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The line parameters of the EPR on magnetic impurities in metals (i.e., the line shape, width, the 
signal shape, and their temperature dependence) are computed with allowance for the inhomo- 
geneous broadening and the "electron bottleneck" effect, i.e., the strong dynamic coupling of the 
impurities to the conduction electrons. For this purpose the kinetic equations for the transverse 
components of the conduction-electron magnetization and the spectral density of the transverse 
components of the magnetization of the impurities producing the inhomogeneously broadened 
EPR line are derived. The system of equations is solved for the case of an arbitrary local-field 
distribution functiong(f2 ). The solution is analyzed analytically and numerically for specificg(f2 ) 
functions. The conditions under which the electron bottleneck effect leads to the narrowing of the 
inhomogeneously broadened lines are found, and the residual inhomogeneous contribution to the 
total line width is computed. It is shown that a minimum appears on the temperature dependence 
of the EPR line width as a result of the disappearance of the dynamic narrowing as the tempera- 
ture is lowered; the line has a significantly different shape in this temperature region. The experi- 
mental investigations are discussed. 

INTRODUCTION 

The temperature dependence of the line width r (T)  of 
the electron paramagnetic resonance (EPR) on magnetic im- 
purities in metals is approximated by the linear function 

r ( T )  =a+ bT (1) 
and is well corroborated by measurements at high tempera- 
tures. The coefficient b is called the temperature slope of the 
line; a, the residual width. The dominant contribution to the 
latter is made by the inhomogeneous broadening.132 There 
are, however, a large number of experiments in which the 
linear decrease of the width T ( T )  at low temperatures is re- 
placed by a nonlinear increase, i.e., the line width as a func- 
tion of the temperature has a minimum (see, for example, 
Refs. 1-7). As the possible causes of the EPR line broadening 
at low temperatures, there have been discussed mechanisms 
connected with the appearance of magnetic order (presuma- 
bly of the spin-glass type) in the system of impurities; the 
disappearance of the exchange narrowing of the dipole width 
of the line as a result of the critical slowing down of the 
exchange fluctuations of the local fieldsps9; the nonmono- 
tonic temperature dependence of the homogeneous relaxa- 
tion contribution to the EPR line width, that stems from the 
presence of a maximum in the susceptibility of the impurities 
in the region of the magnetic transition.' It is, however, 
noteworthy that in the overwhelming majority of experi- 
ments in which the nonmonotonic behavior o f r  ( T )  was ob- 
served (see, for example, Refs. 1-6), the more rigid the re- 
gime of "electron bottleneck" (the appearance of coupled 
oscillations of the spin magnetizations of the impurities and 
conduction electrons if the latter are bound more weakly to 
the lattice than to the impurities") is, the sharper is the mini- 
mum. This indicates the existence of a connection between 
the bottleneck phenomenon and the nonmonotonicity of 
r (T) .  It is well k n ~ w n ' . ~ . ' ~  that the effect ofthe bottleneck on 
the homogeneous width of the EPR line is to reduce the 

temperature slope b in (1); therefore, it is necessary to investi- 
gate the dynamic narrowing of the inhomogeneous width as 
a possible cause of the nonmonotonicity of T ( T  ). 

The present paper is devoted to the systematic investi- 
gation of the spin dynamics of impurities having an inhomo- 
geneously broadened EPR line a metal. The equations de- 
scribing the coupled oscillations of the spectral density of the 
magnetization of the impurities and the magnetization of the 
electrons are derived and solved for an arbitrary local-field 
distribution function. Analysis of the solution shows, in par- 
ticular, that the gradual narrowing down, as the temperature 
increases, of the inhomogeneous contribution to the line 
width, together with the monotonic increase of the homo- 
geneous width b *T, leads to the appearance of a minimum in 
the dependencer ( T )  even when the broadening mechanisms 
connected with the magnetic order are not considered. Un- 
der the experimentally realizable bottleneck conditions, the 
minimum width o fT  ( T )  can be several times smaller than the 
width of the original local-field distribution. Since the reso- 
nance line width in a metal is a mixture o f x  ' a n d x  " (where 
x = x ' + ix" is the dynamic susceptibility), knowledge of 
the formula for x " is necessary for the correct extraction of 
the width. Accordingly, we investigate the dependence of 
the EPR line shape on temperature and bottleneck condi- 
tions. 

