
Self trapping from degenerate bands (spin S = 1) and related phenomena 
F. V. Kusmartsev and E. I. Rashba 

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
(Submitted 16 August 1983) 
Zh. Eksp. Teor. Fiz. 86, 1142-1 155 (March 1984) 

A theory of the self-trapping barrier in crystal with degenerate bands (spin S = 1) is developed for 
holes and Frenkel excitons. It is shown that band degeneracy leads to spontaneous symmetry 
breaking of the barrier, which acquires a prolate or oblate shape. The dependence of the barrier 
height on a number of parameters, such as the ratio of the effective masses, the deformation 
potentials, and others is investigated. The barrier-height scale is determined in all cases by the 
mass of the heavy hole (exciton). The mechanism of formation of quasimolecular self-trapped 
holes and excitons is discussed. Similar results were obtained for the strong-coupling polaron, for 
which lowering of the symmetry leads to the appearance of two rotational degrees of freedom. The 
results are applied to a number of other problems: fluctuation levels in semiconductors, the 
Urbach rule, and others. It is shown also that in systems with multicomponent order parameters 
the critical nuclei may be nonspherical (e.g., cigar- or disk-shaped). 

1. INTRODUCTION 

Most theoretical studies of self-trapping (ST) in crystals 
are based on models in which the electron (hole, exciton) 
spectrum is nondegenerate. Yet almost in all experimental 
observations the ST is from degenerate bandsls2 (among the 
few exceptions are ST in systems with quasi-one-dimension- 
a1 spectra, in pyrene, in liquid He). This rule does not lend 
itself to a clear and sufficiently general theoretical interpre- 
tation. In fact, since the ST states have practically always a 
spatial scale of the order of the lattice constant, they cannot 
be described in a continual approximation. In particular, one 
cannot apply to them the effective-mass method (EMM), 
which usually establishes the connection between the local 
states and the structure of the energy spectrum. Therefore 
only qualitative considerations can be invoked to treat this 
behavior. 

First, it is known that in the case ofband degeneracy the 
mass of one or two branches of the spectrum is usually large 
(e.g., heavy holes). This seems to promote self-trapping. Sec- 
ond, band degeneracy is usually the result of degeneracy of 
the corresponding atomic stats (e.g., p-type or sp-hybrid 
states), which form valence bonds. For example, ST of a hole 
in an alkali-halide crystal (V,  centers) is a quasimolecule of 
the CI; ' type, bound by valence  force^.^ 

In contrast to the ST the ST b a r r i e ~ - ~ . ~  that 
separates the free and ST states can have a spatial dimension 
r ,  )d.' The condition for this is satisfaction of the criterion 
E, (EFc , where E, is the half-width of the band from which 
the self-trapping stems and EFc is the Franck-Condon ener- 
gy of the lattice deformation in the ST state. 

It appears that the experimental data indicate that this 
criterion is satisfied in certain noble-gas crystals.' If r ,  )d, 
the ST barrier can be described on the basis of a continual 
model, i.e., in the EMM approximation. It is then possible to 
find its height W, shape, and also tunnel ~enetrabili ty.~ 
These are important data, since the surmounting of the ST 
barrier usually controls the rate of the self-trapping. 

We construct below the theory of a barrier for ST from a 

The most substantial result here is the spontaneous (Jahn- 
Teller) breaking of the ST barrier ~ y m m e t r y , ~ . ' ~  which low- 
ers the barrier. We investigate the dependence of Wand of 
the barrier-anisotropy parameter A that characterizes the 
degree of symmetry breaking on the effective masses, defor- 
mation potentials, and elastic moduli. A similar analysis was 
carried out also for the ground state of a large-radius po- 
laron-the only system that has a three-dimensional spec- 
trum, is describable within the framework of the EMM, and 
has no ST barrier. ' ' 

We consider in the present article crystals having cubic 
symmetry and confine ourselves to the case of a triply degen- 
erate band. It includes holes in the absence of spin-orbit in- 
teraction, and Frenkel excitons. To simplify the calcula- 
tions, which are cumbersome enough anyway, we retain in 
the Hamiltonian only spherical invariants and leave out the 
cubic, i.e., we neglect the corrugation of the bands. The an- 
gular momentum corresponding to the edge of the band is 
formally regarded as the spin S = 1 of the corresponding 
quasiparticle. 

