e.g., 
Refs. 3 to 5 and the reviews 6 to 8). In Refs. 3 ,4  a consistent 
quantum-mechanical theory of the initial stage of super- 
fluorescence (linear theory of superfluorescence) was devel- 
oped and it was shown that one can in fact in all stages of the 
process use the semiclassical Maxwell-Bloch equations tak- 
ing into account the quantum nature of the electromagnetic 
field by specifying at the initial time a small normally distrib- 
uted polarization of the medium. In a medium with an in- 
verted population this polarization starts the development of 
an instability as a result of which radiation pulses are formed 
at the ends of the laser. The linear theory enables one to 
describe the initial stage of the development of these 
pulses-to construct a statistics of "delay times." To de- 
scribe the pulse shape generated for a given initial polariza- 
tion of the medium it is necessary to go beyond the frame- 
work of the linear theory and this is the object of the present 
paper. 

We make somewhat idealized assumptions, the most 
important of which are homogeneity of the problem (neglect 
of diffraction) and neglect of the homogeneous line broaden- 
ing. In addition, we consider only waves traveling in one 
direction. This, at first sight very restrictive, assumption, 
can, as we show, easily be justified by the nature of the an- 
swer found. 

In the present paper we also neglect inhomogeneous 
broadening. Strictly speaking, we shall assume that the time 
for inhomogeneous broadening appreciably exceeds the 
length of the first pulse. In principle it is possible to take 
inhomogeneous broadening into account but this requires 
the development of a more detailed theory using the inverse 
scattering method. Here we present an elementary theory 
variant which is based upon joining up the solution of the 
linearized problem with the well known self-similar solution 
of the Maxwell-Bloch equations. We show that under rea- 
sonable restrictions on the length of the laser the super- 
fluorescence pulse shape turns out to be universal, depend- 
ing self-similarly on the length of the sample, and is 
determined by a single undetermined parameter-the pulse 
delay time which is uniquely connected with the value of the 

polarization fluctuations at the opposite end of the laser. 
This conclusion is well confirmed by comparison with labo- 
ratory experiments on the observation of superfluorescence 
in cesium vapor5 and with numerical solutions of the Max- 
well-Bloch equation. After that we study the self-similar so- 
lution itself which plays an important role not only in super- 
fluorescence problems but also in amplification 
 problem^.^-'^ Although the self-similar solution cannot be 
expressed in terms of elementary functions, in the limiting 
case of interest for the theory of superfluorescence it is possi- 
ble to obtain a simple explicit expression which well approxi- 
mates the first pulse. 

51. BASIC EQUATIONS 

We restrict ourselves to considering a very simple mod- 
el of a laser. The active atoms are randomly distributed in 
space with an average density N. Initially we assume that 
there is a transition between non-degenerate states and we 
later discuss possible effects connected with degeneracy. The 
atoms have different transition frequencies close to the fre- 
quency v,; the distribution over the transition frequencies is 
characterized by the function g(v), where v = o-w,, which 
has a maximum at Y = 0. In that case 

02 

g(v)dv=l ,  
- m 

and vo-the characteristic width of the function g(v)-is 
rather small (vo<mo). 

Let the sample have a length L and cross section S. For 
moderate Fresnel numbers F = S/AL - 1, where A = c/w is 
the characteristic wavelength, one can also with adequate 
accuracy assume that the electromagnetic field depends 
solely on a single coordinate x directed along the laser axis. 
We shall assume also that the electromagnetic field is linear- 
ly polarized. 