THE KINETIC EQUATIONS AND THE DYNAMIC 
SUSCEPTIBILITY 

Let us consider a dilute magnetic alloy located in an 
external constant magnetic field H, and a weak external 
variable magnetic field h(t ) perpendicular to H,. Let us as- 
sume that the magnetic impurities are distributed randomly 
at the lattice sites j of the metal with concentration c and 
local precession frequency flj. The impurities and conduc- 
tion electrons interact with each other through the s-f ex- 
change XeS; furthermore, the electrons interact with the 
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lattice through the momentum and spin-orbit scattering 
Ze, by the nonmagnetic impurities, defects, etc. The total 
Hamiltonian of the system is written in the standard-for 
EPR in metals-form (see, for example, Refs. 10 and 1 I), 
except for the terms connected with the magnetic impurities: 

26 ( t )  =%,"+%,'+%,+%is ( t )  +%Ie ( t )  +%,,+%,L, 

%,".'--R J SZ(S)) (o.f Q)dS), 

g.wsh 8,. ( t )  = - 7 [ [S+ ( Q )  exp ( - io t )  +S-(52) exp ( i o t )  ] dQ, 

Pde' and *le)(t ) are the Zeeman-energy operators for the 
impurities (electrons), Z, is the Hamiltonian for the elec- 
tron kinetic energy, 

is the electron spin density at the jth lattice site, r, is the 
radius vector of the site, u, is the Fourier transform of the 
spin density, S,* is the a component of the spin angular mo- 
mentum of the impurity at the site j, Jsf is the exchange inte- 
gral, N is the number of lattice sites per unit volume, gs(ge) 
and p, are the impurity (electron) g factor and the Bohr 
magneton, h and w are the amplitude and frequency of the 
variable field h(t ), and Hj is the local magnetic field at the jth 
site. 

As can be seen from (2), the system is both spatially and 
spectrally inhomogeneous. It is well known12 that bounded 
motion occurs under bottleneck conditions over distances of 
the order of S = (D, T,)'" - lo-' cm, where D, and Te are 
respectively the diffusion coefficient and the spin-lattice re- 
laxation time for the electrons. The length S is significantly 
greater than the spatial scale of the inhomogeneities in the 
distribution of the local fields, the principal sources of which 
are the straggling of the parameters of the crystalline field, 
the unresolved fine and hyperfine structures, the dipole field, 
etc. Therefore, we can first carry out the averaging over the 
space variables. After the averaging, the system remains 
spectrally inhomogeneous, with a local-field distribution 
functiong(L? ). The spins having the same frequency are most 
strongly coupled to each other in the bottleneck regime, and 
therefore kinetic equations can be derived for the spectral 
density of the homogeneous (in space) magnetization of the 
impurities. Because the electrons move rapidly (the Fermi 
velocity u, - lo8 cm/sec), the local fields acting on them 
average out to negligible values. All this allows to us choose 
as the dynamic variables for the description of the spin dy- 
namics the spectral-density operators for the impurity and 
electron magnetizations, M,(O ) and Me, respectively, and 
the electron kinetic energy operator Z,. The kinetic equa- 
tions are derived by averaging the quantum-mechanical 
equations of motion for the corresponding operators with a 

nonequilibrium statistical operator. We omit the corre- 
sponding computations, since the literature contains a de- 
tailed description of the computational procedure (see, for 
example, Refs. 11, 13,-15). In second order in ZeL and Zes 
the equations for the transverse components of the mean 
spectral density of the magnetization of the impurities and 
the transverse components of the mean magnetization of the 
electrons have the following form: 

dMs*(Q' t ,  = i i {QM.* ( R ,  t )  +o. (l+hxe) v [Ma* (Q. t )  
at 

0 

+ X  J dti [Me* (t+ti)  -xe (h* (t+ti) 

