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The entrance of a vortex structure into a distributed two-dimensional Josephson junction of 
arbitrary shape is analyzed theoretically. The two-dimensional sine-Gordon equation that de- 
scribes in detail the behavior of the vortices in the junction is replaced, by an asymptotic method, 
with a much shorter "truncated" equation of hydrodynamic type. This equation permits a study 
of the behavior of the averaged characteristics of vortex structures at  various methods of specify- 
ing the current and the external magnetic fi.eld. 

1. INTRODUCTION 

Many recent papers (see, e.g., Refs. 1-6) are devoted to 
theoretical and experimental studies of distributed Joseph- 
son junctions. In most cases the theoretical study is limited 
to a numerical analysis of initial equations of the sine-Gor- 
don type. Yet numerical integration of these equtions, even 
for relatively small two-dimensional junctions (with dimen- 
sions a -AJ, where A, is the Josephson penetration depth) 
calls for quite long computer time.536 

We have previously7 succeeded in developing an 
asymptotic approach to the description of long (a)A ,) quasi- 
one-dimensional junctions. This approach has led to con- 
struction of a truncated equation that describes the behavior 
of the averaged characteristics of the vortex structure. We 
were then able to obtain analytic expressions for the station- 
ary characteristics of a quasi-one-dimensional junction, and 
in particular for its critical current. 

In this paper this asymptotic approach is generalized to 
include the case of two-dimensional Josephson junctions. 
The obtained truncated equation permits effective study of 
large size (USA,) two-dimensional Josephson junctions. 

2. THE TRUNCATED EQUATIONS 

I t  is known (see, e.g., Ref. 8) that the physical processes 
that occur in a Josephson junction are described by the be- 
havior of the Josephson phase p that is subject to a two- 
dimensional sine-Gordon equation that takes in the station- 
ary case the form 

h,2V2rp=sin c p ,  (1) 

where the operator V acts in the plane of the junction 
(V2 = a 2 / d ~ 2  + a2/ay2). The solution of this equation yields 
the density distribution of the surface currents J ( x ,  y )  in the 
superconducting electrodes, and the magnetic field H in the 
junction: 

J=jCh,2Vcp, H=[II,X J ] ,  (2) 

where j, is the critical density of the Josephson current. 
Equation (1) is supplemented by a condition imposed on the 
junction boundary r and following from relation (2): 

where J, (x, y) is the linear density of the current injected 
into the junction. 

FIG. 1. a) Josephson junction in the form of the a corner a (top view); 
J ,  --distributed density of the current entering the junction.CB-front of 
domain ABC. The force lines of the magnetic field H are perpendicular to 
the density lines of the current J a k. b) Fragment of domain ABC. The 
magnetic force lines (lines of equal phasez) make an angle B with the near- 
boundary layer (shaded). 

Let us examine qualitatively the structure of the solu- 
tions of the boundary-value problem ( I ) ,  (3) at  a)A,. The 
current generates quantized vortices near the junction 
boundary (usually near corners; Fig. la). On entering the 
junction, the vortices fill a certain of the junction 
forming a single "domain" in which the magnetic field is 
substantially different from zero. The equilibrium configu- 
ration of such a domain is determined by the balance of the 
forces that act on it. At the junction boundary the domain is 
acted upon by a Lorentz force proportional to J,, , which 
pushes the domain into the interior of the junction. Another 
force, determined by the gradient of the proper energy of the 
domain, tends to push it out of the junction. 

The behavior of the function p(x,  y) in the domain is 
characterized by two different scales. The fast small-scale 
changes of the phase occur at wavelengths on the order ofA,, 
whereas the slow large-scale changes occur on the junction 
area, i.e., at lengths a)A,. I t  is precisely the presence of these 
two scales which makes the solution of the boundary-value 
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problem (I), (3) difficult; this presence can be eliminated as 
follows. 