For sufficiently large atom densities 5, when ~ S A ,  1 
the system of atoms can be split up into subsystems each of 
which is localized in a layer appreciably smaller than the 
wavelength and which consists of atoms with frequencies 
which are close, Aw<v,. Each of the subsystems is charac- 
terized by its own state vector which we can use to calculate 
its macroscopic characteristics-the average occupation 
number n(x,w,t ) of the excited level and the average value 
dP (x,w,t ) of the polarization (here d is the dipole moment of a 
single atom). If such a subsystem interacts with a classical 
uniform (possibly varying in time) electric field we can ob- 
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tain for the quantities n and P the closed equations:3s4 

We then have for the electric field the Maxwell equation 

Here and henceforth the brackets ( I : )  indicate the averag- 
ing: 

a 

<F> = g ( o - o , ) F ( o ,  X ,  t ) d o .  5 (1.4) - rn 
The local uniformity of the field is validated by the small, 
compared to the wavelength, longitudinal dimensions of the 
subsystem. It is more difficult to validate the requirement 
that the field be classical. Superfluorescence is essentially a 
quantum effect and at least in its initial stage quantum ef- 
fects are the determining ones. This problem is considered in 
detail in Ref. 3 where it is shown that quantum effects can be 
taken into account by specifying at the initial time a random 
polarization distribution. 

We draw attention to yet another fact. Equations (1.1) 
to (1.3) allow an exact solution 

PEO,  E=O, n=n, ( x ,  a ) .  (1.5) 

Here n,(x,w) is an arbitrary function. From physical consid- 
erations it follows that Jn,(x,w) 1 <#. If n,(x,w) = - 8 all 
atoms in the medium are in the ground state; if n,(x,w = 8, 
all atoms are in the inverted state. This is a coherent quan- 
tum-mechanical state. If In,(x,w) 1 < 8 the atomic subsys- 
tems are in mixed states. We note that from Eqs. ( 1 . 1 )  to (1.3) 
there follows the relation 

nz+Pz+o-2Pt2=no2(x, a ) .  (1.6) 

Physically it is clear that when time goes on all atoms must 
go over into the ground state with n,(x,o) = - #. However, 
it follows from (1.6) that the quantity I n(x,w) 1, cannot exceed 
ln,(x,w)l as it relaxes as described by Eqs. ( 1 . 1 )  to (1.3). The 
set ( 1 . 1 )  to (1.3) therefore describes relaxation to the ground- 
state occupation only from the coherent completely inverted 
state with n,(x,w) = 8. In all other cases it describes partial 
relaxation to a state with n = - In,(x,o) I .  The further relax- 
ation no longer is in the nature of a collective induced pro- 
cess and for its description we need a fuller allowance for the 
field quantization than by just giving the initial fluctuations. 
In actual fact the quantity n,(x,w) is determined by the exci- 
tation conditions of the system of atoms. We restrict our- 
selves to the simplest case n,(x,w) = #. 

In all real situations Eqs. ( 1 . 1 )  to (1.3) contain a small 
parameter 

~=4nd~iOlfia,<< 1. 

This makes it possible to change to contracted equations for 
the enevelopes. We put 

E=Ef exp {io, ( t-xlc)  ) +E- exp { io ,  ( ~ + x / c ) }  +c.c., 
11.7) 
\ r 

P=Pf exp { io ,  ( t-xlc)  ) +P- exp { io ,  (t+x/c) ) +c.c. 

and neglect second derivatives of the quantities E* , P* 
with respect to x and t .  We also change to dimensionless 
quantities 

As a result we get 

In these variables Eq. (1.6) becomes 

One must consider Eqs. (1.8) on the section O<x<l where 
I == ( w / c ) E " ~ L  is the dimensionless length of the laser. 

The most general mathematical statement of the prob- 
lem for the system (1.8) consists in giving the initial polariza- 
tion values 

p * ( ~ ,  t ,  h )  I t=o=po*(x, h ) ,  OGxGl, (1.10) 

the sign of the occupation (where an inversely populated me- 
dium now corresponds to n > O), the initial values of the elec- 
trlc field 

and of the waves incident on the ends 

8 *  ( x ,  t )  I%=,, i=8* ( t )  . (1.12) 

When stating the superfluorescence problem on must as- 
sume that there is no radiation incident on the end of the 
sample: 8 * ( t  ) = 0 ,  while the functionsp? ( x J  ) and %'$ ( x )  
are random ones. One must find their correlation properties 
by solving the exact quantum-mechanical problem3 when 
one shows that one must assume that 8; SO. On the other 
hand, the functionsp,'(xJ ) are Gaussian with the correla- 
tor 

(po* ( x ,  h )  p,*' (x' ,  A') > = [ g  ( h )  N ]  -'6 (x-x')  6 (A-A') . 
Here and henceforth N is the density of atoms per unit di- 
mensionless length. 