dMe*(t )  = * iw,(l+Ax.)v[M.* ( t )  -x. (h* ( 1 )  +hM.*(t)) ] 
at 

x (2,.* ( t , )  +Z,L* ( t l )  ) 

where 
.o 

.Me* ( t )  = J Ma* (Q,  t )  dQ 

is the total transverse magnetization of the impurities; 

j g(n)an=i; 
- rn 

are the static susceptibilities of the impurities and electrons 
respectively, p ( ~ , )  is the density of states at the Fermi level 
E ~ ,  and T is the lattice temperature. The explicit form of the 
kinetic coefficients 2 2 , E 2, and 2 2 can be found in Ref. 
11. In deriving the equations (3), we took into account the 
fact that the spectral densities of the quantities x,, 2 $, and 
2 2 are related with the quantities themselves in the follow- 
ing manner: 

The local-field distribution function g ( 0  ) is arbitrary. 
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In the first equation of the system (3) the integral terms 
describe the drift of the magnetization of the impurities from 
the frequency interval (O,R + dO ) with velocity 2 2 (t ) to 
the electrons and the return of the magnetization with veloc- 
ity 2 (O,t ) to a fraction g(O ) of the spins with frequency 
lying in the indicated interval. The integral terms in the 
equation for M + (t ) have a similar meaning, with the only 
difference that, for the electrons, relaxation of the magneti- 
zation into the lattice at a rate of 2 2 (t ) is another channel. 
Notice that the equations of the system (3), with the kinetic 
coefficients 2 2 computed for arbitrary temperatures, are 
valid also for the low-temperature regime (k, T S  +&as ~ 0 . 4 5  
K for the 9-GHz frequency band). To solve the equations (3), 
we perform a temporal Fourier transformation, defined as 

1 "  
@ ( t )  = - f @ ( o ) e x p  ( - k t )  d o ,  

2n J -- (5) 

and go over to the dynamic susceptibilities 

x e * ( o )  =Me* ( o ) / h * ( o ) ,  xs*(Q, o) =Ma+ (51, o ) / h *  ( o ) .  (6) 

We solve the resulting system of equations for x,i (a) and 
x"O,a). Then, integrating both parts of the solution ob- 
tained for x"O,w) over O, we obtain for X: (a) and 

CC 

~ . * ( w ) =  J x , ? * ( ~ ,  w ) d ~ ,  
- w  

a new system of equations whose solution for the total re- 
sponse of the system of impurities and electrons gives the 
complex dynamic susceptibility 

where 
&,*= [D* ( o ) ]  -'+o-ihxxeZ,.*(o), 

F , * = T o , ( ~ + ~ x , ) ~ ' - ~ ( Z , , * ( O )  f Z ,L*(O) )  - ihl~- 'x ,Z, ,*(o),  

E,'=Tho,x. (l+hx,)v-ixZ,,* ( o )  -iXx,Z,,*(o), 

+ix-'x,Z,,* ( o )  

Here 

D*(w)= j dRg(Q) { -of  ~ ~ w . ( l + A ~ . ) v - i Z , , * ( w ) } - ' ,  
- - 
xi,* (o)  = j xi,* ( t )  erp(-iwt) dl. 

- m 

In the high-temperature approximation (+&as/k, T< 1) the 
kinetic coefficients 2 ,'(a) do not depend on the frequency, 
and have the following form: 

16 nc' p ( ~ , . )  X C L  = 
9 h  N 

I v8a I 2. 

Here c' is the concentration of the nonmagnetic impurities 
and V, is the potential describing the scattering by them. 
Under normal-for EPR-conditions, 2,, - 10' sec-I and 
ZeS, 2, - 10'0-1012 sec-I. 