Following the procedure of Ref. 7, we consider first a 
two-dimensional periodic lattice of Josephson vortices. In 
this case the solution of (1) can be represented in the form 
p,(z,k ), where z is a dimensionless coordinate that plays the 
role of an averaged phase p: 

z(x, Y) =(kr)/k3, (4) 

and k is the wave vector of the vortex lattice. Just as in the 
case of a one-dimensional lattice, the function p, satisfies the 
condition 

rp, (z+2n, k) =rp, (z, k) +2n. (5) 

In a real domain, the Josephson vortices form a nonper- 
iodic structure. At USA,, however, this structure can be re- 
garded as locally periodic and its quasiperiod can be taken to 
be a smooth function of the lattice coordinates. This allows 
us to seek the solution of Eq. (1) in the form of the following 
expansion: 

v=ga (2, k )  +,qi (2, k) + ~2 (2, k) + . . . , (6) 

in terms of the parameer E -A,/a, with p, -E" . The wave 
vector k is now no longer a constant, as for a strictly periodic 
vortex lattice, but is a smooth function of the coordinates 
and defined by the relation 

k=kJVz. (7) 

Substituting the expansion (6) in Eq. (1) and linearizing it 
with respect top,,  we arrive in first order in E, just as in Ref. 
7, to the following equation for p,: 

k2d2~,/d~2-(p, cos (pO=hJf (2) , (8) 

but with a somewhat different right-hand part, namely: 

We stipulate that the function p ,  defined by expansion 
(6), satisfy a condition analogous to (5). This leads7 to the 
following constraint on the function f (z), in which the vector 
k is a still undetermined function of the coordinates: 

The angle brackes in (10) denote averaging over the 2.n-peri- 
od of the argument z. With account taken of the explicit form 
(9) of the function f (zj, the condition ( lo)  becomes 

div ( A  ( k )  k)  =0, 

A (k) =( (arpa/az) 2>. 

The function A (k ) is expressed in the parametric form7 

where K (y) and E (y) are complete elliptic integrals of the first 
and second kind, respectively. 

Equation (1 1) is the sought "truncated" equation that 
replaces the initial equation (1) for two-dimensional Joseph- 
son junctions of large size (USA,) and describes the slowly 

varying parameter of the domain-the wave vector k. We 
emphasize that Eq. (1 1) no longer has the characteristic scale 
A,, owing to the averaging carried out in (10). The changes of 
the function z(x, y) take place at a distance of the order of the 
junction dimension, an advantage of the truncated equation 
over the initial Eq. (1 j. 

The solutionz(x, y) of this equation determines the aver- 
aged (over the quasiperiod of the lattice) values of all the 
physical quantities. In fact, substituting in (2) the expansion 
(6), confining ourselves to the zeroth approximation in E, and 
averaging (2) over the quasiperiod of the vortex structure we 
find that the vector k coincides with the averaged surface- 
current density in the electrodes: 

and its absolute value, by virtue of the second equality in (2), 
is proportional to the mean value of the magnetic field. The 
current lines (k) are orthogonal to the equal-phase lines 
z(x, y) = const, which in turn are parallel to the force lines of 
the magnetic field H (Fig. la). Spreading over the surface of 
one of the superconductors into the interior of the domain, 
the J current lines are joined through the Josephson current 
j = divJ of the domain to the lines of the current flowing in 
the opposite direction over the surface of the second super- 
conductor. Using Eq. (1 I), we obtain the average density of 
the Josephson current: 

3. BOUNDARY CONDITIONS 

On the "free" boundary of the domain with the "emp- 
ty" junction region (i.e., on curve CB of Fig. la we have 

