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A quantum theory is constructed for the neutral topological order-parameter soliton in a one- 
dimensional Peierls insulator of the trans-(CH), type. A study is made of the analytical properties 
of the Green functions of the electrons in the field of the soliton. With the aid of these Green 
functions an integral dispersion equation is derived for small oscillations of the order parameter 
("optical phonons") in an inhomogeneous Peierls insulator. It is shown that allowance for fluctu- 
ations of the phonons lowers the energy of the static soliton in comparison with its quasiclassical 
value. A mechanism is considered which brakes the moving soliton through the generation of 
"optical phonons." A nonlinear velocity dependence is found for the soliton kinetic energy. 

INTRODUCTION 

A large number of papers have appeared recently on the 
subject of the linear polymer polyacetylene (CH), . Experi- 
mental confirmation' of the spinless character of the current 
carriers in (CH), permits the hypothesis that the conductiv- 
ity of polyacetylene is due to topological solitons (see the 
review by Heeger and MacDiarmid2). Various measure- 
ments (electrical, magnetic, optical) confirm the presence of 
order-parameter solitons in (CH), . The generally accepted 
theoretical assumes that polyacetylene is a quasi- 
one-dimensional Peierls insulator with a doubled period of 
the carbon-atom lattice. There are two modifications of po- 
lyacetylene: trans-(CH), and cis-(CH), . In the trans phase 
the gap A in the single-particle spectrum of the .n electrons is 
a purely Peierls origin, while in the cis phase the gap has a 
"hard" component. The topological solitons in trans-(CH), 
are in essence simply defects in the alternation of .n bonds, 
and in the ideal lattice move freely along the chain. 

The quasiclassical theory of these solitons was con- 
structed in Refs. 3-5. Nakahara and Maki6 first posed the 
problem of evaluating the quantum corrections to the soliton 
energy in the framework of the adiabatic model of the Peierls 
insulator. To obtain concrete answers those authors used the 
long-wavelength approximation in deriving the dispersion 
relation for phonons in the field of the soliton and employed 
a variational method for determining the bound-state ener- 
gies and the scattering phase of the phonons. At the same 
time, for evaluating the quantum corrections to the soliton 
energy they used the exact (not the long-wavelength) phonon 
spectrum for a homogeneous Peierls insulator. The inconsis- 
tency of this approach casts doubt on the quantitative results 
of Ref. 6. 

In the present paper we use the functional approach to 
construct a systematic quantum theory of topological soli- 
tons in a one-dimensional Peierls insulator with a doubled 
period. We analyze in detail the analytical structure of the 
Green functions of the electrons in the field of the soliton and 
use these Green functions to obtain an exact integral disper- 
sion equation for phonons in an inhomogeneous Peierls insu- 
lator. Using the trace formulas and Levinson's theorem, we 
estimate the quantum correction AE, to the quasiclassical 
energy E, of the order-parameter soliton. This correction 

turns out to be negative, and for the actual parameters2 of 
(CH), we have lAEq 1 5 0.5 E,. We find the velocity depen- 
dence of the soliton kinetic energy with quantum effects tak- 
en into account. We show that at soliton velocities which are 
comparable to the characteristic phonon velocities of the 
Peierls lattice, there is a substantial renormalization of the 
effective soliton mass. All the calculations are carried out in 
the low-temperature limit. 

FORMULATION OF THE MODEL 

In the continuum approximation the Lagrangian den- 
sity of a one-dimensional Peierls insulator is of the form 
(77 = v, = 1)4s5 

