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Wave functions for the coherent states of an anharmonic oscillator subjected to external resonant 
excitation are constructed and investigated. The equation of motion of the center of gravity of the 
wave function, which is the quantum-mechanical analog of the Duffing equation, is derived. 
Solutions of the equation of motion and the corresponding expansions of the wave functions over 
the stationary states are obtained for a monochromatic external force. Periodic self-oscillations in 
the absence of the external force are found, and their period is in agreement with numerical 
analyses published in the literature. The conditions for the excitation of high vibrational states are 
determined, and the possibility of hysteresis in the excitation of the anharmonic oscillator is 
demonstrated. 

Hysteresis effects accompanying the application of la- 
ser radiation to various macroscopic objects are currently 
under intensive investigation (this is the so-called "optical 
bistability"; see, for example, Refs. 1 and 2). There is also 
undoubted interest in the possibility of hysteresis in elemen- 
tary quantum-mechanical systems, including the anhar- 
monic quantum-mechanical oscillator (AQO). Although 
hysteresis in the resonant excitation of the classical anhar- 
monic oscillator is well k n o ~ n , ~ . ~  hysteresis in AQO has re- 
mained an open question. The analogy with the classical os- 
cillator in the quasiclassical limit (fi-0) has been noted5 but, 
when the higher-order terms in fi were taken into account in 
Ref. 6, it was concluded that the quantum-mechanical oscil- 
lator with a definite phase differed from the classical oscilla- 
tor in that it could occupy only a single state. We shall show 
that the linearity of the time-dependent Schrodinger equa- 
tion (for the wave function) does not, in general, prevent the 
possibility of hysteresis, since we are dealing with a partial 
differential equation. Actually, solutions of the nonlinear or- 
dinary differential equations describing classical hysteresis 
(the Duffing equation) can be compared with solutions of the 
suitably constructed linear partial differential equation.' By 
analogy with the stochastic behavior of the anharmonic clas- 
sical oscillator when the amplitude of the external force ex- 
ceeds a certain critical value,899 the AQO model enables us to 
investigate the possibility of stochasticity in the quantum- 
mechanical 

We note that the harmonic quantum-mechanical oscil- 
lator serves as the basis of the theory of a wide range of 
physical phenomena. When nonlinear phenomena are de- 
scribed, the anharmonicity of the oscillator must be taken 
into a c ~ o u n t . ' ~ , ' ~  A review of papers on the application of 
the AQO model to resonant excitation of molecules by in- 
tense laser radiation is given in Ref. 16. A quantum-mechan- 
ical oscillator is essentially a multilevel system. The spec- 
trum of the harmonic oscillator has a degenerate structure. 
The exact solution of the problem of interaction between a 
harmonic oscillator and an arbitrary external force is given 
in Ref. 17. This degeneracy is removed in the case of the 
AQO, but a large number of multiphoton transitions be- 
comes possible. The problem is much more complicated and, 
at present, solutions are available only for the limiting cases 

of weak (perturbation and strong (semiclassical 
appro~imat ion '~-~ ' .~ )  fields. 

A promising approach to a more complete solution of 
the above problem is to use the coherent states of the har- 
monic oscillator, introduced by S ~ h r o d i n ~ e r . " , ~ ~  These 
states correspond to wave packets whose center of gravity 
moves on a classical trajectory of the oscillator. This ensures 
the closest correspondence between the quantum-mechani- 
cal and classical descriptions. The coherent discrete states 
differ from the Glauber states used in Refs. 6,23, and 24. The 
Glauber formalism is convenient in the description of the 
excitation of AQO with allowance for fluctuations. How- 
ever, because of the overpopulation of the set of these states, 
special steps must be taken to regularize the density ma- 
t r i ~ . ~ '  