Let us discuss the boundary conditions for that part of the 
domain boundary which coincides with the junction bound- 
ary. The presence of an abrupt boundary of the Josephson 
junction leads to formation of a boundary layer (of thickness 
-A ,), inside of which the vortices are additionally deformed 
and Eq. (1 1) does not hold. Therefore the averaged condition 
(3) 

can be written only for a circuit that lies deep below the 
boundary, at a distance )A,, so that the entering current 
density J is, generally speaking, not equal to ( J, ). To find 
JL we consider a small fragment abc of the domain, which 
contains nonetheless a large number of vortices and whose 
side ab abuts the junction boundary (see Fig. 1 b); the sides bc 
and ac are parallel respectively to H and (J) cc k. We pro- 
duce a small homogeneous shift of the entire vortex struc- 
ture (see Fig. la) in the direction of the vector k, such that bc 
intersects dn vortices and the phase p acquires an increment 
d p  = 2rdn (the energy of the vortices contained in the con- 
tour abc remains unchanged). Equating to zero the work 
performed on the structure by the currents J, and J (p ) we 
get 
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f i  d(P (J,>L- - dn L cos 0 
2e 

( n )  

where the integral is with respect the period a(k ) = 2n-A,/k 
of the vortex lattice. Taking into account the first equality of 
(2), relation (4), and the definition (12) of the function A (k ), 
we have 

From (17) and (18) we obtain an expression for the normal 
component of the average current density J A =( J ) cos 6' 
injected into the domain: 

I,'=(J,>IA ( k ) .  (17'3) 

In the particular case when the vortices are parallel to 
the junction boundary (8 = O), the condition (17b) yields the 
known connection8 between the external magnetic field H, 
at the boundary of a one-dimensional junction (H,  a J, ) and 
the mean field ( H  ) in the junction ( ( H  ) cc ( J  A )). 

It follows from condition (1 7b) that in the case of a dense 
vortex lattice (k+m, A (k )+I) the difference between Jn 
and J A is inessential. If, however, the lattice is sparse (k < 1, 
A (k ))I), almost the entire current Jn entering junction is 
shorted by the near-boundary layer ( J A ( ( J, )); this short 
circuit is complete on the junction boundary outside the do- 
main. 

4. CHARACTER OF THE SOLUTIONS OF THE TRUNCATED 
EQUATION 

Consider a Josephson-junction fragment in the form of 
a corner a (see Fig. la). Let the total current I, enter the 
junction through the vertex (pointA ). The distribution ofthe 
phasez in the junction has then axial symmetry and the trun- 
cated equation (1 1) is easily integrated: 

A ( k )  kr=const. (20) 

With increasing r, the product A (k )k in (20) should de- 
crease to its minimum value 4 / ~ .  Consequently, the con- 
stant in (20) is equal to 4ro/n-, where r, is the radius of the 
domain. Integrating Eq. (15) for the average Josephson-cur- 
rent density over the domain area and equating the result to 
the current I,, we obtain 

rO= ( n / 4 u )  ( I , / j ,hJ) .  (21) 

Figure 2 shows the distributions, which follow from 
(13), (15), and (20), of the averaged phase z, of the surface 
current density ( J), and of the density of the Josephson cur- 
rent ( j )  in the domain. Using (13), we obtain the following 
asymptotic relations: 

4 ro 
J ( r )  > = - - at r q r , ,  

x r 
(22) 

FIG. 2. Dependence of the mean values of the current density ( J ) ,  of the 
phasez, and of the Josephson current ( j) on the coordinate r  in an axisym- 
metric domain (solid curves). The points show the behavior of the non- 
averaged current density for a ratio r,/A, equal to 5 and 20. 

Equtions (22) and (23) as well as Fig. 2, reflect the gen- 
eral character of the vortex-domain structure: the bulk of the 
Josephson current flows in the immediate vicinity of the do- 
main "front," i.e., near its boundary with the empty region 
of the junction (in our case at r-r,). The reason is that inside 
the domain (r  < r,) the vortices are strongly compressed, so 
that their shape is close to symmetric and the average Jo- 
sephson current is close to zero. On the contrary, the vorti- 
ces located near the front are strongly asymmetric and make 
the main contribution to the average Josephson current. 