We investigate here, for the first time ever to our knowl- 
edge, a three-component nonlinear Schrodinger equation 
with allowance for integral nonlinear terms (preliminary 
data were reported in Ref. 10). The results of this investiga- 
tion are applicable not only to ST in crystals, but also to a 
number of other physical problems. In the concluding sec- 
tion of the article we discuss briefly applications to the Ur- 
bach rule, to the theory of fluctuation tails of the density of 
states, to the theory of phase transitions (nonsphericity of the 
nuclei in systems with multicomponent order parameter), 
and others. 

2. HAMlLTONlAN AND WAVE FUNCTIONS. SYMMETRY 
BREAKING 

We consider the problem of the ST barrier. In this case 
the total energy of a particle with spin S = 1 (hole, exciton) 
interacting with acoustic phonons through a deformation 
potential takes in the adiabatic approximation the form 

degenerate band with angular momentum ("spin")S = 1. H[Y, u] =H,+H,es+Hint+H,h, (1 
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where 

is the kinetic energy of the particle, the mases m, and m, 
correspond to the longitudinal and transverse spectrum 
branches, 

A div YIP' (r) div Y (r') d3r d3r, 
H r e s  = - J J 4n I r-r' I 

is the resonant contribution to the energy and exists only for 
excitons that correspond to dipole-allowed transitions, A,, is 
the longitudinal-transverse splitting, 

(4) 
is the Hamiltonian of the interaction of the particle with the 
phonons, while a and 6 are the deformation potentials.12 The 
term proportional to a in (4) corresponds to hydrostatic com- 
pression, and the term proportional to b to volume-conserv- 
ing strains with zero trace: 

P H,, = J {y (div u)'+ - (rot u)') d3r 
2 

is the energy of the elastic deformation of the crystal, and A 
andp are Lame coefficients. 

The surface of the adiabatic potential H [u ]  
= H [Y[u],[u] is obtained from the condition 

which determines the Y = Y[u] dependence. We are inter- 
ested in a stationary point of this surface-the lower saddle 
that separates the free and ST states. The equation that de- 
fines this point is 

SH[Y [u] x u] /Gu (r) =O. (7) 

Substituting expressions (1)-(5) in (6) and (7) we get 

1 -- I 
grad div Y + -rot rot Y 

2m, 2ml 

Ail -- Y (TO d3,., grad div J- 
4n lr-r' I 

3 
f (a-b) Y divu + i-b{YXrot u+2(Y V)u)=EY,  (8) 

L 
- ( 2 p f  h )  grad div u+p rot rot u=B (r) , (9) 

where 

Equation (9) is solved by transforming to the k-repre- 
sentation 

u(k) = J u(r)erp(-ikr)d3r. 

and similarly for B(k). It follows then from (9) that 

In view of the unwieldy solution of (1 I), we assume for the 
preliminary analysis of the problem that 6 = 0. In this case 
we get from (1 1) 

a 
u (r) = 

I Y- (r') l 2  d3r, grad 5 1- 
4n (2y-I-h) r-r' 1 

and (8) takes the form 
1 -- I 

grad div Y 4- -rot rot Y 
2m1 2ml 

AII  'P  (r') a2 
(13) 

-- grad d iv j  - d3rf - - 
4n IY (r) l 2  Y = E Y  (r ) .  

lr-r'l 2p+h 

When b#O, the last term of the right-hand side of (13) is 
replaced by an integro-differential expression that is cubic in 
Y. 

Since the variations with respect to u and Y commute," 
the problem of finding the lowest saddle W of the functional 
H[u] is equivalent to finding W for the functional, 
f[Y] = H [Y,u[Y]] with u defined by Eq. (1 1): 

div Y e  (r)  div Y (r') 
d3r d3r' 

To determine to which eigenvalue E of Eq. ( 13) the low- 
est saddle point corresponds, we write down the virial 
theorem for the functional f[Y]. This theorem, as usual, 
can be established by carrying out in f the gauge transfor- 
mation Y(r) = K 3 ' 2 ~ ( ~ r ) ,  differentiating with respect to K, 
and setting K = 1.11'6 At A,( = 0 we have 

E=- f [Y ,  =-W. (1 5 )  

It follows from (15) that the minimum Wcorresponds to the 
maximum eigenvalue of (13), or equivalently, to the negative 
eigenvalue with the smallest absolute value. 