Here 56 = !PC +a , ,  where the !PC are spinor wave functions 
of the electron-hole field, a is the spin-projection index, 
A (x,t ) is the coordinate- and time-dependent order param- 
eter, g is the electron-phonon coupling constant, wo is the 
frequency of bare phonons with momentum 2kF (k, is the 
Fermi momentum), and a,,, are Pauli matrices. Lagrangian 
(1) describes the interaction of a spinor field !P and a scalar 
field A. If we exclude the last term, which gives the kinetic 
energy of the lattice, Lagrangian (1) is the same as the famil- 
iar Gross-Neveu Lagrangian7 from field theory. The appli- 
cability of mean field theory to the description of Peierls 
insulator ( I )  guarantees that the parameter a2 = g2wi/A is 
small (a2< 1), where So is the equilibrium homogeneous or- 
der parameter. The physical meaning of the inequality a< 1 
is clear: Initially, within times to-A,-', the single-particle 
spectrum of the Peierls insulator is formed at a fixed configu- 
ration of the lattice, and the scale of the lattice fluctuations is 
determined by the time tL - ( gwo)-'. Therefore, the tempo- 
ral evolution of the order parameter A (t ) is fixed by the lar- 
gest time scale of the problem, tL , and the time dependence 
can be neglected in all quantities of "electronic origin." The 
fact that a is small also permits one to develop a perturbation 
theory in a when constructing a quantum theory of solitons. 

The topological soliton of model (1) is7,4,5 
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Our problem is to determine the quantum corrections to the 
soliton energy (2) at low temepratures OAo, 1. For this pur- 
pose let us consider the partition function Z for model (1). In 
the approximation of a gas of noninteracting solitons 

5 

z= j d u j  D q a y , D A  erp { j d r  J d r p a )  . (3) 
0 0 

where 2, is Lagrangian (1 j in the Euclidean space it-+r. 
The functional integral is quadratic in the fermion fields and 
can be evaluated exactly; the functional integral over A will 
be evaluated by perturbation theory: 

A ( x ,  t )  =A, (x-ut) $6 ( x ,  t ) ,  (4) 
where S (x,t  ) are fluctuations of the order parameter, u  is the 
soliton velocity (in units of u,), with u  5 a( 1. Doing the inte- 
gral over and P, we get 

where 

The symbol Sp is taken to mean 

where tr tenotes summatio? over t$e matrix indices of the 
operator M. The operators KO and K, are 

Wo=-a,2-d,2+A,2+a,A'+oIAs, (8) 

~ , = 0 , 6 + 0 ~ 6 ' + 2 ~ , 6 + s 2 .  (9 )  

The lattice part Y L  of the Lagrangian is of the form 

In (8)-(10) all the time derivatives are taken with respect to 
the imaginary time r .  

As we have already mentione:, the $me derivatives of 
A, and S in the electron operators KO and K, can be dropped, 
and then Z'OJ can be taken outside of the integral over u.  

THE QUASICLASSICAL TOPOLOGICAL SOLITON 

We evaluate the spur of the elliptic operator K~ using 
the generalized l-function method (Ref. 8, see also Ref. 9). 
By definition 

2,  is the set of eigenvalues of the operator K ~ ,  and 

Sp ln KO=-<' ( 0 )  -I; ( 0 )  111 CR2, (12) 

where C, is a normalization constant (see below). 
It is not hard to see that the complete orthonormalized 

set of solutions of the equation 

on the interval - L /2<xgL /2 (L is the length of the cabin, 
henceforth assumed infinite) and O<r<p with the necessary 
antiperiodicity in r is (see also Ref. 4) 

(14) 
The eigenvalues are A,, = k + wi + A i, where E = + 1, 
w, = ( 2 n + l j ~ / , 6 , n i s a n i n t e g e r ( -  c o < n < m ) a n d  

with A, = wi. The functions IVSc correspond to scattering 
states and Pb to bound states of the electron to the soliton. 
The completeness condition in terms of the wave functions 
U, u  is" 

2C U. ( x ,  I )  uaS (x ' ,  'c') =2 ~a (2 ,  I )  ~ r *  (xr .  r r )  
a 

If electron-electron correlations are ignored and there is no 
external magnetic field, allowance for the electron spin in (1) 
amounts to a trivial doubling of the components of the field 
IV. To simplify the notation we shall write out the wave func- 
tions for a spinless "electron" (1 3)-(16) and take the spin into 
account by multiplying by the statistical factor of 2 in the 
final expressions [the sum over spin projections a in (6 ) ] .  