5. DOMAINS AND CRITICAL CURRENT OF SQUARE 
JUNCTION 

In the general case, to find the functions z(x, y), 
( J (x ,  y)) and ( j(x, y)) we must solve Eqs. (7) and (1 1) on the 
domain area with account taken of the boundary conditions 
(16) and (17a,b) at a known distribution of the current density 
( Jn ) over the boundary of the Josephson junction. The 
boundary of the domain with the empty region of the junc- 
tion is not known beforehand. Such a problem belongs to the 
class of nonlinear two-dimensional problems with unknown 
(free) boundary (see e.g., Ref. 9) and, except for rare cases (see 
Sec. 4) admits only of numerical solution. The principal 
computational algorithms for the solution of free-boundary 
problems are based on the basis of the method used to solve 
the Poisson equation in Ref. 10. 

We denote by L the nonlinear elliptic operator corre- 
sponding to (7) and (1 1). According to this method it is neces- 
sary to solve not the equation Lz = 0 inside a domain with 
unknown boundary, but a corresponding boundary-value 
problem for the "perturbed" equation 
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FIG. 3. Square Josephson junction made up in the overlap region of two 
superconducting films: a)  top view, b, c) static domains in the junction for 
a current I, equal respectively to j, a/l, and 1.8 j, a/l, (I, = 0). The lines 
of equal phase z (z/l,/a = 0; 0.05; 0.10; ...) show the picture of the mutual 
location of the vortices in the junction; d )  initial stage of coalescence of 
three unpolar domains I, = 1.86 j, a/l,; I, = 0). 

in the entire plane of the junction. Here C, (z, ) and f, (z, ) are 
discontinuous functions identically equal to zero inside the 
domain, but outside a domain, whose boundary is deter- 
mined by the condition z, (x, y) = 0, we have C, (z, ) = E - ~ ,  

and f, (z, ) = const. E is the iteration parameter; the bound- 
ary-value problem for Eq. (24) was numerically calculated 
for relatively large E(- I), after which E was decreased by a 
fixed number of times, and the preceeding solutionz, (x ,  y) of 
Eq. (24) was used as the initial approximation. At sufficiently 
small E ( -  lo-') the functionz, (x, y) comes with good accu- 
racy (on the order of several percent) to the solution of the 
initial problem. The optimal characteristics of such an iter- 
ation algorithm were investigated by us experimentally with 
model calculations (e.g., we verified Eq. (21) with the current 
I,, into the junction corner specified). For a concrete solution 
of (24) at each fixed E the system of difference equation was 
solved by a buildup method using a longitudinal-transverse 
scheme. ' ' 

This numerical method enabled us to solve the problem 
for the important case when a Josephson junction was 

formed over the entire area of superposition of two super- 
conducting film strips of equal width a (see Fig. 3a), and 
consequently was square in shape. For this geometry, the 
density of the current J,, injected into the junction is distrib- 
uted in a complicated manner along its boundary. This dis- 
tribution was obtained in Ref. 6 for different ways of specify- 
ing the field and the current. 

Figure 3b shows the numerically calculated shape of the 
static domains induced by a transport current I,(I, = 0) for 
two values of I, smaller than the critical I,. The bulk of the 
current enters the junction in the region of the corner 1, 
therefore the size of the domain located in this corner is a 
maximum. With increasing current I,, the domains increase 
in size and when the critical current is reached the unipolar 
domains come in contact (the polarities of the domains is 
marked by arrows in Figs. 3b-d). At the instant of contact, 
the domains merge into a single domain with concave 
boundary. This domain shape is energywise unfavorable, 
and the domain goes into motion and shortens the length of 
the boundary. The motion of the domain gives rise to a resis- 
tive state (see Fig. 3d).'' 