We consider now the instability growth rate y of an 
inversely populated medium. To do this we linearized Eq. 
(1.8) in an unbounded medium on the background stationary 
solution n = 1 ,  p = %' = 0. After that we put SZ? 
a exp { i ( 0 t  + Px) j and find the dispersion relation 

Then y(P ) = Im 0. A study of Eq. (1.13) shows that there are 
two limiting cases. 

If the width 1 / T $  of the function g(R ) is small, i.e., 
y(lD)T ;,I, we can put g(R ) = 6(R ). In  that case 

7 (P) ='12 (2-P) ' Iz. (1.14) 

In that case y,,, = y(0) = 2- ' I 2  - 1 .  In the opposite case of 
a broad line when y(P ) T  ;( 1 we have 
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In that case y,,, = y(O)( 1. 
Depending on the relation between the quantities y,,, 

and 1 one can consider three kinds of mirrorless lasers in 
which superfluorescence may occur. If 

the amplification of a pulse during one passage through the 
laser is small, one may call such a laser a short one. If 

the amplification of the pulse during one passage of the sam- 
ple is large but because of their smallness the initial fluctu- 
ations do not manage to grow sufficiently to appreciably 
change the population during one passage. We shall call 
such a laser one of moderate length. Finally the case 

lym,>'l2 In N (1.18) 

corresponds to a long laser. The theory which follows will 
refer mainly to short and moderately long lasers. 

We shall in what follows study exclusively the situation 
when there are waves present propagating only in one direc- 
tion (say, to the right). The basis for this, at first sight arbi- 
trary, assumption will be given in the next section. 

We now consider the situation when the states between 
which the transition takes place are degenerate with respect 
to angular momentum. The degree of degeneracy will be 
equal to 2J + 1 where J is the value of the angular momen- 
tum. The selection rules for a linearly polarized field allow 
transitions for which AJ = - l,O, 1; Am = 0, where m is the 
component of the angular momentum along the direction of 
the polarization vector. In that case every dipole transition 
contributes to the total current and Eq. (1.8) takes the form 

Here a, = N,, - N,, is determined by the pumping con- 
ditions, N,, and N,, are the initial populations of the excit- 
ed and the ground states with angular momentum compo- 
nents m,  

I [J2-mZ] "2/J, AJ=-I 
K,  = m/J, AJ=O. 

[ (l+ l ) 2 - m ~ l " z / ( J + l ) ,  Al=l 

As in the non-degenerate case the superfluorescence prob- 
lem can be reduced to the solution of the mixed problem for 
the set of Eqs. (1.19). The initial and boundary values for 8 
are zero and the initial polarization fluctuationsp, are ran- 
dom functions distributed normally with a correlation ma- 
trix 

( p i  (2,  h )  pm* ( y ,  P) )=6tm6 ( x - Y )  6  (h-P) /g ( A )  No,. (1.20) 

92. THE LINEAR MODEL, SELF-SIMILARITY OF THE 
ASYMPTOTIC BEHAVIOR 

The Maxwell-Bloch equations for waves moving solely 
in one direction have in our dimensionless variables the form 

d8/d~+diP/dx=<p>, dp/d~=-ihpf n&, 

d n / d ~ = - ' / ~  (8p8+8*p) .  (2.1) 

The superfluorescence effect is, as was explained in the pre- 
ceding section, described by the solution of the mixed prob- 
lem in the region 

~ 2 0 ,  OGxGl (2.2) 

with the following boundary and initial conditions: 