As in Refs. 6 and 16, we shall not take into account the 
finite lifetime of the states, i.e., our analysis will be confined, 
for example, to radiative lifetimes r -'. We note that inclu- 
sion of relaxation in the anharmonic classical oscillator pro- 
duces only a slight distortion of its resonance curve, i.e., the 
dependence of the steady-state amplitude on the frequency 
of the external Damping plays an important role in 
forced steady-state oscillations (of frequency equal to that of 
the external force, 0,- ) and, eventually, stops the free oscilla- 
tions. However, when free oscillations are initially absent, a 
sufficiently slow variation (scanning) of the frequency or am- 
plitude of the external field ensures that the relative ampli- 
tude of free oscillations is exponentially small even in the 
absence of damping, i.e., it is -exp( - rAw/2y), where y is 
the rate of scanning, Aw is the frequency detuning, and 
y<Aw. In this sense, relaxation (damping) does not intro- 
duce any fundamental modification to the problem of bista- 
bility. On the contrary, even low-level noise produces the 
metastability of the two states of the classical oscillator that 
are present in the absence of Noise gives rise to a 
finite probability of transfer between these two states so that, 
in the statistical description, a single distribution function is 
established and is independent of the initial conditions. In 
this sense, there is neither hysteresis nor bistability, and the 
two phenomena can be observed only within time intervals 
that are shorter than the time necessary to leave the metasta- 
ble state. Steady states of the AQO" subjected to a mono- 
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chromatic external force and a noise component are dis- 
cussed in Refs. 23 and 24, where it is concluded that 
bistability is possible only over restricted intervals of time. 
Since the radiative lifetime of I R  oscillations is sufficiently 
long,28 (r -'- lo-' s), the foregoing discussion justifies the 
physical formulation of the AQO excitation problem with- 
out taking relaxation into account. 

In this paper, we shall use the coherent states of the 
harmonic oscillator and the methods of the theory of nonlin- 
ear  oscillation^^.^^ to find the solutions of the Schrodinger 
equation for the AQO. We shall derive the equation of mo- 
tion for the center of gravity of the wave packet Iquantum- 
mechanical analog of the Duffing equation3.29). A brief re- 
port of these results was given in Ref. 30. The derivation of 
the quantum-mechanical Duffing equation given here is 
augmented by an  analysis of effects that are the analogs of 
parametric resonance. They could give rise to the destruc- 
tion of the coherent states and, in fact, restrict the possibility 
of their excitation. Solutions of the equation of motion and 
the corresponding expansions over the stationary states are 
obtained for the case of a monochromatic external force. The 
conditions for the excitation of high vibrational states of the 
AQO and the hysteresis phenomena occurring for slow fre- 
quency scanning are determined. The essentially quantum- 
mechanical excitation, whose description is qualitatively 
different from that obtained in the semiclassical approxima- 
tion, is investigated. 

1. DUFFING'S QUANTUM-MECHANICAL EQUATION 

Consider the Schrodinger equation (f i  = m =: 1) 

where Un, = ax3 +ox4) is the anharmonic component of 
the potential and f (t ) is  the external force with characteristic 
frequency wf , which is close to the frequency w of the oscil- 
lator, so that 

For the zero-order approximation, we shall take the coher- 
ent states of the free harmonic o~c i l l a to r '~  

~n(O)=@,(x~)  exp[ i (~(0)xi -Ent+o~O'  (t)) 1, n=0,1,2,. . . , 
(1.3) 

where 

E,= (n+'/,) o f ,  xi=x--q(O) (t), 

7,(Q)+ofzq(o)=0 0 ( 0 ) = ' / 2 ( ~ ( 0 ) 2 - a t 2 q ( 0 ) 2 ) ,  

(1.41 

and H,, are Hermite polynomials. The center of gravity of 
the wave packet corresponding to the solutions given by (1.4) 
moves on the classical trajectory of the harmonic oscillator 
with arbitrary oscillation amplitude (because of the linearity 
of the oscillator). Transforming in (1.1) to the variables 
x ,  = x - ~ ( t  ), t, we shall seek the solution in the form 

Y,=G, (xi, t )  exp [a (t) xi-ie,t+io (t) 1. (1.5) 

The function a ( t  ) will be determined below. We shall need the 
following recurrence relations in our subsequent analysis: 

These will be used in the first approximation in the small 
parameters proportional to the anharmonic coefficient a ,  P, 
the force f (t ), and the detuning w2(t ) - a;, to show that 

Q2 (t) =a2( t )  +6aq+12pq2, 

where 

3 (n+ 'l,) 
X ( t )  =f (t) + ici-a' (t) q- (a+4pq) -3aq2-4@q: 

205 

1 1 
(1.8) 

Y(t) =-o'f - a2-iaG+ - oZ( t )  qZ+f ( t )  q 
2 2 

To ensure that the term including d@, /dx, vanishes in (1.7), 
we shall require that 