The solid lines in Figs. 4a and 4b show the dependence 
of the critical current I, respectively on the current IH over 
one of the films and on the external homogeneous magnetic 
field H parallel to the side of the junction. In the first case the 
specified current I, is not uniformly distributed over the 
films6; in the second case the uniform magnetic field H in- 
duces a Meissner current I, = aH, which is uniformly dis- 
tributed over one of the films. The points in Figs. 4a and 4b 
show the results of the numerical calculation for the initial 
equation (1) at a = 6AJ, which, in turn, agree quite well with 
the experimental resulk6 It can be seen that in the limit as a/ 
A,-+cc (solid curves) there are no secondary maxima of I,w 
(I,) at all. On the contrary, in the region of the central maxi- 
ma one observes satisfactory agreement between the asymp- 
totic and exact curves. Let us discuss these regions separate- 
ly. 

6. CENTRAL MAXIMUM 

We shall show that in this region ( I  IH 1 <2jcaA,; see 
Fig. 4a) an even simpler approximate description of the 
I,(I,) dependence is possible. Injection of the currents I, 
and IH along the sides of the Josephson junction is effected 
predominantly in the region of its corners in the respective 
ratios 3/4:1/4: - 1/4:1/4 and 1/2: - 1/2: - 1/2:1/2 (see 
Ref. 6). We replace the distributed injection by specifying the 
currents exactly into the corners, at the same ratios. With 
this approximation of the boundary conditions, the domain 

FIG. 4. Dependence of critical current I, on: a)  the current 
I, (unevenly distributed over the films), b) on the external 
homogeneous magnetic field H (I, = a H  is the Meissner cur- 
rent uniformly distributed over one of the films). Solid 
curves-result of numerical calculation by Eqs. (7) and (1 1). 
Points-numerical calculations for Eq. (1) and a = 61, (Ref. 
6). Dashed curves-dependences of critical current for an 
axisymmetric approximation of the real boundary condi- 
tions. 
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becomes axially symmetric and the solution of the problem 
is substantially simplified, since we can now use the result 
(21), where the current I,, is a sum of the currents I, and I, 
multiplied by the coefficients indicated above. The critical 
value of the current can now be obtained by equating the 
sums of the radii of each pair of neighboring domains to the 
length a of the side of the junction. 

In the upshot we obtain a set of straight line on the (I,, 
I,) plane, which delimit the region of stationary states 
(dashed curve on Fig. 4a). It can be seen that even so simple 
an approximation provides a reasonable description of the 
true I,  (I, ) dependence as a/A,+ cc , since the real injection 
is close to that through corners. 

Such an "axial domain approximation" works poorly 
only when the vortices are induced by a uniform external 
field H exactly parallel to a side of the junction. In this case 
the Meissner current induced by the field is injected into the 
junction uniformly on two of its sides.6 Replacement of such 
a uniform injection by corner injection (in this case account 
is taken of only that fraction of the current that can flow into 
the interior of vortex domain) leads to the dependence shown 
by the dashed curve in Fig. 4b. Comparison of this depen- 
dence with the exact result shows that satisfactory agree- 
ment takes place only in the region of the peak of the central 
maximum where the uniform current injection is small. 

7. SECONDARY MAXIMA 

We obtain now the asymptotic behavior of the heights 
of the secondary maxima at large but finite values of the 
parameter a/A, in the region ()I, I >j,aA,. To this end we 
must find the maximum admissible value (IM ) of the integral 

a '3 

Ii=j. J d r  J dy sin 9 
0 0 

in the case when the vortices fill the entire Josephson junc- 
tion. 

Under the integral sign of (25) is a rapidly oscillating 
function, so that the value of this integral is determined by 
the behavior of the phase in the region of the junction bound- 
ary. This is physically clear, since nonzero values of I, in 
this field region correspond to pinning of the vortices by the 
junction boundary. This pinning takes place wherever the 
vortex approaches the boundary in such a way that its vortex 
current makes a nonzero contribution to I,. 