8 1 ,,o=O, 8 1 ,-o=o, 

P f T = o = p o ( ~ ,  a ) ,  nlT=o=(l- I P O I ~ ) ' ~ ~  (2.3) 

where one should assume thatp,(xJ ) is a very small quanti- 
ty, p , - ~  - ' I 2 ,  so that nl,=, z 1. One can for such initial 
and boundary conditions linearize the set of Eqs. (2.1) near 
the solution n = 1, p = 8 = 0; this gives 

Using the conditions (2.3), the solution of the set (2.4) has the 
form3 

I OD 

8 ( x ,  t )  = J dxr J dh g  ( A )  G (x-xr ,  t ,  h )  po ( r f ,  h )  , (2.5) 
0 -m 

where 

G (z, t ,  A )  = 2- (==fa exp[ P ~ - P x + ~  ( P )  X I  
2ni PSih  

-dP (2.6) 
- i m + a  

and 

while a is positive. When the functiong(2 ) is a Lorentz distri- 
bution: 

we have 

1  
v (PI = P+1/T2' 

and 

xexp[  (ih+l/T,') (a-a'-x) ] exp (-T/T,*).  (2.9) 1 
Here I&) is a Bessel function of imaginary argument, and 
8 (z) the Heaviside function. In the limit of infinitely thin 
lines (T :+ w ) we get 

G, ( x ,  a, 0 )  =Io [ 2  ( x  (T -x )  ) "'1 0 ( T - X )  . (2.10) 

We consider the asymptotic behavior of the solution 
(2.5) for large times r,x. The main contribution to the inte- 
gral comes from the region near zero. To begin with we study 
the asymptotic behavior in the case of an infinitely thin line 
and afterwards discuss the legitimacy of such a calculation. 
We are thus interested in the asymptotic behavior, for large 
TSX, of the integral 

X 

8 ( x ,  T )  = ~ p 0 ( y ) ~ ~ { 2 [  ( x - Y )  ( T - X + Y )  I1")dy (2.1 1) 
0 
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[in the case of interest to us 8 (T - x + y) = 11. Because of 
the exponential increase of the Bessel function I, with re- 
spect to the parameter [(x - y)/r]1'2, the largest contribu- 
tion to the integral comes from the region of small values of 
y. To the main order we have 

1 
X 

1 (x, T) = - enp (2 (xr) "x) p, (y) exp {- y (dx )  I") dy.  (57) 11' 
(2.12) 

Evaluation of the integral in (2.12) is made difficult by the 
random nature of the functionp,(x). We perform the calcula- 
tion for the very special case when the realization ofpo(x) in 
the vicinity of the point x = 0 is a smooth function. In that 
case 

po ( Y )  =PO ( 0 )  + (~11) pr+. . . . (2.13) 

We have now from (2.11) 

Changing to dimensional variables we find that the asympto- 
tic behavior (2.14) is valid for sufficiently large times t when 

t> ((pi/po (0) ) 'TSF, t > ~  fl '/%SF. 

( T ~ ~  is the superfluorescence time and T~ the free flight 
time). Of course, we assume that for such times the linear 
approximation is still valid, i.e., 2?(x,r)( 1. This is well possi- 
ble as the initial fluctuations p,(O) are of order N -'I2. It is 
important for us that in that intermediate range of times the 
answer has the form 

8 ( x ,  . c ) = d ( E ) ,  n(x, -C)=n(E), p(x, 7)=p(E), 

In the case of an imhomogeneously broadened line the 
asymptotic behavior (2.14) is intermediate. We can neglect 
inhomogeneous broadening if T < Tz2/rSF. The theory giv- 
en below refers just to such times. 