As can be seen from (71, the solution to the equations (3) 
describing the dynamics of a spectrally inhomogeneous sys- 
tem of impurities can be written in the same form as for the 
case of a spectrally homogeneous system,I6 but the line 
shape is not Lorentzian, and depends on the shape of g(O ) 
and the temperature (see below). If there is no inhomogen- 
eous broadening of the spectrum of the impurities, the distri- 
bution degenerates into a delta function:g(O ) = S(O ). In this 
case we obtain the well-known result for x * (a) (Ref. 16). If 
the local-field source is the intrinsic nuclear spin i of the 
impurity, then 

and the virtually infinite system of equations (3)  becomes a 
system of 21 + 2 equations describing the dynamics of the 
hyperfine structure of an EPR line with a splitting of magni- 
tude a,,,. between neighbors of the 21 + 1  component^.'^-'^ 

If there is no bottleneck (i.e., if 2, >2, ), then the elec- 
trons are in equilibrium, and the impurities having different 
frequencies inside the g(O ) profile relax independently of 
each other. In this case the line shape should evidently be the 
convolution of the homogeneously broadened line with the 
local-field distribution g(O ); this can be shown from (7), us- 
ing the above indicated inequality. Thus, all the particular 
and limiting cases investigated earlier follow from the equa- 
tions (3) and their solutions (7). 

WIDTH OF THE DYNAMICALLY NARROWED EPR LINES 

Let us consider the situation in which there is a bottlen- 
eck: 2, >2,, . In this case the nonequilibrium magnetiza- 
tion transferred from one part of the g ( 0  ) spectrum to the 
electrons is more likely to return to the impurities than to 
relax into the lattice. And, as can be seen from the equations 
(3), the magnetization will return not necessarily to the for- 
mer frequency interval (O,O + dO ), but to any other inter- 
val (O ' , a  ' + dO ') with probability proportional to the num- 
ber of spins having the frequency O '. Thus, the impurities 
having different local frequencies turn out to be coupled via 
the electrons by the cross-relaxation. If the rate of the cross- 
relaxation is greater than the magnitude of the local-field 
spread, then we should expect, as in the Anderson-Weiss 
theory of exchange narrowing," a narrowing down of the 
EPR line. Let us assume that the relation 2, > A ,  where A 
characterizes the width of the g(O ) distribution, is fulfilled. 
Then the denominator in the D *(a) integral in (7) can be 
expanded in a power series in the small ratio 
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D /( - o + w, - iE,,), and integrated. For clearness of ex- 
position, let us set g, =ge ,  which gives rise to a situation 
favorable to the formation of a b~t t leneck,~ and neglect the 
molecular fields, i.e., set A = 0. Then 

where 
m 

are the moments of the function g(f2 ). If M,/Z,, ( 1 and 
M2/2 Se 4 1, the terms of the expansion can be returned to the 
denominator. The substitution of D * (w) into the expression 
for E$ in (7) and the analysis of the susceptibility show that 
x * (0) possesses a simple pole, which determines the posi- 
tion and width of the collective mode occurring in the situa- 
tion with the bottleneck: 

where the bottleneck factor B, which lies in the interval (0, I), 
is given by the expression 

As a result of the simple pole of the form x * (a),  the shape of 
the collective mode is Lorentzian for any shape ofg(R ) if the 
latter fulfills the requirement that the second moment M2 be 
finite and the ratio M2/2 :e be small. The ratio M2/2, is the 
residual contribution from the local-field distribution g(R ), 
which is narrowed down by the cross-relaxation under bott- 
leneck conditions. As can be seen from (lo), the contribution 
(Z,,) of the Corringa mechanism to the EPR line width is 
reduced by the dynamic character of the interaction between 
the impurities and the electrons (lower B values correspond 
to a narrower bottleneck). It can also be seen from (10) that 
the extent of the narrowing is regulated by the Corringa rate 
2,, a T (8) (when 2,, &2,,, which is almost always the case, 
the narrowest bottleneck in the two-stage cross-relaxation 
process imp~rities+(2~,)-+electrons+(2,)+ impurities is 
the first stage, which proceeds at a rate of 2,, and therefore 
it determines the effective cross-relaxation rate). Thus, we 
should expect the inhomogeneous contribution to the line 
width to increase as the temperature is lowered. Now, in- 
stead of (I),  we can approximate the temperature depen- 
dence of the width by the following expression: 

r (T) =a*+b*T+cT-', (12) 

whereb * = Bbandc = 2TM2/Zse .Evidently,r (T),  (121, has 
a minimum at 

[but this is not necessarily the case for the width ofx "(w), (7), 
since the temperature region of validity of (12) is bounded 
from below]. It is easy to see from (13) that the narrower the 
bottleneck (i.e., the smaller B is) and the broader the g ( 0 )  
distribution, the higher the temperature T,,, at which T ( T )  

has its minimum. The behavior o f r  ( T )  in the region of inter- 
mediate and slight narrowings can be investigated in detail 
only by numerical methods. 

