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The influence of the spontaneous electromagnetic radiation of electrons (or positrons) in axial 
channeling on the orientation of their spin is studied. It is shown that radiative self-polarization of 
the particles is possible and the conditions under which observation of this phenomenon is possi- 
ble are pointed out. 

1. INTRODUCTION 

The spontaneous electromagnetic radiation by fer- 
mions moving in external fields can lead to the appearance of 
a referred orientation of the particle spin (radiative self-po- 
larization). This effect was first predicted for electrons mov- 
ing in a constant uniform magnetic field by Sokolov and 
Ternov.Is2 At the present time the radiative self-polarization 
of electrons in a magnetic field has been studied in detail3-' 
and is explained in  textbook^.^.^ 

Attempts have been made to observe a similar effect in 
the motion of electrons in electromagnetic fields of other 
configurations. For example, Ternov et a1.I0 in a study of the 
spontaneous radiation of electrons in the field of a plane cir- 
cularly polarized electromagnetic wave showed that radia- 
tive self-polarization does not occur in this case, although 
the nature of the classical motion is the same in Ref. 10 and 
in Refs. 1 and 2. This result indicates that the possibility of 
radiative self-polarization of the electron spin cannot be 
judged on the basis of the nature of the classical motion. This 
same conclusion has been drawn in Refs. 1 1 and 12 (see also 
Ref. 13), where the motion of an electron was considered in 
the approximation of a cylindrical rotator. The most impor- 
tant general result of Refs. 10-12 appears to us to be the 
conclusion that the total probability of transitions with spin 
flip is practically independent of the nature of the external 
field (and can be evaluated, for example, qua~iclassically~~~),  
while the degree of polarization of a particle beam is ex- 
tremely sensitive to the structure of the external field, a fact 
which determines the possibility of radiative self-polariza- 
tion. 

Up to the present time there has been no observation of 
physically interesting fields, other than a constant magnetic 
field, which lead to appreciable radiative self-polarization of 
electrons and positrons, and therefore the search for such 
fields presents considerable physical interest. 

In the present paper we study the possibility ofradiative 
self-polarization of electrons (or positrons) in axial channel- 
ing in crystals. Several authorsI4-l6 have considered the mo- 
tion and radiation of charged particles in planar channeling 
in curved single crystals. The qualitative estimates of radia- 
tive self-polarization given in these studies are not in ques- 
tion, but the quantitative calculations of the degree of self- 
polarization carried out in these papers must be taken with a 
certain caution. In these studies the probability of transi- 
tions with spin flip was taken from results obtained for a 

magnetic field, whereas it is clear that in crystals the main 
role is played by electrostatic fields, which can give substan- 
tially different values for the degree of self-polarization of 
the particle beam. Here we show that the high-frequency 
radiation arising in channeling and first predicted by Ku- 
makhov" opens up new possibilities for obtaining beams of 
polarized particles. 

2. CHOICE OF EXTERNAL-FIELD MODEL AND CALCULATION 
OF TRANSITION MATRIX ELEMENTS 

Let us consider an electron moving along the z axis of a 
cylindrical coordinate system r, p, z and focused on the axis 
of the motion by an arbitrary axially symmetric electric field 

where A,(r) is an arbitrary function of r. 
The Dirac equation for the field (1) permits four inte- 

grals of the motion: the total energy E = cM, the projec- 
tions on the z axis of the momentump, = fik, and the total 
angular momentum J,  = f i (1-  1/2) (1 is an integer), and the 
spin vector T, where the spin operator T has the form (see 
Ref. 8) 

and m, is the rest mass of the particle. 
The Dirac wave functions of the electron (e, = lei), 

which are eigenfunctions for these operators, are given in the 
textbook by Bagrov et aI.I8 (Section 36, p. 119) and have the 
form 

Here L is the normalization length and 6 = _+ 1 describes 
the orientation of the particle spin: 

The functions f (r) andg(r) are solutions of the following sys- 
tem of differential equations: 

1,=1-'/,, A=K-teoAo ( r ) l c f i .  

The function (3) is normalized to unity if the normalization 
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factor N is chosen from the condition 
m 

I=4nLINIZ I (fl++ggt)dr. (6) 
0 

The probability of spontaneous emission of a photon in 
transition from a state K, k,, 1, f (we shall assume for defi- 
niteness 1 > 0) to a state K ', K; ,1' = 1 - v, ( ' is calculated by 
the standard methods of quantum electrodynamics (see for 
example Refs. 5,8, and 9) and is proportional to the square of 
the moduli of the matrix elements of the Dirac matrices Ei , 
where it is well k n o ~ n ~ . ~  that one must calculate the combi- 
nations 

B,=- a ,  sin cp'+a, cos cp', 

Bz=8, cos cp1+a2 sin cp', B3=ti3, (7) 

and the direction of emission of a photon with frequency 
w = cx will be given by the angles 0, p' with inclusion of the 
conservation law k ; = k, - x cos 0. Representing 3, in the 
form 

m 

Bt=2nN1Y J B, dr,  (8) 
0 

it is easy to find from the functions (3) (with accuracy to an 
important phase factor) the following values: 

B,=iB(%, E )  if+'gJv+,-%L'g+'fJv-11, 

Bz=B(%, 8) (f+'gJvti+%S'gt'fJv-1) ; 

B,=EB ( - f ,  - E )  (f+'l-bb'g+'g) J v ,  (9) 

Bit, e) =[ ( h ' f f ' k , )  (h+5ko)l " 

+ E E ' ~ % ' [  (A'--c1ko) (A-ck,)] ", 
where J, = J,  (xr sin 8 ) is a Bessel function. 