53. SELF-SIMILAR SOLUTIONS 

In the case ofexact resonance,g(A ) = S(A ), the Maxwell- 
Bloch Eqs. (2.1) allow the self-similar s~bst i tut ion"~'~ 

8 (x, Z) =x8 (El, n ( x ,  T) =n(E), P ( 2 , ~ )  =P ( E ) ,  (3.1) 

where 6 is the self-similar variable. We note that such a 
space-time dependence of the $,n, p was already met with in 
the preceding section. Just such a form has the asymptotic 
behavior (2.15) of the linear problem for large T. We must 
thus continue the solution (2.5) into the non-linear region 
through a self-similar solution (3.1) in which the functions 
$,n, p satisfy the following set of equations: 

We note that the self-similar variable may take on both real 
(T >x) and imaginary (T <x)  values. Imaginary 6 corre- 
sponds to the non-causal region in the X,T coordinates which 
is unimportant for the superiluorescence problem; in what 
follows we shall thus be interested in the case of real 6. 

The set (3.2) has a one-parameter family of solutions 
w:hich are not singular at zero and which are completely 
determined by the value go = $(0) and by the sign of 
no = n(0). Indeed, from the given ?Yo we determinep, = go 
anid from the conservation law (1.9) we find 

2 112 no= -pol . 
It is convenient for the further analysis to reduce the set 

(3.2) to a single second-order equation. Putting 

n=cos 9, p=sin cp, Z =  (2/t)cp', 

we get 
q"+g-iq'=sin q. (3.3) 

This equation has self-similar solutions of the sine-Gordon 
model which can be expressed in terms of classical PainlevC 
transcendentals. The solution of (3.3) determined by the ini- 
tial conditions po = po(0), pc (0) = 0 describes the motion of 
a Newtonian particle with non-stationary friction in the po- 
tential U(p  ) = c o ~ .  It has the form shown in Fig. l. 

The qualitative behavior of the solutions of Eq. (3.3) 
depends on po which in our case is asymptotically small 
(p,, cc N -'I2). The corresponding solution will have the shape 
of a succession of damped pulses and the maximum of the 
first of them is logarithmically far from the origin, g-ln(l/ 
po). For that reason neglecting in Eq. (3.3) the second ("fric- 
tion") term we get a formula for the approximate description 
of the first pulse: 

cp (E) =4 arctg [exp (E-L) I ,  (3.4) 
ch (E-Eo), (3.5) 

where 6,-ln(l/po) is the coordinate of the maximum of the 
first pulse. 

In laboratory coordinates X,T there correspond two val- 
ues of the coordinate x, viz., 

~ , , ~ = ~ / 2  [T* (T?-4i2) ' A ]  (3.6) 
to each value of the self-similar variable 6 and fixed T. We 
assume that the population n (for the first time) changes sign 
in a point 6,. This means in laboratory coordinates that the 
population first changes sign at time to = 26, at the point 
x, = 6,. In accordance with Eq. (3.6) two waves, on the front 
of which n = 0, move from the point xo in different direc- 
tions when t increases. We show in Fig. 2 the function n(x) at 
different times 7, < T, < T,. The position of the point x, in 
which n first changes sign depends logarithmically on the 
self-similar parameter pO. The smaller the value of p, the 

FIG. 1. Characteristic shape of the self-similar solution. The maxima of 
the functions q({), g((), and n({ ) are normalized to unity. 
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FIG. 2. Self-similar solution. The function n(x)  at different times 
7, < 7 2 < T 3 .  

larger x,. In our case the condition that the laser is of moder- 
ate length is equivalent to the condition that this point lies 
outside the limits of the sample so that we are interested in a 
wave moving to the left. As T+CC the front of that wave 
moves with its right-hand end according to the law 

The second root corresponds to a wave moving in the oppo- 
site direction. It generates a field collecting the energy of the 
excited atoms. The front of this wave is logarithmically far 
from the light cone. As T+W it is pushed towards the light 
cone x = T - 0 (4 :/T). Such a situation is realized in the 
case of a quantum amplifier. 

We elucidate the picture which a measuring device will 
register at the end of the sample. To do this we fix x = 1, 
where 1 is the reduced length of the sample. We measure the 
time from the moment of pumping. In the time interval 
t z ~ l n 2 ( l / p o )  there occurs a slow growth of the field E (?,I). 
Afterwards there arises a succession of pulses which de- 
crease in amplitude. The population then changes sign and 
oscillates approaching the ground state. An estimate of the 
energy stored in the first, most powerful pulse as a ratio of 
the total energy in the sample gives a quantity of order 4/ 
1nN. The power of the radiation is thus of order N '1nN. 