Terms including Y (t ) are eliminated by suitably choosing 
a ( t  ). The quantity X (t ) i s  ofthe first order of small quantities, 
but it cannot be taken into acocunt within the framework of 
standard perturbation theory because it contains resonant 
terms. We are therefore forced to set X (t ) = 0, which gives an 
equation of motion for ~ ( t  ). The quantity Z contains nonre- 
sonant terms, namely, a small admixture of the states 
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0,, + 2, ,, + 3, , + 4 .  These can be taken into account in the usu- 
al way of perturbation theory," but do not contribute to the 
equation of motion. The solution of the remaining Schro- 
dinger equation for the harmonic oscillator with effective 
frequency 0 (t ) [i.e., ofthe form (1.1) with U,, = 0] is given in 
Ref. 17. We note that our analysis is valid if the functions 3, 
are not very different from the unperturbed functions 0 , .  
This condition requires further justification in the region of 
parametric resonance." This is provided in Sec. 3 and in the 
Appendix. 

The contribution to the equation of motion in the first 
approximation in a leads to a small shift and small oscilla- 
tions in q(t  ). The contribution of the second order in a can be 
effectively taken into account by changing the coefficient P. 
We shall therefore substitute a = 0 and w2(t ) = wi = const 
in (1.8). The equation of motion then assumes the form 

where 

The classical Duffing equation is obtained from (1.10) when 
p+O (fi--+O). According to the "quantum-mechanical Duff- 
ing equation" (1. lo), the trajectory of the center of gravity of 
the wave packet is complex. Quantum-mechanical correc- 
tions are relatively small when the amplitude of the oscilla- 
tions q(t )is much greater than the characteristic width of the 
wave packet, -0; I". More detailed analysis of (1.10) is giv- 
en in the next section. 

2. SOLUTION OF THE EQUATION OF MOTION FOR A 
MONOCHROMATIC EXTERNAL FORCE 

Suppose that the external force is monochromatic: 

f ( t)  =A cos (o f t ) .  (2.1) 

To elucidate the role of the "quantum-mechanical" term in 
(1. lo), consider, to begin with, the case of small oscillations: 

We can then neglect the nonlinear term in (1. lo), which en- 
ables us to write its general solution in the form 

( t)  =C(+)eis(+)t+C(-)e-i~(-)t+q ( t ) ,  (2.3) 

where 

and 

- A il 
p - @,z-of2-p ' = an2-otZ+p ' 

In the absence of the external force (A  = 0), Eq. (2.3) shows 
that there are natural oscillations with frequencies + w'*' 
and amplitudes C"), which are determined by the initial 
conditions. Inclusion of relaxation (finite lifetime) should 
lead to the damping of the natural oscillations. The forced 
oscillations (2.4) are characterized by two oscillation ampli- 
tudes p and q at frequencies + wj . The physical meaning of 

these amplitudes is different. Thus, for n = 0, the time de- 
pendence of the square of the modulus of the wave function 
is(C1*) = 0 )  

I Y,l"exp [-o (2-q cos (oft)) 2 1 .  (2.6) 

In the above case, the amplitude of the motion of the center 
of gravity of the wave packet is equal to q, and the average 
value of the coordinate is 2 = q cos(wj t ), so that p does not 
appear in the time dependence of the wave function. 

We must now find the "forced" periodic solutions of 
(I.  10) without assuming that (2.2) is satisfied. Taking y(t ) in 
the form given by (2.4), and substituting it into the resonance 
approximation usually employed for the Duffing equa- 
tion,3,4,23 we obtain 

where 

zc=3l plpq, u=31 A', d = s i g n  (P) ( ~ , ~ - o ~ ' ) .  (2.8) 

The amplitudes p and q can be uniquely expressed in terms 
of u: 

The cubic equation (2.7) for u has for all values of the param- 
eters three solutions of which at least one must be real. It can 
be shown that complex roots correspond to unstable solu- 
tions of (1.10). The necessary condition for the stability of 
solutions with real u is 

"Inversion" of (2.7) yields 

and this shows that the real values of u occur in the following 
two intervals: - cc < u < - v / ~ '  and 0 < u < C C .  Figure 1 
shows the resonance curve corresponding to (2.7), i.e., the 
frequency dependence of u. Broken curves show the solu- 
tions that do not satisfy the stability condition (2.10). 

