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A theoretical study is made of a Jahn-Teller impurity center whose electrons interact with the 
phonon continuum. Analysis of the renormalized Born approximation for the scattering of phon- 
ons by the impurity center yields criteria for the occurrence of low-frequency resonances and 
establishes the symmetry of these resonances. The dispersion relations for an impurity center 
found in an orbital doublet state and interacting with phonons of tetragonal symmetry are solved 
analytically for arbitrary values of the vibronic coupling. A study is made of the change in the 
single-particle vibronic spectrum as the coupling force increases. The position and broadening of 
the low-frequency rotational resonances are determined. 

1. INTRODUCTION sionless vibronic-coupling constant, p, (a) is the projected 

The theory of the dynamic Jahn-Teller effect has been 
worked out rather thoroughly for molecular or cluster prob- 
lems (see Refs. 1-4 for review). Interest has recently arisen in 
impure crystals, which exhibit acoustic and magnetic anom- 
alies that find explanation in the Jahn-Teller effect (or pseu- 
do-Jahn-Teller effect).' For the case in which the electrons of 
the impurity center interact with the phonon continuum, 
such a theory has been developed for the case of weak elec- 
tron-phonon coupling."9 Several problems have also been 
examined in the strong-coupling limit.''-l2 It was shown in 
Refs. 6-9 that the dynamic Jahn-Teller effect can lead to the 
appearance of local and resonant electron-phonon states, 
but the criteria for the appearance of these states require a 
rather strong electron-phonon interaction, particularly for 
the occurrence of low-frequency resonances. On the other 
hand, the applicability criteria for perturbation theory re- 
quire a rather weak coupling, and so there are no grounds for 
hoping that reliable results can be obtained for the low-fre- 
quency resonances in the weak-coupling theory. 

In the present paper we attempt to describe the lowest 
excited states of Jahn-Teller impurity centers for arbitrary 
values of the electron-phonon coupling. 

2. CRITERIA FOR THE OCCURRENCE OF LOW-FREQUENCY 
RESONANCES 

Let us consider a small-radius impurity center in a de- 
generate isolated electronic ground state whose wave func- 
tions transform according to row p of an irreducible repre- 
sentation P. The Hamiltonian of the impurity-phonon 
system is of the form 

frequency density of effective symmetrized phonons. 
OD 

Q=-'= ( d o  o-'pL ( a ) ,  
0 

and the v,, are the electron operators in the basis of the 
electronic functions 1 Pp)  of the term under consideration.' 

With the aid of the equations of motion for the phonon 
operators, one can establish a relationship between the T 
matrix for elastic phonon scattering and the Fourier trans- 
form of the electron Green-function matrix G at a tempera- 
ture of absolute zero: 

T ~ ~ L ' I , ,  P L I  ( a )  =fi-'aL ( a )  aL, (a) G p , L , I , ,  pL1(o) ,  (2) 
G P r L r l r ,  , , , ( t )  =-iO(t)ti-'(Pp'I [ v L r l ,  ( t ) ,  vLI]  [ P p ) .  (3)  

Simultaneously diagonalizing the T and G matrices, we in- 
troduce the partial Green functions G:, (the representa- 
tion r i s  contained in the direct product P x L );' this is equi- 
valent to isolating the partial contributions to the scattering 
amplitude. Using the analytical properties of the G matrix, 
in particular, the Goldberger crossing symmetry,13 

G ~ ~ L , I , ,  p u  ( z )  =Gp'LI, ~ L ' P  (-z), (4) 

we obtain a system of dispersion relations for the partial 
Green functions: 

1 'L' P I' 
-- - F ''1 If, 1m G~LL ,  (a)] , i5) 

0 + z  

R;,=iL+" ( - 1 )  L'6pp6 ( L P P )  6  (L'PP) [PI-'  { 

Here the first term is the free-phonon Hamiltonian, the sec- 
ond term is the vibronic interaction, b 2 (a) and b,, (0) are 
phonon creation and annihilation operators, transforming 
according to row I of irreducible representation L (i.e., hav- 
ing fixed values of the quasi-angular momentum L and its 
projection I),  o is the phonon frequency, a, is the dimen- 