It is natural to assume, on the basis of the analogy with 
the theory of acceptor that such an eigenvalue of 
the initial equation (8) is degenerate for a spherically-sym- 
metric u(r), and the corresponding eigenfunctions belong to 
the angular momentum1' J = S = 1. This condition ensures 
the absence of nodes of the s-component, which usually 
makes the main contribution to the wave function Y. The 
degeneracy of the level E should lead, according to the Jahn- 
Teller theorem, to spontaneous breaking of the symmetry, 
since phonons with arbitrary symmetry are represented in 
the Hamiltonian H, particularly those belonging to the rep- 
resentation l",. el",. We assume that the symmetry is 
lowered to the group D,, . The triple degeneracy is then 
lifted, but certain connections between the eigenvector com- 
ponents remain and simplify the calculations that follow. 
The wave functions of the states obtained by splitting the 
term J = 1 take in the X, Y, Z basis the form 
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The subscript of Y, is the projection of the angular momen- 
tum on the symmetry axisz. The functionsf, g, and h are real 
and depend only on p2 = x2  + y2 and z2. The question of 
further symmetry lowering that lifts the degeneracy of the 
states Y,  , is discussed below. 

We can now establish certain singularities in the behav- 
ior of the functions Yo and Y + , . If we substitute them in (13) 
we see that the asymptotic form of Y as r-a is determined 
by the third term. For example, for Y, as r-, oo we have 

It follows from (17) that asymptotically we have 

with Y., similar. The asymptotic form a rP3  describes a 
dipole-dipole mechanism of exciton motion. 

A similar asymptotic form appears also at A,, = 0, if - - 
p I =  -m,/m,+O. The inequality p )1  corresponds to the 
usual situation when (longitudinal) holes with helicity v = 0 
and mass m, are light, and the (transverse) holes with 
Y = + 1 and mass m, are h e a ~ y . ~ '  In the limit asp-+ w we 
must put div Y = 0 (Ref. 15) and to ensure a tranverse char- 
acter of Y we must retain in the nonlinear term of (13) only 
the transverse part. Then (1 3) takes the form 

1 
-- 

1 a" 
AY - ---- rot rot j l u (r') 12Y (r') dar, 

2mt 4rc 2p+h I r-r' I 

With a transformation exactly the same as in the derivation 
of (17) we arrive again to Eq. (18). At finitepi_) 1 the relation 
a rP3 is an intermediate asymptotic form (in analogy with 
the acceptor wave function.16) 

The system (8)-(9) cannot be solved analytically, and 
numerical methods were used. The vector Y was chosen in 
the form (16) with allowance for the possibility of its slow 
asymptotic decrease (17). To determine u(r) it is convenient 
to take first the curl of both sides of (9). Then 

p rot Au (r) =-rot B ( r )  . (20) 

Single integration of (20) leads to 

wherex is an arbitrary function o fp  and z2. The solution of 
(21) is 

It follows from (21) that u(r) has the form 

It is easy to determine from (22) the asymptotic behavior of 
u(r) as r-+co. Assuming that x falls off rapidly enough to 

ensure convergence of the integral in (22) and recognizing 
that B(r) has the same symmetry structure as u(r) [see (23)] 
we find that u(r) a r P 2  as r-a . 

In the numerical solution, Y and u were expanded in the 
basis functions C !,zn(? + c')-"~. The integers n and I were 
chosen such that as r- w the functions Y and u decreased no 
more slowly than r P 3  and rP2, respectively, and had the cor- 
rect behavior as r-0. The number of parameters C f, reached 
25. After solving the nonlinear system of equations for C L, 
which determines the absolute minimum of the functional H 
when c is given, we minimized the solution with respect to c: 
W = max H (c).  It corresponds to the lowest saddle point. 

3. HEIGHT AND SHAPE OF ST BARRIER 

In this section we report the results of the calculation of 
the height of the ST barrier. We begin with the simplest case 
b = A,, = 0. Equation (8) and (9) are then satisfied at 

rotu=O, I Y I '+ (2ySh)  div u=O. 