We note that the bound-state functions (1 5) are normal- 
ized to one-half the fermion number [only for such a relative 
normalization of (14) and (15) can completeness condition 
(16) be satisfied]. The nontrivial normalization of the zeroth 
mode is of a general character for fermion systems in the 
presence of topological solitons (in this regard see the de- 
tailed discussion in Ref. 10). For "spinless electrons" this 
normalization means that topological order-parameter soli- 
tons carry a half-integer electric charge ( + /e//2 for an un- 
filled level, - le / /2 for no = 1; here no = 0, 1 is the occupa- 
tion number of the level). The presence of spin leads to a 
doubling of the components, wave function (1 5) is normal- 
ized to unity (here, of course, the maximum occupation 
number doubles, no = 0, 1,2, and we have a nontrivial spin- 
charge relation for the topological soliton (no = 0, 2; s = 0; 
Q = iel; no = 1; s = + 1/2; Q = 0).334 Let us briefly re- 
mark on the connection between the spectrum of the elec- 
trons in the field of the soliton and the s u p e r ~ ~ m m e t r ~ . ~ '  For 
this purpose we rewrite Eq. (13) in the form 

H ss  Y =hY ,  H9,='lz (-d,2+AS2+o3AS') I h='/z (La-anZ) .  

(134 
The operator Hs, is the model Hamiltonian for supersymme- 
tric quantum mechanics. As we know, one of the basic prop- 
erties of supersymmetry is that the ground-state energy goes 
to zero. The spectrum of H,, depends i r n p ~ r t a n t l ~ ' ~  on the 
topology of the "potential" A, (x). If A, (x) has an odd num- 
ber of zeros [as for the case of topological soliton (2)], the 
supersymmetry of model (13), (13a) is not broken and, conse- 
quently, there always exists a nondegenerate level R = 0 

677 Sov. Phys. JETP 59 (3), March 1984 I. V. Krive and A. S. Rozhavskil 677 



(A, = a:); the zero-frequency mode. All the remaining lev- 
els are doubly degenerate, which in the present problem im- 
plies a degeneracy of the particle and hole energies. 

IfA, (x) has an even number of zeros or no zeros at all (in 
particular, this is the case when the potential A,(x) is the 
polaron of a Peierls insulator),I3 the supersymmetry is spon- 
taneously broken and the ground-state energy level is posi- 
tive: A> 0. Therefore, the energy of the electron bound state 
in a lattice field of the polaron configuration is always posi- 
tive. 

One is readily convinced that the condition 

implies exact compensation of the local change in the charge 
density of the neutral soliton no = 1 (Refs. 3,4). 

According to (5), (6), and (12), the energy density of a 
Peierls insulator with a single static soliton in neglect of fluc- 
tuations is 

Here the generalized< function is constructed from the spec- 
trum (14), (15) with a density of states n(k ) = (L + ~ ' ( k  ))/277 
which incorporates the phase of the scattering of the elemen- 
tary excitations by the soliton7: 

wherex (k ) = 77 - 2arctan(k /Ao) is the phase of the scatter- 
ing of the electron by the kink. The factor of 2 takes the 
electron spin into account. The renormalization constant 
C, is fixed in the limit L-+ CO, and, according to Ref. 9, is 

C,=Ao esp ( n / g 2 ) .  (19) 

Omitting the inessential details, we obtain for PA,) 1 

The second term in (20) is the quasiclassical energy of a soli- 
ton in a Peierls insulator and, naturally, coincides with the 
energy of a Gross-Neveu soliton (N = 2; see Ref. 7 and also 
Refs. 4 and 5). 