Here [PI is the dimensionality of representation P, [:::] is the 
6 r  symbol, and the K,(L ) are vibronic reduction factors3 
This system of equations is analogous to the familiar Low 
equations for the static model of the pion-nucleon interac- 
tion. The techniques of obtaining equations of this type can 
be found in Ref. 14. The first term in expression (5) describes 
the contribution of the Born approximation with a renor- 
malized coupling constant (the coupling constant is multi- 
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plied by the vibronic reduction factor, which here has the 
meaning of a renormalization parameter). The correspond- 
ing term in the T matrix is 

p:,/hz=a,, ( z )  aL(z) R;L~RZ.  (7) 

The negative sign of the eigenvalues of matrix F corresponds 
to attraction of the phonon to the impurity center, the posi- 
tive sign to repulsion from it, and the absolute values of the 
eigenvalues characterize the strength of the attraction or re- 
pulsion of the phonon. Therefore, low-frequency resonances 
should be expected to occur in states with the largest (in 
absolute value) negative eigenvalues of the matrix Fr . 

Let us examine the typical Jahn-Teller problems. 
1) The E X e problem is the case in which the electrons of 

the impurity center in the degenerate orbital doublet Estate 
interact with the e phonons of tetragonal symmetry. In this 
case L ' = L = P = E. Substituting the values of the 6 r  sym- 
bolsI5 into Eq. (6), we obtain R A ~  = RA2 = - RE = - 1/2. 
Thus the low-frequency resonance should be expected to oc- 
cur in states A, and A,.The fact that the effective coupling 
constant is the same in these states is due to axial symmetry 
that obtains when the vibronic interaction includes only 
terms linear in the coordinates of the nucleL7 These states 
are described by an angular-momentum projection 
J = f 3/2. As we shall show, this resonance, which occurs 
at a rather strong coupling, describes a "rotational" polaron. 

2) TheE x (b, + b,) problem. The impurity-center elec- 
trons are in the orbital doublet E state of the tetragonal 
group and interact with b, and b, phonons. For this problem 
P = E; L ',L = b,,b,; T = E. Diagonalizing the matrix FE, 
we obtain for the negative eigenvalue 

F E = - ~ , ,  ( z )  ~ l b , ( ~ )  K E ( ~ + ) K E  ( b ~ ) .  (8) 

If a,, (z) = a,? (z), the E x (b, + b,) problem formally coin- 
cides with theE x e  problem examined above. At large, une- 
qual (but comparable in order of magnitude) values of the 
coupling constant there will be, in addition to the low-fre- 
quency rotational resonance, a high-frequency resonance 
state corresponding to perturbed rotations (in the adiabatic 
approximation this motion appears when the groove on the 
lower sheet of the adiabatic potential gives way to two shal- 
low minima and two saddle points). If, on the other hand, 
one of the coupling constants is much larger than the other, 
then FE I becomes small as a result of the sharp decrease in 
the reduction factor for vibrations with which the interac- 
tion is weaker. This conclusion agrees with the results of 
direct calculations in the framework of the static Jahn-Teller 
effect; no low-frequency resonances occur in this case. 

3) The T x t problem. The electrons of an impurity cen- 
ter in the orbital triplet T, state interact with trigonal t ,  
phonons. In this case L ' = L = P = T,; RAl = - 1/3, 
RT1 = - 1/6, RE = RT2 = 1/6. Here if the vibronic cou- 
pling is strong enough one should expect a low-frequency 
resonance to arise in the A, state, since the effective attrac- 
tion in this state is twice as large as in the TI state. This 
resonance corresponds to a tunneling state. 