After eliminating u, the wave function Y is given by the 
equation 

At m, = m, =m, (here and below m, is the heavy mass) the 
first two terms are gathered into - A Y/2mh and (24) breaks 
up into three identical scalar equations: 

Equation (25) has an eigenvalue corresponding to nodeless 
Y: 

The barrier height will hereafter be given in units of 
Wsr : 

Figure l a  shows a plot of w, (2). It can be seen that the wok)  
curve always passes lower than w , , (2); the curves meet 
only at ii = 1. Figure l b  shows the anisotropy coefficient 
A (2) defined as 

FIG. 1. Height w of ST barrier (a) and anisotropy coefficient A (b) as func- 
tions ofb. The solid and dashed curves are for M = 0 and + 1, respective- 
ly.  Dotted-lE'*, (u)l/W,,. 
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A ( P ) = ~ ~ , ( P ) ~ P ~ A ( F ) ,  slightly. Thus, at any rate when b = A , ,  = 0, the system can 

where z,,, and p,, ,  are the semi-axes of the surface 
/Y(r) l 2  = I Y (0) 12/2. It can be seen from Fig. lb  that / ~ ( r )  12, 
and hence also the deformation (i.e., div u) are prolate alongz 
axis in the state M = 0 and oblate in the state M = + 1. The 
deviation of A, from unity is the main indicator of the de- 
gree of symmetry breaking; it can be seen that at ,&)5 the 
coefficient A reaches values z 1.5 and 0.8 for M = 0 and 1, 
respectively. At ,ii < 1 the states with M = 0 become oblate, 
and those with M = + 1 prolate. The surfaces Y ( r ) 2  can 
have complicated shapes. We shall not describe them here; 
they are outlined for the limiting case ,ii-0 in Fig. 1 of Ref. 
14. 

It can be seen from Fig, la that in the range of,ii from 1 
to infinity the value of w, increases by a numerical factor 
-4. The limiting barrier height is then W( co )-- W& = co ), 
i.e., it corresponds to m,  = 0 and m,  = mh : 

A measure of the symmetry breaking in the state M = 0 
can be, besides A,, also the difference between the energies of 
the states M = 0 and f 1 (E  ', andE ' , , ) in the deformation 
field corresponding to Yo. According to (15), in this field the 
energy is IEh 1 = lEol = W,@). At arbitrary spherical-sym- 
metry deformation E ', = E ' + , . It can be seen from Fig. la 
that JE '. , & ) I  deviates substantially from Wo&). 

It is important to estimate the barrier-height change 
due to the choice of the degenerate solutions (16) subjected to 
the Jahn-Teller effect. For this purpose it is necessary to 
compare the W, obtained above for the "vector" states (with 
initial angular momentum J =  1) with the barrier height 
W(J = 0) for spherically symmetric states with total angular 
momentum J =  0. In this case Y(r) = rg(r). For these 
curly = 0, and according to (8) the Schrodinger equation 
contains only the mass m ,  of the light holes. From this, tak- 
ing (27) into account, it follows that W( J = O)/W,-,ii3. 
Therefore at ,ii)1 the choice of the "vector" solution de- 
creases Win order of magnitude, since the scales W( J = 0) 
and W, are determined by different masses, ml and mh , re- 
spectively. 

The states with M = & 1 are degenerate, and this de- 
generacy should be lifted by the nonaxially symmetric defor- 
mations. Calculations for such deformations are extremely 
complicated, and we do not present them here. They are 
furthermore apparently unnecessary. Indeed, since 
w + , &) > a,&) in the entire region,& > 1, it is natural to pro- 
pose that in the course of the decay of the states with 
M = + 1 the system goes through nonaxially symmetric 
states and assumes in final analysis to a form corresponding 
to M = 0, but with a different direction of the symmetry axis. 

An important factor is how steeply the surface of the 
adiabatic potential, i.e., of the functional H [u], rises near the 
saddle W,. It can be assumed that the rise is least steep where 
the Wo@) and W+ , &) curves are close to each other. This 
takes place, in particular, at b = A,, = 0. The lowest saddle 
W,,,,, of the functional H[u], considered in the class of 
spherically symmetric deformations div u(r), was also calcu- 
lated for this case," and was found to exceed W+ - , only 

surmount with comparable probability the ST barrier while 
in essentially different configurations. 