The intensity I(?)  = l ( l , ~ ) 1 ~  of the radiation from the 
sample into the first pulse can, as follows from (3.5), be ap- 
proximated by the formula 

where T, is the delay time of an individual pulse which must 
be determined experimentally. 

94. THE CASE OF DEGENERATE LEVELS 

In the case of degenerate transitions we shall operate 
using the scheme described in the preceding sections. In fact, 
our scheme can be applied in those cases when the system, 
firstly, has a self-similar solution, secondly, when the solu- 
tion of the linear set asymptotically goes over into a self- 
similar solution, and finally, when there is a region where the 
asymptotic region overlaps with the region where the linear 
approximation is applicable. 

Neglecting inhomogeneous broadening, Eqs. (1.19) for 
waves moving in one direction have the form 

This set has a set of first integrals: 

nm2+Ip,12=1. (4.2) 

When stating the superfluorescene problem we assume as 
before that g(t,O) = g(0,x) = 0 while the initial value for 
p, (0,x) is random and small. As in section 2 we linearize the 
set of equations near the solution Z9 = p, = 0, n, = 1 and 
evaluate the solution of that linearized set: 

(4.3) 
r 

p (x, t )  =pm (x, 0) +K. 5 8- ( r J )  d r ' .  

For large T)X the asymptotic expansion of g(x , r )  starts with 
the term 

where 

E=2 [ Km20.x ( t - i )  
m=-J  

I 'I2 
As in the preceding case the main term of the asympto- 

tic behavior is self-similar with the self-similarity variable 4 
given by Eq. (4.5). The non-singular self-similar solutions of 
the set of Eqs. (4.1) depend on the W + 1 parametersp, (0). 
Putting formally 6 = 0 we find in the first term of the asymp- 
totic expansion forp(x,?) 

We note that allp, (0) have the same phase and only differ in 
the real factor K, . This enables us to reduce the set of non- 
linear equations in 6J + 5 real functionsp,, n, , Z9 describ- 
ing the self-similar solution to a single second-order equa- 
tion. Such a reduction is possible even at the level of the set of 
Eqs. (4.1) if one assumes that the initial and boundary condi- 
tions, and hence also the solution of the system as a whole 
have the same phase (for instance, are real). In that case, 
putting 

nm=cos Om, p,=sin O,,, (4.7) 

we find that 

dOm/dt=8Km, 

and, hence, 8, can be written in the form 

8, (5, t )  =Kmq (x, t )  +Om0 (2)  , (4.9) 
and then 

8 (x, t )  =dq/dt. 
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Substituting (4.10) and (4.9) into (4.1) we obtain 

d2cp a2cp -+-= 
drZ d~ dx 

2 Kmom sin[Kmcp+BmO ( x )  ). (4.11) 

Equation (4.1 1) is equivalent to the set (4.1) for the above 
stipulated reality condition. One must then put 

cp ( x .  0 )  =0, dcp ( x ,  0 )  /da=& ( x ,  0 )  , 
pm ( x ,  0 )  =sin 8,'(x), 

n, ( x ,  0 )  =COS Bmo(x) , 8 (0,  a)  =dcp (0 ,  T )  / a t .  

We are interested in the self-similar solution of Eq. (4.11) for 
extremely small values of 8 0, - l/(Num )I1'. In that case the 
answer depnds weakly on the direction of the vector 
(8 O- ,,8 O-, + , ,... 8 ;) and the first pulse of the electric field 
is well approximated by the solution of the equation 

J J 

Km20mcp"(I) = Kmom sin [ K,Q (F,) 1 (4.12) 
m = - J  

L d  
m=-J 

with asymptotic behavior pl/{-tO as I{ 1 - f ~ ~ .  
As an example we consider the case when the levels 

corresponding to the transition are degenerate with respect 
to the angular momentum and both correspond to multiplets 
with J = 2 so that we are dealing with a so-called Q transi- 
tion. 