4) The T X (e + t , )  problem. The electrons of an impuri- 
ty center found in the orbital triplet T, state interact with 

tetragonal e phonons and trigonal t, phonons. Then P = T,; 
L ',L = E,T,; = A,,E,T,,T,. In the states A, and E we have 

We diagonalize the matrices FT3 and FT2 and write out only 
the negative eigenvalues: 

1 FT<=- - KT,' (El  nd ( 2 )  1 '" } 
aT: ( z )  ( T 2 )  I+ I+ 12 { [ K T i L ( T 2 )  aT; ( z )  12 

(1 1) 
Recognizing that in the long-wavelength region the project- 
ed densities of states of the trigonal and tetragonal phonons 
coincide, we obtain 

I F ~ Z I > I F ~ ~ I > I F * ~ I  (12) 

for 

K,,Z ( E )  c ~ ~ ~ > ~ I ~ K T , ~ ( T ~ )  ; (13) 

in the opposite case the inequalities in (12) are reversed. 
Knowing the behavior of the vibronic reduction factors 
KT> ( E )  and KT2 (T,) as functions of the vibronic coupling 
constant,I6 we can reach the following conclusions: 

a) If the interactions with the tetragonal e phonons is 
predominant over the interaction with the trigonal t ,  phon- 
ons, the low-frequency resonances will not occur, because 
the absolute values of Fr in the case of strong coupling with 
the tetragonal vibrations turn out to be extremely small since 
KT* (T,)( 1 in this case (the interaction with the trigonal vi- 
brations is suppressed). For the case of a weak interaction 
with the trigonal vibrations this conclusion agrees with the 
familiar assertion that tunneling states do not occur in the 
case of a strong tetragonal Jahn-Teller effect for molecular 
problems.2 

b) If the coupling with the trigonal vibrations is the 
stronger [i.e., if the inequality opposite in sense to (13) 
holds], then there is every reason to expect a completely 
symmetric low-frequency resonance, since the effective at- 
traction in the A, state grows stronger with the coupling 
constant aT2 while KT2 (T2)+2/3,KT2 (E  )-+O. 

c) If, on the other hand, 
u E ~ = ~ / ~ ~ T : ,  (I4) 

then in this case, as we know,17 the symmetry of the point 
center increases to spherical and formally describes the in- 
teraction of an S = 1 electronic "pseudospin" with five-di- 
mensional d phonons (their angular momentum is equal to 
2). Here the vibronic reduction factors KT> (E  ) = KT> (T,) go 
to 2/5 at large values of the vibronic coupling constant." In 
this situation one expects that a low-frequency resonance 
will appear in a state with an angular momentum of 3 (the 
states A,, TI, and T2 coalesce). This resonance corresponds 
to a low-lying metastable rotational state. At small devia- 
tions from exact equality in (14) and for a strong coupling, 
one expects that there will be three low-frequency reson- 
ances, deriving from a split rotational F state and describing 
distorted rotations. The lowest will be the T, state if inequa- 
lity (13) holds, or state A, in the opposite case. 
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3. DYNAMIC JAHN-TELLER EFFECT IN AN ORBITAL 
DOUBLET FOR AN ARBITRARY VlBRONlC COUPLING 

For the E x e problem the exact dispersion equations (5) 
amit an analytical solution in the low-frequency approxima- 
tion for a vibronic coupling of arbitrary strength. In this case 
these equations are of the form 

+I f d w  { Im G""" - I~ G%(~'?)  

n 0 - z  w+z } 7 
o 

(1 5) 
where GAl = GA2 = G 3 1 2  and G' = G "* by virtue of the 
presence of a conserved angular-momentum projection 

I,=-i [ d o [ b , + ( o )  b,(o)-b,+ ( o )  b , ( o )  ] - '~~o, .  (16) 
.I 

The lower sign on the right-hand side of (15) pertains to the 
angular-momentum values given in parentheses in the su- 
perscripts to G. Let us solve dispersion equations (15) by 
Dyson's method.I4 To do this, we write the approximate uni- 
tarity condition implied by the relationship between the T 
matrix for the phonon scattering and the electron Green 
function, where only the contribution of the exact no- 
phonon and one-phonon states is taken into account: 

Im GJ ( z )  = - n k l C  a£3 (2) I GJ ( z )  1 ' .  (17) 