There is a special case when the decisive role can be 
played by states with M = + 1. It should be realized in hex- 
agonal and tetragonal crystals, in which the crystal splitting 
of the band with J = 1 causes the top of the doubly degener- 
ate valence band (with symmetry x,y) to lie above the top of 
the nondegenerate band (with symmetry z). Let this splitting 
be A,, ) W, but nonetheless shorter than the distance to the 
other band. Thez-band can then be excluded from consider- 
ation, and the EMM Hamiltonian can be expressed in the 
quasi-spherical aproximation in terms of the masses ml and 
m ,  in (21: 

Here a, =a2/axay, and similarly for the other derivatives. 
For such H,  in an equation similar to (8), the axial symmetry 
is spontaneously broken, i.e., the symmetry in the xy plane is 
lowered. A calculation for the case b = A ,, = 0 with a three- 
parameter Gabssian function Y: 

leads to the following expressions for Wand A: 

Figure 2 shows the dependences of w and A on the ratio 
of the deformation potentials fl = b/a at three values of ,& 
and two values of the Poisson constant a = /1/2(/1 + p).  It 
can be seen from Fig. 2 that the difference between w, and 
w . increases on the whole, and furthermore quite apprecia- 
bly, whenfl increases. It is very important that w, < w * , in 
the entire range of the parameter values. This agrees with the 
assumption made above that the lowest barrier corresponds 
to M = 0. It can also be seen from Fig. 2 that the change of a 
does not influence qualitatively the course of the curves. On 
the contrary, the dependence on fl is strong. Application of 
the potential b can lower considerably the barrier, which has 
in all cases a maximum near b = 0. 

Particularly noteworthy are theA )curves with,ii = 1, 
for in this case the symmemtry breaking is exclusively due to 
fl # 0. A goes through unity when b = 0. The states are oblate 
at 0 < 0 and prolate at fl > 0. The unique connection noted 
above between the signs of (A - 1) and & - 1) is absent at 
b f 0. It is restored, however, with increasing,&. 

We proceed now to the case A,, #O, which is important 
for excitons, and put b = 0. The exciton energy spectrum is 
shown in Fig. 3. the dependence of w on S = A,,/W,, is 
shown in Fig. 4. Curve 1 corresponds to,h = 1, b = 0, i.e., to 
a situation wherein the symmetry breaking is due exclusively 
to S #&to the dipole-dipole interaction. As S-+W both w 
and A assume the same asymptotic forms as at F-+ W .  The 
reason is that in both limiting cases the contribution of the 
longitudinal excitons is fully suppressed. In particular, Eq. 
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FIG. 2. Dependence of the height w of the ST barrier 
(a, c) and of the anisotropy coefficent A (b, d) on fi at 
A,, = 0. The solid and dashed curves are for M = 0 
and M = 1; curves 1-ji = 1,2-ji = 4,3-ji = 10. 
Figs a and b are for o = 0.35, while c and d are for 
o =  0.15. 

(27) is valid both for ,ii-cc and arbitrary 8, and for 8-cc 
and arbitrary ji. It can be seen from Fig. 4, however, that the 
monotonic increase of w as a function of S, which is initially 
relatively rapid, becomes later quite slow, at a scale 8-  lo2. 

4. POLARONS 

Polarons in crystals with degenerate band structures 
were considered hitherto only in the weak coupling approxi- 
m a t i ~ n . ' ~ " ~  We consider below the case of the adiabatic lim- 
it. The functional of the total polaron energy H, just as in 
Ref. 11, consists of the kinetic energy (2) ,  of the interaction 
energy 

H,., = e 1 I Y (r) I' q (r) d3r (30) 

and of the energy of polarization of the medium 

where E - I  = E L  I - EL I, while E, and E, are the low- and 
high-frequency dielectric constants. 

FIG. 3. Energy spectrum of exciton with account taken of the splitting 
A,, . The doubly degenerate band of the transverse excitons is shown sym- 
bolically by a double line. 