Under the same stipulations as above the contracted 
Maxwell-Bloch model can be reduced to the equation" 

d2rp d2rp b  cp 
-+-=asincp+-sin-; 
d? dadx  2 2 

here a = a_ ,  + u,, b = a _ ,  + a,. The corresponding self- 
similar equation has the form of Newton's equation with 
"friction" 

In contrast to the non-degenerate case the potential u(p) 
has under conditions 4a > b > 0 in the region O<p<4?r two 
minima. The envelope field $(c) then is a choppy function 
and in our case can have two maxima. The initial condition 
po of Eq. (4.14) determines in which of the two minima the 
"Newtonian" particle moving with friction in the potential 
u(p) falls. By virtue of the random nature of the fluctuations 
the trajectory of the system for different realizations will 
reach the neighborhoods of different minima. 

The region of small self-similar parameters and large 6 
is of interest for the superfluorescence problem so that the 
first pulse can rather well be approximated by the solution of 
the equation 

and the appropriate solution of this equation has the form 

cp=2 arccos 1 - 4 (4a+ b )  

[ b  ch(E-E,+ln b )  +ba+b 
1 .  (4,161 

The field intensity at the end of the sample will for r)rs, be 

t, nsec 

F[G. 3. Characteristic shape (4.17) of the radiation intensity when two- 
fold degeneracy of the levels is taken into account. 

given by the formula 

where 

and r0 is the delay time of the first maximum (Fig. 3). 
In those cases when J is large the first pulse becomes 

more choppy. The nature of the choppiness is determined by 
the means of populating the sublevels. The largest number of 
maxima (equal to J )  is reached when their populations are 
approximately equal. 

The development of the instability leads to phase mis- 
matching ofp, and Z? which restricts the applicability of the 
model (4.11). In the superfluorescence problem the initial 
plnase mismatch is small [in the main asymptotic order there 
is none, (4.6)] so that for several early pulses the reduction 
(4.11) of the model (4.1) is valid. 

$5. COMPARISON WITH EXPERIMENT 

A number of experiments have been performed about 
the observation of the superfluorescence phenomenon in ce- 
sium vapors and beams at a wavelength of il = 3 pm. These 
experiments were just performed under the conditions de- 
scribed in the Introduction, i.e.., the Fresnel number was - 1, the gas approximation was valid and, most importantly, 
the time for longitudinal and transverse homogeneous 
broadening was large: TI -7 70 ns, T, -7 80 ns. In the case of 
beams one managed to increase the inhomogeneous broad- 
ening time which was basically due to the Doppler effect to 
TT -732 ns. In that case rsF -70.5 ns (rD ) =. 10 ns. The de- 
generacy of the levels was lifted by a uniform magnetic field. 
The experimental situation must thus be described by the 
equations given in the first section. 

We have made a comparison between the graphs of indi- 
vidual pulses given in Refs. 5, 12 and the corresponding self- 
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FIG. 4. The time dependence of the radiation intensity at the end of the 
sample: points-experiment;12 curve-radiation intensity according to 
Eq. (3.8). Here T, z 7 ns, T,, -0.8 ns, T,- 3 ns [the parameter T,=. * (2 to 
3) ns is introduced to take into account possible systematic errors]. 

similar solutions (Fig. 4, 5).13 It is clear from these figures 
that one can consider the agreement to be good. 