It is clear from (2.8) that in the case P< 0, which is 

FIG. 1. Resonance curve of the anharmonic quantum-mechanical oscilla- 
tor. 
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characteristic for molecular oscillations, the quantity d in- 
creases with increasing frequency wf of the exciting radi- 
ation. The quantum-mechanical case, where the Rabi fre- 
quency is much lower than the anharmonic shift ~ o ' ' ~ /  
/ p l g l ,  is of particular interest. Let us rewrite (2.7) in the 
form 

The point d = - / p 1 in Fig. 1 corresponds to resonance at 
the frequency of the n-n + 1 transition. In the immediate 
neighborhood of this point, there is only one real solution 
(right-hand external branch of the resonance curve) 

Two other solutions 

correspond to the outer d < - ( p 1 and inner d > - I p 1 
branches of the resonance curve. These solutions exist when 
the detuning from the frequency of the n+n + 1 transition is 
not too small: Iwf - (5, - / pl/2w)l>A (w/2)'I2. At the 
branch points of the resonance curve, 

p=-A/2p, q=-+sign ( p )  (210)'". (2.15) 

The point d = I p 1 corresponds to resonance at the frequen- 
cy of the n-n - 1 transition. There are three solutions in t he 
neighborhood of this point. For the solution corresponding 
to the lower branch of the inner curve, 

For the other two solutions (external and internal branches), 
we have, correspondingly, 

d-lpl A 2 0 ' i 2  
~~ ,~+d- l~ l=," '?*  2 [(,)L , 

2 'I2 (2.17) 
A 

p=*rign(p) (;) , = - . 
2P 

Thus, the effective rise in the amplitude q [which, in 
accordance with (2.6) and Sec. 3, determines the excitation of 
the oscillator] occurs at low frequencies along the left-hand 
outer branch of the resonance curve, as the excitation fre- 
quency is approached. For this type of frequency scanning 
w"2q - 1 at the top of the curve. We note that q is then prac- 
tically independent of the amplitude of the external force. 
On the right-hand branch, on the other hand, the amplitude 
p increases as the top of the resonance curve is approached, 
and q is always small (-A /2p). 

As in the case of small oscillations (2.2), Eq. (1.10) al- 
lows the existence of self-oscillations, i.e., oscillations of the 
center of the packet that are not damped out after the exter- 
nal force is turned off (in the absence of relaxation). They can 
be found by replacing (2.4) with 

q='/2 [ P ( T )  eiT+Q(z) e-"1 , %=ant. (2.18) 

Assuming that Pand Q change little when r is increased 
by 2p, and using the method of slowly varying amplitudes (or 

the method of two-scale  expansion^,'^ which is equivalent to 
it in the lowest-order approximation), we obtain 

and hence 
P 

P ( T ) Q ( T ) = P ( o ) Q ( o ) ~ ~ P ( - ~ ~ T ) .  (2.20) 

Substituting the last result in (2.19), we obtain 

P ( T )  =P (0) exp - - a,P ( 0 )  Q ( 0 )  I : 
(2.21) 

1 
Q (T) =Q ( 0 )  exp {T  GP (0 )  Q (0) 

Pz iP x [ e x p ( - i z )  - I ] - ~ T ] ~  

or, when P (0)Q (0) is small, 

Pz 
P ( 7 )  =P ( 0 )  exp (- i = )  

1 
x { I   tan^(^)^(^) [ e x p ( - i $ )  an - I ] } ,  

(2.22) 
Pz 

Q ( ~ ) = Q ( o ) e x p ( -  I=) 

1  
x { I + ~ ~ , P ( O ) Q ( O )  [ e x p ( - i g )  W, - 1 1 ) .  

The amplitudes P and Q obtained in this way are periodic 
functions with period 

T = ! t n ~ , ~ / l p l .  (2.23) 

3. DISCUSSION OF RESULTS 

There is considerable interest in the degree of excitation 
of the AQO in a coherent state. This is characterized by the 
distribution of the population of stationary states, which is 
determined by the coefficients of the expansion of the coher- 
ent state in terms of the wave functions of stationary states. 
For the harmonic oscillator, this expansion is 
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where L are Laguerre polynomials. 
The expansion coefficients of the normal coherent state 