The wave function Y, just as in the ST barrier problem, 
is a three-component vector, and the problem is solved in 
analogy with the procedure described at the end of Sec. 2, 
except that the vector field u(r) that decreases asymptotically 
like r P 2  is replaced by a scalar field p(r) that decreases like 
r-'. The results of the calculations for M = 0 are shown in 
Fig. 5. Comparison with Fig. 1 shows that the dependence of 
the parameters on ji is noticeably weaker for a polaron than 
for the ST barrier; in particular, the polaron anisotropy is 
relatively small, (A - 1) 5 0.1. 

The very presence of the anisotopy of p(r), however, 
leads to qualitative changes in the spectrum of the polaron, 
since it acquires two rotational degrees of freedom-rota- 
tions about axes perpendicualr to the symmetry axis. It is 
convenient to express all the parameters in term of the Froh- 
lich coupling constant a = (m, e4/2wg2)li2, where w, is the 

',]:r 
1.0 0 I00 ZOO 6 

FIG. 4. Dependence of the height w of the ST barrier (a) and of the anisot- 
ropy A (b) on 6. Different curves correspond to different mass ratios: ,L: 
1-1,2-2,3-5,4--10. 
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an equivalent mass me, @), expressed in terms of the dimen- 
sionless height w of the ST barrier by means of the formula 

FIG. 5. Polaron energy f as a function ofF (M = 0) f is expressed in 
units of If,, = 0.0544 me4/&'. 

phonon frequency. The constant a is defined in terms of the 
heavy-hole mass m,, since it is precisely this mass which 
determines the scales of the energy f ,  of the effective mass 
m, , and of the radius r, of the polaron in the adiabatic limit 

2 (f-a w,, m, -a4mh and r, -(a2mhwo)-1'2). For the ro- 
tational quantum we obtain then E, -I -'-wo/a2, where 
I-m,< is the polaron moment of inertia. In the theory of 
the spherically symmetric polaron there have been investi- 
gated so far the contributions -a2wo and -aOwo to the ener- 
gy, The last term consists of the Pekar contribution 
- 1.5wo, which is connected with the translational zero 

modes," and an additional contribution due to the softening 
of the other vibrational modes near the polaron20*21; the total 
coefficient of the later term is =: - 2.836.*' The axially sym- 
metric polaron has five zero modes (three translational and 
two rotational), so that is clear beforehand that the coeffi- 
cient of should not have a modulus larger than 2.5. 

5. RELATED SYSTEMS 

A number of systems are either directly physically re- 
lated to the ST barrier in crystals and to the polaron, or are 
described by similar equations. 

The analog of the ST barrier in crystals is the barrier 
that separates the homogeneous plasma state from the state 
with plasma c a v i t o n ~ . ~ ~  The existence of this ST barrier was 
demonstrated by us in Ref. 14; it is described by Eqs. (8) and 
(9) with b = A , ,  = 0 in the limit as,iL+O. Analogs of the po- 
laron are the fluctuons and phasons that can appear in var- 
ious systems with diverse mechanisms of interaction 
between an electron and a m e d i ~ m . ~  The detailed mecha- 
nism of the interaction alters only the form of the nonlinear 
term in (13), but the entire physical picture remains un- 
changed: the only essential requirement for the onset of 
spontaneous symmetry lowering is that the electron band be 
degenerate. 

In the Urbach-effect theory developed by 10selevich~~ 
as applied to a Frenkel exciton, the determination of the 
absorption coefficient in the region of large energy deficits A 
reduces to solution of an equation analogous to (13). It was 
proposed in Ref. 24 that the exciton interacts with polar 
nondispersive optical phonons having a frequency w,. The 
coefficient of the nonlinear term in (13) is then replaced by 
2vEFc, where v is the volume of the unit cell and EFc is the 
deformation energy (see Sec. 1). The problem was solved in 
Ref. 24 in a scalar variant with Air = 0. Generalization to 
the case of a degenerate band is possible by direct use of the 
results of Sec. 3. It is necessary for this purpose to introduce 

me, (p) =m,w-'", 
(32) 

and replace the scalar mass in the equations of Ref. 24 by 
me,. The wk) that enter here are shown by the solid curve in 
Fig. la. In particular, for limiting cases of high (Duo) and 
low (T<wo) temperatures the absorption coefficient x(A ) is 
given by 

4 (WA) "' ) ,  .-.XP(- 0 0  

Equations (33), which establish the direct connection 
between the absorption tails and the ST barrier, provide an 
independent method of measuring W. 