We now discuss the assumptions made by us. One of 
them is the neglect of the interaction between waves propa- 
gating in opposite directions. This assumption can be justi- 
fied both by the nature of the answer obtained and by a com- 
parison with a numerical calculation of the exact Eqs. (1.8) 
on a computer. Indeed, it follows from (1.8) that the interac- 
tion between waves propagating in opposite directions oc- 
curs because they draw energy from the same source-the 
inversely populated medium. It is therefore clear that one 
can neglect this interaction as long as there is no intersection 
of relaxation waves propagating in opposite directions. One 
can estimate the average time for intersection of the relaxa- 
tion waves as ( r l )  =: 8 (rD ). Our theory which is based upon 
equations which take into account only waves propagating 
in one direction thus correctly describes the first pulses. 
Moreover, there is a statistical factor which justifies the as- 
sumptions made by us. The fact is that the delay time of the 
first pulse is a random quantity and if one analyzes the distri- 
bution function of the difference of the ignition times of the 
pulse on the left-hand and the right-hand ends of the sample 
the dispersion of the times will be almost of the same order as 
( T D  ). 

The fact that we are interested only in the first pulses 
enables us to justify the mathematically inexact assumption 
that the functionp(6 ) is smooth near the point 6 = 0. A typi- 
cal realization of the functionp(6 ) is not smooth. This leads 
to the solution not being strictly self-similar, but "quasi-self- 
similar" in the spirit of Ref. 10. In other words, the self- 

FIG. 5. The same as Fig. 4. The points-experiment12, the curve evaluat- 
ed using Eq. (3.8). Here T, =: 15.7 ns, T, =. 1.9 ns, 7,- 3.3 ns. 

similar parameter 8, turns out to be a slow and random 
function of x / t .  However, the difference between the quasi- 
self-similar and the self-similar solutions hardly affects the 
form of several of the early pulses and is unimportant for us. 
The agreement between the theory and experiment for the 
first pulse clearly illustrates this statement. 

In conclusion the authors express their gratitude to S. I. 
Anisimov, A. P. Kazantsev, and S. V. Manakov for useful 
discussions. 

'R. H. Dicke, Phys. Rev. 93, 99 (1954). 
'N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, 
Phys. Rev. Lett. 30, 309 (1973). 

3F. Haake, J. W. Haus, H. King, G. Schroder, and R. Glauber, Phys. Rev. 
A23, 1322 (1981). 

4D. Polder, M. F. H. Schuurmans, and Q. H. F. Vrehen, Phys. Rev. A19, 
1192 (1979). 

'H. M. Gibbs,Q. H. F. Vrehen, andH. M. Hikspoors, Phys. Rev. Lett. 39, 
547 (1977). 

6A. V. Andreev, V. I. Emel'yanov, and Yu. A. Il'inskii, Usp. Fiz. Nauk 
131, 653 (1980) [Sov. Phys. Usp. 23,493 (1980)l. 

'M. F. H. Schuurmans, Q. H. F. Vrehen, D. Polder, and H. M. Gibbs, 
Preprint, Philips Research Laboratories, Eindhoven, Netherlands, 
1981. 

'Q. H. F. Vrehen and H. M. Gibbs, Preprint, Philips Research Laborato- 
ries, Eindhoven, Netherlands, 1981. 

9F. T. Arecchi and E. Courtens, Phys. Rev. A2, 1730 (1970). 
l0S. V. Manakov, Zh. Eksp. Teor. Fiz. 83, 68 (1982) [Sov. Phys. JETP 56, 

37 (1982)l. 
"G. L. Lamb, Jr., Rev. Mod. Phys. 43, 99 (1971). 
12Q. H. F. Vrehen in Cooperative Effects in Matter and Radiation (Eds. C. 

M. Bowden, D. H. Howgate, and H. R. Robl) Plenum, New York, 1977, 
p. 79. 

')I. P. Gabitov, V. E. Zakharov, and A. V. MikhaYlov, Pis'ma Zh. Eksp. 
Teor. Fiz. 37, 234 (1983) [JETP Lett. 37, 279 (1983)l. 

14V. E. Zakharov, Pis'ma Zh. Eksp. Teor. Fiz. 32, 603 (1980) [JETP Lett. 
32, 589 (1980)l. 

Translated by D. ter Haar 

709 Sov. Phys. JETP 59 (4), April 1984 Gabitov etal. 709 