(n = 0 )  have the simplest form: to within quantities 
- (w - wf ) / a  and a constant normalizing factor, the coeffi- 
cients (3.1)  can then be written in the form 

where q is the amplitude of the oscillations of the center of 
the wave packet, given by (2.4) .  We note that, in this particu- 
lar approximation, the expansion coefficients are indepen- 
dent of the amplitude p. We have already shown in Sec. 2 
[Eq. (2.6)]  that p does not appear in the time dependence of 
the wave function of the zeroth coherent states. We can ver- 
ify with the aid of (3.1)  that, when n is not too high, the 
amplitude q determines mainly the coefficients with k > n, 
and p determines the coefficients with k < n, i.e., q charac- 
terizes the excitation and p the deactivation of the stationary 
states. The main assumption that was used in obtaining the 
AQO wave functions was that the spatial structure of these 
functions was very similar and, consequently, so were the 
coefficients of the expansion of these functions in terms of 
the stationary states in the case of the harmonic oscillator. In 
the Appendix, we shall examine the distortion of the spatial 
dependence of the wave functions due to anharmonism, and 
will give the conditions for the validity of the analysis. For 
simplicity, we shall confine our attention to the normal co- 
herent state n = 0 .  To ensure that the admixture of the sta- 
tionary state for n = 2, which appears as a result of anhar- 
monism, is less than the corresponding expansion coefficient 
(3.2) ,  we must have 

The most stringent restriction ensuing from these conditions 
is that b l ( t  )gw2q2.  From this, it follows [see (8 .5) ]  that, at 
resonance (wf z w ) ,  we must have, even for small amplitudes, 

c/o, d y 3 / 0 2 .  (3.4)  

This means that, when the detuning is small, the coherent 
states of the AQO differ from the harmonic oscillator in that 
they do not become pure stationary states, which compli- 
cates their excitation by monochromatic radiation. When 
the exciting frequency is scanned in a region well away from 
resonance, b l ( t  ) is quite small for large detuning. Hence, in 
the limit as q,  p+O, the coherent states become stationary 
states whose quantum numbers are equal to the number n of 
coherent states. By scanning the frequency wf between the 
low-frequency region and detunings of the order of the an- 
harmonic shift Iw - wf 1 -P / a 2 ,  we can excite the oscilla- 
tor. It is then essential that (3.3)  and (3.4)  be satisfied, i.e., the 
excitation amplitude q must be sufficiently large. In this fre- 
quency range, q - A w / P  [see (2.13)] .  We now introduce the 
Rabi frequency of the exciting radiation v, = A /(2w)'I2 and 
the anharmonic shift A,  = p / w ,  and write this condition in 
the form 

vp>A, (AOJw) %. (3.5)  

We note that the well-known condition for the excitation of 
multilevel systems, obtained within the framework of the 

FIG. 2. Population of excited states of the anharmonic quantum-mechan- 
ical oscillator as a function of excitation frequency: A , / @  = 0.01, v, /  
A ,  = 0.1; 1--classical oscillator, 2--excitation ofthe AQO averaged over 
fluctuations, 3--excitation of the AQO over time intervals shorter than 
the life of the metastable states. 

two-level approach, has the form v, > A , .  The criterion for 
the excitation of the anharmonic oscillator differs from this 
by the presence of the factor (Aa /wJ1 '*g  1 .  Thus, when (Aa / 
w ) ~ / ~ ~ v , / A ,  4 1 ,  the AQO does not reduce to the two-level 
system even when w f  - a /  -v,. 

Condition (3.5)  ensures a Poisson distribution (3.2)  over 
the stationary levels for all scanning frequencies. The maxi- 
mum value of q is reached at the top of the resonance curve, 
near the point d = - I pl in Fig. 1 .  It is given by q = ( 2 /  
a)"'. The amplitudes of the stationary states in the normal 
coherent state are 

l aok l  =e-'"/(k!)". (3.6)  

When the exciting frequency wf is scanned in the region of 
high frequencies, the amplitude p is found to rise but q re- 
mains small. As noted in Sec. 2, the normal coherent state 
does not then have an admixture of excited stationary states. 
It can be verified that, even in this case, it is essential to 
satisfy (3.5) .  Thus, coherent states with the same quantum 
number n are characterized by different degrees of excitation 
that are determined by past history. 