For T # O  the energy E is replaced by the free energy F, 
and a calculation of (18) gives (see also Ref. 9) 

where Fo(T)  is the free energy density of a Peierls insulator 
with a homogeneous order parameter, and A (T) is the equi- 
librium value of the order parameter at the given tempera- 
ture T: 

The formulas forFo(A, T )  andA ( T )  can be obtained in explicit 
form only in the low-temperature ( p A > l )  and high-tem- 
perature ( PA (1)  limit^.^ 

The soliton motion is associated with a straining of the 
lattice, and so its maximum velocity is v, -avf(u,. By vir- 
tue of the Lorentz invariance of the electronic part of La- 
grangian (1) the motion correction to the quasiclassical soli- 
ton energy does not exceed a2. Therefore, the velocity must 
be taken into account only in the lattice terms, since the 
soliton mass is M, -Ao/a2 and is much larger than the mass 
of a free fermion4 

COLLECTIVE VIBRATIONS IN A PEIERLS INSULATOR. 
QUANTUM CORRECTIONS TO THE ENERGY 

The quantum corrections to Z are contained in the fac- 
tor Z / Z ( O ) .  Let us expand the last two terms in (5) to second 
order in S and 6 ': 

For the operator K~ the resolvent, defined by the equation 

Let us first consider the first term on the right-hand side of 
(23) 

The explicit form of the functions g,,(xrlx'r') and 
g,,(xrlx'rl) for PAo) 1 is 

1 -  exp [ i k  (x -x ' )  - io (7-7') ] 
.gii (sr lx 'r ' )  = JJ d k d o  

(227) kZ+02+Ao2 
I 

d o  dkdo  
gZ2 ( X ~ I ~ ~ ~ O  =gii - 7 Jj 7 ( 2 ~  1 

exp[ ik  (x -x ' )  - io (7-7') ] 
X {A,  ( t h  xA,  t h  x'A0-1) 

k2+oZ+Ao2 
+ik ( t h  xA0-th x r A o ) ) .  

(27) 
Equation (27) contains a singular integral, and we must give 
a prescription for its evaluation. As we know, upon the ana- 
lytical continuation w+iw the Matsubara Green function is 
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the same as the retarded. Denoting the second term in (27) as 
g, (xrlx'rf), we have the important relation 

J do2 g. ( x ,  x'l iw) =0, 
- CO 

[equivalent to Irng,(x,x'jiw)], which expresses the law of 
conservation of particle number in the presence of the soli- 
ton. 

It is clear from (28) that the regularization of the singu- 
lar integral (27) amounts to taking into account only its prin- 
cipal value. The question of circumventing the zero-frequen- 
cy mode in constructing the Green functions in quantum 
field theory has been discussed only for scalar models of the 
sine-Gordon and p: types.14 Reasoning that the zero-fre- 
quency mode in this case corresponds to the collective coor- 
dinate of the isoenergetic motion of the soliton and therefore 
cannot contribute to the imaginary part of the polarization 
operator, AbbottI4 concluded that the rule for circumvent- 
ing the zero-frequency mode amounts to taking just the prin- 
cipal value of the integral. Our analysis shows that an analo- 
gous rule (the singular integrals for the Green functions 
should be evaluated by the Sokhotskii formulas, and for the 
zero-frequency mode only the real part is retained) also ap- 
plies in the fermion theories, although the physical justifica- 
tion for such a regularization procedure is a completely dif- 
ferent. The coincidence of the rules for bypassing the 
zero-frequency mode is of course, dictated by the analytical 
structure of the integrals, and can evidently be explained by 
a hidden supersymmetry of the theory, since the zero-fre- 
quency modes in the boson and fermion sectors are related 
by a supersymmetry transformation. 

Finally, for the inhomogeneous part g, of the Green 
function we find 

k xeik('-") { t h  xA0 t h  r '~ . - i+ i  - ( th  .A,-th x 'Ao) 
A o 

It is easy to see that g, ( ~ T x ' T )  = 0. Together with the self- 
consistency condition 

or 

g-2=sp Go ( X T  1 x r ) ,  (31) 
this gives the correction A, = A ,(L+ oo ) + 0 (1/L ) solely in 
terms of the change in the density of scattering states. 

With allowance for the self-consistency equation 
gP2  = 2gll(xr1xr) we have 

Let us analyze the last term in (23): 

Here 

Dv=d/dy+2A, ( y )  , gii=gii ( X T  1 x'a'), gzz=g22 ( X T  1x15'), 

and the tilde denotes a dependence on the arguments (x' ,~') .  
In (33) we have retained terms which are quadratic in the 
fluctuations. 