Before proceeding to the numerical analysis, let us note 
that, for a distribution of the Lorentzian form 

the second moment M2 = W ,  and the criterion for narrow- 
ing M2/Z :e ( 1 is not fulfilled. Therefore, the Lorentzian dis- 
tribution does not narrow down, and its shape does not 
change. Salikhov et and Silsbee and Hone22 have also 
concluded on the basis of model calculations that a distribu- 
tion with the Lorentzian shape does not narrow down in the 
course of spectral diffusion. It is, however, clear that a real 
g, (0 ) distribution has finite wings. Computer calculations 
have shown that, when the range of the integration in the 
expression (7) for D * (w) is cut off after, say, ten halfwidths 
(with g(f2 ) normalized to unity beforehand in the indicated 
range), the EPR line undergoes insignificant narrowing. 

For the subsequent numerical analysis, we choose a 
symmetric Gaussian distribution function g, (D ) and certain 
symmetric functions that decrease according to a power law 
at the wings. Since the results are qualitatively similar, we 
limit ourselves to one example: 

The program was written in the FORTRAN language and 
computes: the complex susceptibility x * (w), (7), the width of 
x "(0) at half-maximum, the absorbed power P (H,,w), and 
the field derivative dP/dH, of the absorbed power. Figure 1 
shows plots of the dependence of the line width on tempera- 
ture (in units of 2,,/A a T)  for different values of the factor 
B. It can be seen from the figure that, as the bottleneck nar- 
rows (i.e., as B decreases), there appears a distinct minimum 
in the dependence T ( T  ), and that this minimum moves into 
the region of higher temperatures, as follows from the ap- 
proximate formula (12). It can be seen from Fig. 1 that, for 
the factors B = 0.1 and 0.03, the total width of the r ( T )  line 
in the region of the minimum is significantly smaller than the 
width of the distribution g,(O ). The line width increases at 
low temperatures because of the removal of the dynamic nar- 

FIG. 1. Dependence of the EPR line width at  half-maximum o f x  "(o) on 
the temperature (in units of T , , / A  a T )  for g,(O ! [see (14)]; A is the half- 
width of the function g,(O ). The values of B are indicated on the curves. 
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rowing as a result of the decrease of the cross-relaxation rate 
cc T. 

Let us now discuss in greater detail the experimental 
investigations reported in Refs. 3-7, in which the line broad- 
ening at low temperatures is attributed to magnetic order- 
ing, and let us look at them from the standpoint of the pres- 
ent investigation. In experiment, in order to change the 
factor B, we must change the concentration of the magnetic 
impurities, i.e., E,  (8), or the concentration of the nonmag- 
netic spin-orbit scatterers, i.e., E,, (8), through, for example, 
the addition of impurities prepared from the actinide series; 
in other words, we must prepare a new sample. Thus, when 
the impurity concentration is changed, the factor B de- 
creases by more than a factor of 13 in the case of Gd in LaB, 
(Ref. 3), by almost a factor of four in the case of Gd in LaAI, 
(Ref. 4), by almost a factor of 10 in the case of Gd in amor- 
phous YAl, (Ref. 5), and by more than a factor of 10 in the 
case of Mn in the semiconductor PbTe (Ref. 6). Thus, the B 
values for which the curves in Fig. 1 were constructed are 
typical values for experiments of that sort. It is clear that it is 
impossible to secure the same shape and width of the distri- 
bution g(O ) in different samples; nonetheless, the similarity 
between the graphs in Fig. 1 and the corresponding curves 
given in Refs. 3-7 is apparent. As the bottleneck narrows (B 
decreases), there appears on the width-versus-temperature 
curves a minimum that shifts into the region of higher tem- 
peratures, as in Fig. 1. We should expect that in 
Gd, Y, - , Al, (Ref. 5) the distribution function g(O ) will be 
least sensitive to changes in the Gd concentration 
(0.0059~xg0.33) because of the amorphism of the com- 
pound. Malozemoff et have noted as incomprehensible 
the fact that the residual width a obtained by extrapolating 
the high-temperature data to T = 0 K decreases as the bott- 
leneck narrows. If we try to carry out a similar extrapolation 
(see the dashed lines in Fig. I) ,  then, as in Ref. 5, we obtain a 
systematically decreasing positive residual width (1+5). 
This procedure is nonunique, since, according to (12), the 
function T ( T )  is nonlinear in the high-temperature region as 
well, but the error is not large, since the contribution of c/T 
is small. In experiment the nonlinearity is not noticeable be- 
cause of the statistical spread of the measurement data. It is 
clear from the foregoing that allowance for the dynamic nar- 
rowing in the interpretation of experiments is not less impor- 
tant than allowance for the effects connected with the ap- 
pearance of magnetic order. 