Figure 2 shows the population ii of the excited states of 
the anharmonic oscillator in the normal coherent state as a 
function of the frequency w f .  Curve 1 describes the resonant 
excitation of the classical anharmonic oscillator. The value 
of ii for this oscillator is given by E = E /fw ( E  = 1/2mw27; 
is the oscillator excitation energy). Curve 2 describes the ex- 
citation of the AQO, averaged over the quantum oscilla- 
t i o n ~ , ' ~ , ~ ~  in the limit of infinitely small damping. We recall 
that this case occurs when the damping time of the metasta- 
ble state is still shorter than the time of operation of the 
external force. Curve 3 corresponds to the case where damp- 
ing can be neglected, which we assume in this paper. It corre- 
sponds to the left-hand outer branch of the resonance curve 
shown in Fig. 1 (ii = 1/20q2) .  As noted above, no apprecia- 
ble excitation of the oscillator occurs along the right-hand 
outer branch. For the indicated parameter values, E = 0.025 
on this branch in this part of the spectrum. It is important to 
note that, in our case, bistability is essentially quantum-me- 
chanical in character (v, ( A , ) .  In contrast to the classical 
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case, excitation occurs on the left-hand branch of the reso- 
nance curve (af < 5, if p < 0). None of the quasiclassical 
approximations that are admissible for v, > A ,  can then be 
Used.6.23,24 

The above results show that the anharmonic oscillator 
is an essentially multilevel system and that many-photon 
processes play an important role in the evolution of its coher- 
ent states. In our approach, we start with the coherent states 
of the harmonic oscillator and the basic many-photon reson- 
ances are taken into account even in the early approxima- 
tions. These are, above all, the allowed many-photon transi- 
tions in the harmonic oscillator for which the number of 
photons is equal to the difference between the quantum 
numbers of the stationary states between which the transi- 
tion occurs. The exciting frequency wf for such transitions is 
then bounded by the transition frequency a,,. When 0 < 0, 
so that the natural frequencies of the AQO decrease with 
increasing quantum number, this region is of < w,,, . h-nee, 
it follows that, when the exciting frequency is scanne? in the 
region wf >a,,, there should be a situation approaching the 
two-level scheme in which the many-photon resonances do 
not appear. Let us consider the n = 1 coherent state. Ac- 
cording to (3 I), the amplitudes of the stationary oscillations 
are 

where N is a normalizing factor. Near the point d = / p /  on 
the resonance curve for this state, which corresponds to the 
1-0 transition, we have from (2.9) and (2.17) 

p z 2 A  {d-lpl* [ (d-lpJ)Z+20AZ]"a)-1, qsA/2p, (3.8) 

where the signs + correspond to the outer and inner 
branches of the resonance curve, respectively (Fig. 1). When 
Y, <Aa, we have wq2<opq< 1 near the resonance, and only 
the two levels2' with k = 0 and 1 are appreciably populated. 
Substituting d - pl =:2wo,(wol - of ), we can readily ver- 
ify tht (3.7) and (3.8) describe the amplitudes of coherent 
states of the two-level system.22 The outer branch corre- 
sponds to the coherent state in which the population of the 
excited state increases with increasing wf, whereas the inner 
branch shows a decrease. We note that, well away from the 
resonance (wf > a,,), the inner branch ofthe resonance curve 
of the n = 1 coherence state, like the outer branch of the 
n = 0 state, corresponds to the same normal stationary state 
of the oscillator. There is a considerable difference between 
the intensities that are necessary for the excitation of these 

states near resonance. Whereas the excitation of the n = 0 
coherent state in the neighborhood of the w,, resonance 
must obey condition (3.5) (the amplitude is w"2pzAa/ 
Y , )  I), the state corresponding to the two-level system is 
formed at low intensities w112p=: 1. 

The analysis given above has demonstrated the exis- 
tence of coherent states of the AQO in a monochromatic 
external field. However, detailed description of the excita- 
tion of coherent states and transitions between different 
branches of the resonance curve turns out to be too compli- 
cated and probably cannot be obtained within the frame- 
work of the purely analytical approach. There are several 
papers31-33 in which numerical methods are used to investi- 
gate, in the absence of the external force (f = O), the evolu- 
tion of the AQO state formed initially as a coherent state of 
the harmonic oscillator. In our approach, this corresponds 
to the self-oscillations considered at the end of Sec. 2. Brick- 
mann and Russegger3' have determined, in particular, the 
time t, after which the packet returns to its initial state for a 
number of model potentials. According to equation (2.23) in 
that paper, the self-oscillation period is 

We have carried out a comparison for the smallest anhar- 
monicity parameter E = 0.1 used in Ref. 3 1 because, for 
higher values, the continuous spectrum, which we have not 
examined here, begins to play an important role. It then 
turns out that t, = (45 + 5).2n-/a,. Equation (3.9) yields 
T = 40.2n-/wO for the corresponding anharmonicity param- 
eters, which is in good agreement with numerical experi- 
ment. 