First, using (32) and (33), we obtain the spectrum of 
small oscillations of the order parameter of a homogeneous 
Peierls insulator. In J ( x , ~ )  it is natural to separate the terms 
due to homogeneous-vacuum fluctuations A, from the soli- 
ton-governed terms. The first group of terms, which we de- 
note J,, is 

J.= J j  dx' dr '{S1 ( x ,  T )  6' ( X I ,  r ' )  

+4AO26 ( x ,  r )  6 ( x ' ,  a')) IG, ( x ~ l x ' r ' )  1 2 ,  (34) 

where 

(35) 
The inequality a< 1 permits making J, local in r. 

Characteristically, in fact, T-(gw,)-', while in the ker- 
nel Go we have for the scale of the difference r - r'A ; '. 
Therefore, in the curly brackets in (34) we can make the re- 
placement S(x',r')+S(x',r). 

The equation of motion for fluctuations in the homo- 
geneous case is 

8s:" =0, s,=jj d x d r 9 f '  , (36) 

where 

sz 
5?~')=- -2 - j J  dxrdr f  {6' ( x ,  r ) 6 ' ( x f ,  a )  

(goo) 
+4AO28 ( x ,  T) 6 ( x r ,  r )  } I Go (xal x'a') 1 ' .  (37) 

Substituting S a exp(ikx - i w ~ )  in (37), we obtain, after ana- 
lytical continuation to the real-frequency axis,6 

In the long-wavelength limit k(A, spectrum (38) has the 
formI5 

Let us find the phonon spectrum in a Peierls insulator in 
the presence of a topological order-parameter soliton. The 
corresponding integral dispersion equation, according to 
(32) and (33) for S(x,r) = S (x)ei"', is 

ow2(gwo)-'6, ( x )  - Jdx f6 ,  ( x ' ) R  ( x ,  x')=O, (40) 

where the kernel is 

The first two terms in (41) do not contain the inhomogeneous 
part g, of the Green function, and their analysis presents no 
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difficulty. The last term in the polarization operator (41) 
contains both linear and quadratic (in g, ) contributions. The 
linear terms in the leading approximation for a ( l  can be 
written in the form 

ch ( x - x ' )  A,+i(q/Ao) sh ( x - x ' )  A0 
X- 

ch x A ,  ch x 'A ,  (42) 

Upon integration of the term g, (xT~x'T ' )~,  (x'T' 1x7) over 7-7' 

it turns out that the main contribution to the integral is from 
the soliton level with energy equal to zero (the zero-frequen- 
cy mode), and therefore the functiong, can be replaced by an 
averaged value which does not take into account the contri- 
bution of the scattering states, i.e., 

which has a time average of zero. It is scarcely possible to 
give an exact analysis of the structure ofR (x,xl), but it can be 
inferred that, at least at large distances jx - x'()A & ', the 
soliton acts as a potential well for phonons. 

The kernel R (x,xl) = R (xf,x) is symmetric, and so one 
can use the trace formula (see, e.g., Ref. 16) 

Since we are interested in soliton effects, we subtract from 
(44) the homogeneous-vacuum contribution 

Here the superior bar denotes an averaging of (41) over (r- 
7') .  Substituting in (45) the explicit form of the Green func- 
tions, we find 

Thus 

On the other hand, the left side of (47) can be written as the 
sum of the squares of the bound-state frequencies and an 
integral over the energies of the scattering states. Taking into 
account the change of the density of continuum states in the 
field of the soliton (see, e.g., Ref. 17), we have 

where w, <; are the frequencies of the bound states of the 
phonons at the soliton, m is the number of bound states, 

~ ( w )  is the phonon-soliton scattering phase, w2(k ) is given by 
(38), and w, = w(k,). It follows from (47) and (48) that 
p(w) < 0, and we have 