Equations (13) with A,, = 0 is also an equation for the 
level-density distribution near the band edge in a semicon- 
ductor within the framework of the optimal-fluctuation 
method; it is assumed that the random potential can be simu- 
lated by white noise. For a nondegenerate band this method 
was developed by Gal'perin and Lax,25 by Zittarz and 
Langr,26 and by Lif~hitz. '~ The tails p(E) of the density of 
state determine the density of the local levels in the forbid- 
den band of a semiconductor and the carrier density in a 
zero-gap semiconductor at T = 0.28 For a nondegenerate 
band, 

( e x  - 5  ( E ) }  B (E) =13.3E'"/B0m", (34) 

Bo is the white-noise constant. Of greatest physical impor- 
tance are thep(E ) tails near the edge of a degenerate valence 
band, since the large effective mass of the heavy holes slows 
down the falloff o f p ( ~ ) .  It can be shown17 that for a nonde- 
generate spectrum Eq. (34) remains in force if m is replaced 
in it by me,, which is defined by (32). It is very important that 
for a degenerate band the optimal fluctuations are non- 
spherical. Permogorov et a1.,29 who observed the spectral 
dependence of the polarization coefficient of edge lumines- 
cence in CdS, , Sex , suggested that it is connected with the 
nonsphericity of the fluctuations of the impurity locations. 

6. ANISOTROPY OF PHASE-TRANSITION NUCLEI 

In this section we draw an analogy between an ST bar- 
rier and formation of phase-transition nuclei. In first-order 
transitions near the lability point,30 as well as in first-order 
transitions that are close to second-order ones, we can, in the 
spirit of the Landau theory31 expand the free energy F in 
terms of the order parameter. The equations that minimize 
the free energy are analogous to the equations of the self- 
trapping theory. The order parameter plays the role of the 
wave function Y, but unlike the latter there is no normaliza- 
tion condition, for it. For a multicomponent (say, vector or 
tensor) order parameter, the problem is mathematically 
equivalent to self-trapping from a degenerate band, and the 
role of the critical nucleus is played by the ST barrier. By 
analogy with Secs. 2 and 3 we can expect a nonspherical 
nucleus in the case of a multicomponent order parameter; 
this possibility will be demonstrated below. 

Let, for example, the system be described by a complex 
order parameter Qi,(i, j = I....) We write down a model 
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free-energy functional made up entirely of spherical invar- 
iants in the form 

Here N, and N2 as well as a and b are positive constant coeffi- 
cients, Tc is the transition temperature, ja = IIJ:,II are an- 
gular-momentum matrices corresponding to a representa- 
tion with total angular momentum 4 repeated indices mean 
summation. We consider only the case T >  Tc. The local 
minimum of F at the point Q = 0 corresponds to a metasta- 
ble phase, the lower saddle point F [Q,,, ] corresponds to a 
critical nucleus, and F [Q ] < 0 at large q corresponds to tran- 
sition to a stable phase. The stationary points F [Q] are de- 
fined by the nonlinear equation 

-N,AQij-NzJt~"J~rn~a,,Q,j-b (QIm*Qlm) Qij=-a (T -Tc)  Qij. 

(36) 
The solution of (36) at the saddle point F [Q ] corresponds to 
the critical nucleus. 

The transition to the analogous quantum-mechanical 
problem is by the transformation 

which ensures the normalization of Y and transforms (36) 
into 

E=-abZG2 ( T - T , )  /N13,  (38) 

which is analogous to (13). Here Yij is a multicomponent 
wave function and E = &(N2/NI) is the eigenvalue of Eq. (38), 
i.e., the Lagrange multiplier connected with the parameters 
of the Hamiltonian (35) by the second equation of (38). The 
minimum work R,,, = Fs,p, necessary to produce a critical 
nucleus is equal to the value of F [Y] at the saddle point. 
Using the virial theorem with special account taken of the 
third term of (35), we can show that 

2 
Rmin = - N, ( l ~ l a N , ) ' " ( T - T , ) " .  

b 
(39) 

Equation (39) generalizes the known result3' of the van der 
Waals theory of the critical point. The radius r,, of the criti- 
cal nucleus at N, - N2 - N is 

According to the Arrhenius law, the probability of classical 
nucleus formation is c exp( - Rmin/T) .  (Ref. 3 1). 