The above effects accompany the excitation of coherent 
states and can be observed in simple molecules exposed to 
coherent radiation. 

Table I lists the parameters of well-known diatomic 
molecules, namely, the frequency w, the anharmonic shift 
Aa = w,x, , the minimum value of the Rabi frequency calcu- 
lated from (3.5), and the laser power density corresponding 
to this Rabi frequency. It is clear from the table that the 
lowest power density necessary for the observation of effec- 
tive resonant excitation by atomic molecules and of excita- 
tion hysteresis is 2 GW/cm2 for SO and 10 GW/cm2 for CO. 
These values are attainable when modern laser beams are 
suitably focused down. 

APPENDIX 

In Eq. (1.7) in the main text, the square of the effective 
frequency, fl 2(t ), contains the term 12m2.  It is clear from 
(2.4) that this term includes oscillations of frequency 2wf. 

TABLE I. 

Co i a s r  I ecr 1 nr 1 ( No I I 

O,  cm-' 
Aat c m ~ :  
VP, cm 
P, GW/cm2 10 390 
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This means that, for small detuning Iwf - w 1 < 3pq2/20, we 
can have parameteric resonance-type phenomena that lead 
to distortions of the wave function. We shall show below that 
these distortions do not modify the equation of motion al- 
though they impose specific limitations on the possibility of 
resonant excitation of coherent states. 

We shall seek the solution of (1.1) in the form 

Y,=exp [ - i o ( t )  - ie, t+a ( t )  xi+ b ( t )  x12+cx14]  5, (x i+d5 t3 ) .  

(All  

For b = c = d = 0, this expression becomes identical with 
(1.5). Substituting this P, into the Schrodinger equation 
(1. I), weobtain an equation of the form of (1.7) withX(t )and 
Y (t  ) retaining their form. The choice of the wave function 
(Al )  leaves the equation of motion (1.10) unaltered. Let us 
divide the coefficient b ( t )  into two parts, namely, 
b = 6, + b,(t ), where b, is a constant, and let us write out the 
terms of the equation relates the states withdn = f 2 (ana- 
log of the expression 1 / 2 0  2x: @, ): 

[(itil+4b,b,+2b12-6~q2)x12+8bl~~14] 8% 
+2b,x1$,'+ [ ( 6 ~ + 2 b , ~ - ' / , o ~ )  x , ~ - P x ~ ~  

+8c2x17 ln+ (2boxl+4cx,3)  Gn'+'/,$,". (A21 

It can be verified that the resonant term 6 0 ~ ~  will not cancel 
out when b, = c = d = 0. Moreover, the constant shift of the 
effective frequency 0 (t ) by the amount - b, leads, as a result 
of the mixing of the states @, + , , to the appearance of reso- 
nant terms in higher orders of perturbation theory, which 
are of the same order as the term to be compensated. Equat- 
ing to zero the coefficients in the expansion for the time- 
independent part of (A2), and assuming that b /w,c/w2,d / 
w( 1, we obtain two equations for the constants b,, c and d :  

(2n+1)  
c=- 

d  
ad ,  bo = - [ 9 - 4 n ( n + l )  1. 

4 4 
('43 

To cancel out the time-dependent resonant terms, we substi- 
tute 

b -b (+) e2<Oll+b(l-) e-2ioIf f  
I -  t ('44) 

By analogy with the foregoing, we find that 

Thus, the wave function given by (Al )  is determined to with- 
in one of the constant b,, c, d, related by (A3). In the above 
derivation, we made the assumption that 

It is clear from (A5) that the last condition is the most impor- 
tant in the case of resonant excitation, when 
Jw - of 1 < 1 ,~3 I / w 2  The quantities wp2 or wq2 (see Sec. 2) 
can then be - 1. For condition (A6) to be satisfied in this case 
as well, we must ensure that d )  / p I /w2. 
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