Integration over r in (8) is possible if one knows the form 
of the functions f and g, which requires that the actual form 
of the potential A,(r) be given. 

3. ANALYSIS OF THE RADIATIVE SELF-POLARIZATION 
PROCESS IN AXIAL CHANNELING 

The problem of finding a potential A,(r) which provides 
axial channeling is extremely complex. l9 No less complicat- 
ed is the problem of integration of the system of equations 
(5), even if we assume that the potentials of the fields are 
known. 

However, simple qualitative reasoning already shows 
that spontaneous radiation in axial channeling must lead to a 
preferred orientation of the spin. In fact, the actual experi- 
mental conditions are such that the energy of the transverse 
motion must be much less than the energy of the longitudial 
motion, i.e., the electron velocity v, along thez axis is close to 
the velocity of light (v, = cp3,P3 = k,/K=. I), while the aver- 
age transverse velocity v, = cp, (P : = ,B ' - P :) is small. 
Here P 2  is determined from the condition 
k,(l - 0 ' ) - ' I 2  = A, where 3 is the average value of A over 
the functions (3). In other words, the main contribution to 
the electron energy is from the momentum k, and in the 
equations (5) we have A - k,, A -k3. Then we can obtain 
from Eq. (5) 

where $(r) is some function of r. Then, for example, for B, we 
have (for transitions with spin flip ( ' = - ( ) 

v 
( J ~ / + %  - 1 " )  ~ ( r ) .  

xr sin 0 

From (1 1) it follows that, whatever the nature of the function 
$(r), the dependence of B, on the initial orientation of the 
spin is substantial and an appreciable preferred orientation 
of the spin should take place (at least for large k,). If we 
consider a nonrelativistic electron (P3( I), then a similar con- 
clusion is obtained from analysis of the coefficients B ((, E )  in 
the formulas (9). 

Thus, at all energies of electrons (or positrons) we must 
expect the degree of radiative self-polarization of the parti- 
cles as a result of spontaneous radiation in axial channeling 
to be appreciable. 

A very important question is that of the absolute value 
of the probability of transitions with spin flip. We shall give 
an estimate of this quantity, proceeding from the model of a 
rigid cylindrical rotator. 

In this model (see Refs. 11 and 12) it is assumed that the 
motion occurs over the surface of a cylinder of radius r = R. 
This corresponds to the case in which in the equations (5) the 
derivatives with respect to r of the functions f and g are as- 
sumed equal to zero and the integrals in Eqs. (6) and (8) are 
removed. Without loss of generality we can always choose 
the potential A, such that A,(R ) = 0. In this case A = K. 

From Eq. (5) we find 

and from (6) it follows that 

We note from (12) one obtains estimates (10) in complete 
agreement with the general reasoning given above. It is now 
straightforward to obtain exact (in our model) expressions 
for the total (integrated over angles and summed over v) 
probability of transitions per unit time with spin flip. These 
exact expressions have a rather cumbersome form and are 
not given here. We note here only that the total probability 
Wc of transitions with spin flip per unit time will depend on 
the initial spin orientation f and is a function of the invariant 
parameter Po determined by the relation 

where E = cfiK is the energy of the electron (or positron). To 
evaluatePo it is convenient to introduce the entry angle y of 
the particle into the channel, i.e., the angle between the ini- 
tial electron velocity and the z axis. Obviously P, = P cos y 
and from Eq. (14) we find 

pOZ=qZ/ ( l + q Z ) ,  q=p (1-p2) sin y. (1 5) 

If we expand the exact expressions for the probability in 
the Planck constant fi, it is easy to see that the quantum 
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parameter is actually the quantity 

E=q (l+qZ)"'lk0R. (16) 

This is a well known quantum parameter in the theory of 
synchrotron r a d i a t i ~ n , ~ . ~ . ~  which by the way is quite natural. 
Under actual experimental conditions the value off is small, 
and therefore we shall give the expression for Wt for the case 
f < l .  

(17) 
Here the functionsx (x) and p(x) are given by the expressions 

+ e2+eo cos2 0 
J,2 (2,) sin 0d0, 

x2 sin2 0 I 

E O = ~ - X ~ ,  ~=1-x2 sin2 0 ,  za=vx sin 0 .  