The quantity on the right-hand side of (49) is a lower bound 
on the sum which determines the quantum correction AE, 
to the soliton energy: 

In fact, by virtue of the translational invariance of the prob- 
lem (the continuum approximation), the spectrum of fre- 
quencies w, contains a mode w, = 0, and all the other 
bound-state energies satisfy the inequality 0 < w, < ;. 
Further, since the integral over the scattering-state frequen- 
cies is a monotonically increasing function of the upper lim- 
it, we have 

In the last integral in inequality (5 1) the upper limit of inte- 
gration in the leading approximation for ad 1 (a,-%@) can be 
replaced by infinity. But then, according to Levinson's 
theorem (see, e.g., Ref. 18), the right-hand side of inequality 
(5 1) is equal to zero. Therefore, the quantum correction to 
the soliton energy is always negative, and for polyacetylene 
(2k, -, 10 eV, A,-,0.7 eV) its absolute value is not more than 
~ 5 0 % .  

Let us finally consider the contribution of the collective 
mode to the kinetic energy of the moving soliton. We write 

where 
9 e , f = - 6 i + 2 6 ~ ,  ( g o , )  -'- ( g ~ , ) ~ J ( z ,  T ) .  (53) 

After an elementary integration of the quadratic (in 6 ) form 
in the argument of the exponential in (52), we have 

1 

{ ~ p ~ n ~ } e r ~ { - j J  dx dr ,  A 8 2  Z,= jduexp -- 
(goo )  

0 

Here 
D=-aZ2-b (x ,  T ) / & ( x ,  T),  

the symbol 8 denotes a variational derivative, and D - ' is the 
phonon Green function. 
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We define the soliton kinetic energy: 

where v is the velocity of the soliton, and 

( 8 )  P-' 
Let, = - lim - 

8-m (goo)' 

x ( x ,  T )  ( x  T )  } A.=Ao th (x-iur) . (57) 

The first term in (57) after substitution in (56) gives4 simply 
1/2 M, v2, where 

M,=8/sAo ( A o l g ~ , )  '. (58) 

Analysis of the second term in (57) shows that in the leading 
approximation in the parameter ( D;)( 1 the exact phonon 
Green function can be replaced by the function DL' 
(xrjx'r'),  which is a solution of the equation 

x{d,ZD0-' ( y e  l x'a') -4A02Do-' (ye1  x 'T ' )  } =6 (x-x ')  6 (a-a') . 
(59) 

It follows from (59) that 

Do-' ( X T I  x 'T')  

exp {ik (x-2')  -iQ (a-a') ) 
' ( 2 n )  Qz+oz ( k )  (60) 

After straightforward manipulations we have 

where 

In deriving (61) and (62) we have made use of the relation: 
. 8 B  
1 

lim- 1 da ~drrexp[ i (&2-ku)  (r-T') ]=6(Q-kv). (63) 
B+- 2nPo 

It is by virtue of (63) that we can replace D -' byD ; ' in (57).  
In fact, the difference D -' - D; ' after the substitution 
x-+x - UT contains terms of the form p(x + vr )  which, upon 
integration over T ,  converge in the limit P+co and are 
smaller than S (a - kv)  by a factor of order ( P;)- ' ( 1. 

In dimensionless units 

where 

The real part off [the principal value of integral (65)]  de- 
scribes the renormalization of the soliton kinetic energy, 
while the imaginary part off is the Landau damping due to 
the generation of "phonons." Numerical analysis shows that 
for E < Zc z 5 the imaginary part Im g',"' is exponentially 
small, and 

It is seen from (66) that even at velocities E<& the effective 
soliton mass is substantially renormalized, and the self-simi- 
lar solution A, = Aoth(Ao(x - vt )) in fact loses meaning even 
for ~ < ( 5 / 6 ) " ~ .  

We wish to thank S. A. Brazovskii and I. 0. Kulik for 
helpful discussions. 

 he correction -0 (L -') in (16) is due to the change in the density of 
scattering states cancels with the corresponding change in normalization 
(14). Therefore, we immediately drop terms -0 (L -') in (14). 
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