Equation (30) was investigated for three- and four-com- 
ponent wave functions in Refs. 10, 14, 17 and 32, and in the 
preceding sections of the present paper. Common to these 
equations is spontaneous symmetry breaking. It is exper- 
ienced by the form factor Qz(r)Qi,(r)  of the nucleus. The 
anisotropy of the nucleus depends on the ratio N2/N, (for an 
example see Fig. lb). At N, = 0 the anisotropy vanishes. 
Thus, for systems described by multicomponent order pa- 
rameters, the nuclei as a rule are not spherical and are, for 
example, cigar- or disk-shaped." 

7. CONCLUSION 

We investigated spontaneous symmetry breaking in an 
ST barrier and in a strong-coupling polaron in crystals with 
degenerate bands with spin S = 1. The parameters that de- 
termine the degree of symmetry breaking are the ratio ,L of 
the heavy and light masses, as well as the parameters of the 
interaction of the particle (hole, exciton) with the medium. 
We have shown that in most cases the states are prolate at 
,L > 1. However, the shape of the 1 Y(r) / cloud is substantial- 
ly influenced also by other parameters of the Hamiltonian. 
In particular, it may turn out to be oblate at a definite ratio of 
the deformation potentials, if,L is not too large in this case. 
The scale of the energy and spatial parameters of the polaron 
and of the ST barrier is determined by the heavy mass. As 
applied to the polaron, it leads to an increase of the coupling 
constant a and produces by the same token more favorable 
conditions for the onset of strong-coupling polarons. 

The conclusions concerning the shape of the ST barrier 
can apparently hold also for noble-gas crystals, in most of 
which the existence of quasimolecular ST excitons (m-exci- 
tons) of the R 2 type can be reliably established. The conclu- 
sion that the ST barrier is prolate indicates that the asymme- 
tric form of the ST state is formed already during the stage of 
surmounting the ST barrier. With the ST states so formed, 
there is no need for the intermediate self-trapping stage, 
namely passage through symmetric quasi-atomic states (a- 
excitons), as is frequently proposed in the interpretation of 
the experimental data. Suemoto and K a n ~ a k i ~ ~  have shown 
convincingly that in Ne, where a-  and m-excitons exist, the 
former can be transformed into the latter by a photochemi- 
cal reaction. The need for photochemical activation points 
to the presence of a barrier between the a- and m-states. At 
the same time, their data (Ref. 34, Fig. 1) show that at short 
times ( -  0.2psec) after the pulse that produces the excitons, 
the emission of the m-excitons is noticeably more intense 
than that of the a-excitons. This agrees with the conclusions 
of Sec. 3 concerning the maximum rate of self-trapping from 
a band state via states of lowered symmetry. 

Analogous arguments apply also to ST by quasimolecu- 
lar holes, if the main contribution to their formation is made 
by a nonpolar interaction. 

The calculations were performed in the spherical mod- 
el. Obviously, inclusion of cubic invariants in the Hamilton- 
ian "ties" the symmetry axis of the self-trapped exciton or 
hole to one of the symmetric crystallographic directions. An 
attempt to take into account cubic invariants was made in 
Ref. 35. There, however, several spherical invariants were 
left out and, in particular, a scalar mass was used. As a result, 
the basic manifestation of the Jahn-Teller effect, namely the 
nonsphericity of /Y(r)I2, is missing from Ref. 35. 

Many of the foregoing results can be generalized to ap- 
ply to other systems. Above all, polaron and ST-barrier sym- 
metry breaking occurs also at a spin S = 3/2 (Ref. 10). A 
number of other examples were dealt with in Secs. 5 and 6. 

We are grateful to A. S. Ioselevich, V. I. Mel'nikov, and 
S. V. Meshkov for numerous helpful discussions. 
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