The function x (x) can be calculated explicitly: 

1i-x 
(i) = (962) -' [9 (1-x2)ln - -I (18-80x2f 46x4)] , (19) 

1-1 

while for p(x) an explicit expression of this type is not 
known. It is easy to investigate the simplest properties of the 
functions x (x) and p(x). In the interval from x = 0 to x = 1 
both functions are bounded monotonic functions of x; here 
x (x) falls off and p(x) increases with increase of x: 

Thus, if we create conditions under which the electrons 
(or positrons) in the beam all (or almost all) have I > 0, then 
regardless of the initial orientation of the spins of the parti- 
cles in the beam, at large times t > r a preferred orientation of 
the spin is established, and the fraction of electrons with 
spins p will be 

nr='l* [ I - j ;~ (Po) l~(Pa) l .  (21) 
The nature of the change of the beam polarization with time 
is determined by a simple relaxation process and is well 
known (see for example Refs. 1-3), and the quantity r is the 
relaxation time. From Eqs. (20) and (21) it follows that 

For positrons it is necessary in Eq. (21) to make the substitu- 
tion 6- - (. If I < 0, then all conclusions remain in force 
also with the substitution 6-+ - 6. Assuming that the mo- 
tion of a particle along thez axis is relativistic (u, z c ) ,  we find 

that if the quantity So = C&T does not exceed the range of 
the channeled particles, radiative self-polarization actually 
is established in the course of channeling. The variation of 
the fraction nt (s) of the particles in the beam with spin 6 as a 
function of the path traversed during channeling S can be 
obtained easily from well known formula~l -~  and has the 
form 

where nc is given by Eq. (21). For S = 0 we set n,(O) = ny, 
n _ , (0) = no-, , and it is necessary that ny + no-, = 1 

Numerical estimates for electrons rotating with charac- 
teristic radii of axial channeling R - cm show that if we 
have conditions for which the value of q reaches unity, then 
from Eq. (16) it follows that f -  10W2 (which corresponds to 
the approximation f (1 used by us). For E = 500 MeV we 
have r - 10- sec, So - 3 cm. For E = 5 GeV it is possible to 
obtain q - 2, which increases f by more than a factor of four. 
As a result r decreases by almost an order of magnitude and 
So- 0.3-0.5 cm. These values of So are achievable experi- 
mentally at the present time. 

The results obtained here for a rotator model can be 
used for analysis of the self-polarization effect in motion of 
charged particles in curved crystals. 

4. INFLUENCE OF A MAGNETIC FIELD ON THE RADlATlVE 
SELF-POLARIZATION IN AXIAL CHANNELING 

Radiative self-polarization during axial channeling in 
the field (1) is possible if the charged-particle beam has a 
certain angular momentum of rotation. To achieve this level 
it is possible to use an axially symmetric magnetic field di- 
rected along the z axis, and here the magnetic field will en- 
hance the radiative self-polarization. The solution (3) of the 
Dirac equation retains its form (see Ref. 18) if in addition to 
the electric field (1) there is a magnetic field which can be 
specified in the form 

Hz=r-'Al' (r)  , (24) 

where A ,  is an arbitrary function of r. In this case there is a 
change of the system ( 5 ) ,  in which it is necessary to make the 
substitution l0+1 - 1/2 + e d  ,(r)/cfi. Here all conclusions 
drawn in Section 3 regarding the possibility of radiative self- 
polarization under conditions of near-axial motion, and also 
the estimates (10) and (1 I), remain in force. 

Special attention, in our opinion, must be given to the 
use of single-crystal ferromagnetic materials, in which the 
internal magnetic field (on ordering of the orientation of 
most of the domains) can reach extremely large values; in 
particular the condition I > O(1 < 0) will be realized automati- 
cally. 

We shall consider one further aspect of the pheno- 
menon studied here. Specifically, let there be only a constant 
and uniform magnetic field Hz = H,  and let the electric field 
be equal to zero. In this case, expressing the orbit radius in 
the well known way5 in terms of the magnetic field strength, 
we find 
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For example, if H- 10' G (a field of the explosive type) and 
R - lop2 cm, i.e., ( I  - /?;)-lt2- lop3, then from (25) we 
havet- lop2 and r- 10-'Osec. Thus, if an explosive field is 
maintained for a time of 10-10-10-9 sec in a cylinder with 
R - 10W2 cm and length 3-10 cm, then the electrons which 
have traversed the region of strong magnetic field are polar- 
ized. 

This effect may turn out to be important also in astro- 
physics. Near the surface of neutron stars the magnetic fields 
can reach values close to H,, in volumes whose linear dimen- 
sions are of the order of kilometers. Energetic electrons in 
traversing such a field will surely be polarized, which may 
lead to observable cosmological effects. 

In conclusion we note that the use of specially pure and 
defect-free crystals, low temperatures, and other special pre- 
cautions will apparently permit experimental realization of 
the conditions for observation of the self-polarization of 
electrons (or positrons) in axial channeling. 
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