Figures 5a-5c show typical possible distributions of the 
magnetic field in the junction. If the external magnetic field 

FIG. 5. a -c  Characteristic distribution of the magnetic field in a junction 
at 1 I ,  j>jc a l ,  . The pinning regions are shaded. 

is parallel with good accuracy (slope S i l  ,/a( 1) to one of the 
sides of the junction, the pinning region consists of two strips 
of length a and width -A,, located along two sides of the 
junctions (shaded strips on Fig. 5a). For such a one-dimen- 
sional geometry the expression for the envelope at the secon- 
dary maxima is well k n ~ w n ' ~ - ' ~ :  

If the current I, that enters the junction is produced by 
an external uniform magnetic field H oriented parallel to a 
junction side, the vortices are pinned only at the corners of 
the junction, i.e., on a considerably smaller area -A (see 
Fig. 5b), and the pinning is considerably weaker. In fact, in 
this case we can use the known (see, e.g., Ref. 14) asymptotic 
representation of the integral (251, which is valid when the 
phase varies rapidly along the coordinate axes and when 
there are no stationary points on the junction area. This 
yields directly 

The third type of vortex structure configuration (Fig. 
5c) can be realized, for example, when the field H is given by 
the current IH flowing through the film. In this case the 
current injection is not uniform, the vortices are bent, and on 
both sides of the junction there appear sections where the 
vortices touch the sides of the junction. The length of these 
sections (where the vortex is separated from the side of the 
junction by a distance S A,) is of the order of (aA, )'I2, there- 
fore the pinning force should in this case be (u/A,)"~ times 
stronger than at the corners. From the mathematical point 
of view the points of tangency of the vortices to the junction 
sides are stationary points of the phase, and the asymptotic 
expansion of the integral (25) is determined in this case by the 
behavior of the phase precisely at these points (see Ref. 14). 
For the envelope of the lateral maxima we obtain 

IM/2j,ahJ< (f-i (x) z",'").=, (nhJ/4a)'" ( IIH I /2j,ahJ) -". (28) 
y=o 

The function z(x, y) is the phase z(x, y)  normalized to the 
current IH and calculated at I, = 0, while the function f (x) 
is its derivative d.Z/dy on the junction boundary, so that the 
factor in the first round brackets, taken at the stationary- 
phase point, is a constant independent of a/A, and IH (nu- 
merical calculation found it to be equal to 1.6). 

Comparing the obtained equations (26)-(28) with one 
another, we see that at the vortex configuration shown in 
Fig. 5a we get the strongest pinning (261, and for Fig. 5b we 
get the weakest pinning (27). The pinning assumes interme- 
diate values in case of tangency of the vortices to the bound- 
ary of the Josephson junction [Eq. (28)l. I t  is of special im- 
portance that the relative heights of the secondary maxima 
at any manner of specifying the magnetic field (except when 
the field is parallel to one of the sides of the junction) tends to 
zero with increase of the parameter a/il,. Thus, at sufficient- 
ly large values of the ratio a/A, the form of the IM(IH) de- 
pendence is indeed given by the basic approximation of our 
asymptotic theory (solid line in Fig. 4a). 
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8. CONCLUSION 

We developed in this paper an asymptotic approach to 
the description of two-dimensional Josephson junctions of 
arbitrary shape and of large size (USA,). As a result we ob- 
tained the truncated equation ( 1  I ) ,  which replaces the initial 
two-dimensional sine-Gordon equation ( 1 ) .  The truncated 
equation is superior to the initial one in that it does not con- 
tain the characteristic scale A,, so that it becomes much easi- 
er to analyze. Comparison of the results with a numerical 
calculation6 performed for the initial equation ( 1 )  has shown 
that the truncated equation describes satisfactorily the re- 
gion of the central maxima of the IM ( I H )  dependences even 
for relatively small junctions (a/A, - 6). We have shown that 
the lateral maxima of the I M ( I H )  dependences, which are 
absent from the first approximation of our method, actually 
decrease without limit with increasing ratio a/A ,). 

"Although the truncated equation describes only the static distribution of 
the domains in the junction, the algorithm used by us nevertheless en- 
abled us to simulate qualitatively also the dynamic state connected with 
the motion of the vortex domains. 
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