It is shown in Ref. 12, and this is well corroborated by 
experiment (see, for example, Ref. 23), that the exchange 
interactions between the impurities lead to the renormaliza- 
tion of the relaxation rate: 

Therefore, the dynamic narrowing will be removed as T-+@, 
where @ is the Curie paramagnetic temperature, which can 
be either positive or negative. 

THE EPR LINE SHAPE 

The numerical computations allow us to construct the 
field sweep ofx "(0)  for different temperatures and B factors. 

FIG. 2. The field derivative of the microwave power absorbed by a bulk 
metallic sample, d P / d o ,  (0, cc H,); g(R ) = g,(R ), (14); T,,/A = 0.2; 
B = 0.1; A,/B, -- 2.11. The dashed lines are the corresponding plot for the 
Lorentzian function g,(R); A , / B ,  = 2.55. The curves have been reduced 
to the same flow-field peak amplitude, i.e., A ,  = A , .  

It can be seen from them that at high temperatures and (or) 
low B values the line shape is nearly Lorentzian, as follows 
from (10). As the temperature is lowered, the line shape 
changes continuously, tending to the shape of the distribu- 
tiong(f2 ) at low temperatures. The solution to the equations 
(3) together with the Maxwell equations shows that the ab- 
sorbed power P (H,,o) is proportional to the sum of the real 
and imaginary parts of the dynamic susceptibility x + (a) ,  (7), 
describing the collective response of the impurities and the 
electrons. Figure 2 shows the plot of the ws derivative 
- dP/dw, of the power absorbed in the external-field 
(H, a a,) sweep at a temperature below T, . For comparison, 
we also show the dP/dw, for a Lorentzian line of equivalent 
width r. It is well known that, for the Lorentzian shape, the 
ratio of the amplitudes of the flow-field and high-field signal 
peaks Al/Bl = 2.55, and that the halfwidth r / 2  of t h e x  "- 
line can be obtained by dividing the peak width A wip (the 
distance between the vertices of the dP/dw, signal peaks) by 
1.268. It is clear from Fig. 2 that: 1) in the region where the 
line is broadened the ratio A,/B, < 2.55; 2) the peak width 
Ampp for non-Lorentzian lines differ significantly from dotp 
for the samex "-line width, and the difference is systematic 
and increases with decreasing temperature. The experimen- 
tal data on the line shape in the line-broadening region are 
scanty: it is noted in Ref. 7 that the signal shape is non- 
Lorentzian, and that the signal has a lower intensity at the 
wings (the continuous curve in Fig. 2 exhibits the same be- 
havior); in Ref. 5 it is noted that the line shape is non-Lorent- 
zian, and therefore data for the peak width are given. Our 
calculation shows that a spectral analysis performed under 
the assumption that the line shape is Lorentzian can lead to a 
significant error in the determination of the true width of the 
EPR lines. 

The authors are grateful to B. I. Kochelaev for constant 
attention to, and a discussion of the results of, the work. 
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