The coefficient C will then be found from the condition 
J = 1/2 in the ground state. With allowance for (17) the solu- 
tion of the dispersion equations is of the form 

1 G'h('2) ( z )  =& - KE3 ( E )  
2hz 

The approximation under study is equivalent to the summa- 
tion of the ladder diagrams and a subsequent renormaliza- 
tion. Converting expression (16) to a matrix of the exact ei- 
genfunctions / + 1/2) with the use of the equations of 
motion for the phonon operators, we obtain the relation 

which, together with (18), makes it possible to determine the 
coefficient C. Analysis of expression (19) in the limit of weak 
and strong coupling yields the approximate formula for C: 

C=K,-'(E). (20) 

The final expression for the electron Green functions is 

1 G':'"' ( z )  =* - K,' ( E )  
2Az 

These electron Green functions describe the vibronic spec- 
trum for arbitrary strength of the electron-phonon coupling 
in the low-frequency approximation. For weak coupling 
expression (21) agrees with the results of Refs. 6 and 7 up to 
terms of second order in the coupling constant. For extreme- 
ly strong coupling a low-freqency resonance is observed in 
the state with J = 3/2 at a frequency 

corresponding to a transition to the rotational level with 
J = 3/2, in agreement with the result of Ref. 10. Here ? 
is the inverse fourth moment of the projected phonon den- 
sity. The broadening of this level due to direct single-phonon 
decay processes, 

was not obtained in Ref. 10. The multimode E X e  problem 
for a weak vibronic coupling was first considered by Slonc- 
zewski.12 In studying the lower sheet of the adiabatic poten- 
tial, Slonczeweski noticed that when the rotational energy 
was included in the case of a continuous phonon continuum, 
one does not obtain finite quantities for the equilibrium val- 
ues of the vibrational coordinates. Accordingly, one does not 
obtain a finite value for the ground-state energy. The result 
presented above implies that the "resonance" of the rota- 
tional state and the vibrational states discussed by Slonc- 
zewski is actually a metastable rotational state. At a suffi- 
ciently strong coupling, the broadening of the rotational 
level is small by virtue of the small phonon density near z,. 
As the coupling increases, so does the moment of inertia of 
the "rotational" polaron which is formed, and this leads to a 
decrease in the energy of the rotational metastable state with 
J = 3/2, which decays with the emission of phonons having 
angular-momentum projection + 1, undergoing a transi- 
tion to the ground state with J = 1/2. Unlike the case of an 
ordinary polaron, the cloud of virtual phonons leads to a 
renormalization not of the effective mass, but of the moment 
of inertia. 

The poles of the electron Green function, owing to its 
relationship to the T matrix, also describe changes in the 
phonon spectrum. The positions of the local and pseudolocal 
vibronic states are determined in the general case from the 
equation 

1 
I* - a Z 2 K E  ( E )  52E32. 

2 

The states which arise in the case of a weaK coupllng are 
discussed in Refs. 6 and 7. The spectrum of the system in a 
superposition of almost purely phononic partial spectra 
characterized by the angular-momentum values J = 1/2 
and 3/2. Such a superposition of phonon spectra in problems 
with phonon dispersion is analogous to the Moffitt-Thorson 
splitting of the single-quantum electronic-vibrational states 
in the molecular problem.18 For the case of strong coupling, 
in addition to the rotational polaron described above there 
arises a renormalized part of the phonon spectrum, whose 
singularities are determined by the equation 
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This result was obtained in Ref. 10. We note that Eq. (25) is 
identical to the equation for the change which occurs in the 
phonon spectrum upon the formation of the extreme low- 
frequency pseudolocal vibration when the elastic coupling 
corresponding to thee mode is broken off completely. 

The phonon Green functions are expressed exactly in 
terms of the electron Green functions.' Analysis of the 
phonon Green functions reveals the existence of an unrenor- 
malized phonon spectrum as well, with an intensity propor- 
tional to 1-K, (E  ), i.e., changing from zero for weak coupling 
to 1/2 for strong coupling. 

Passing in Eq. (24) to the case of no dispersion, 
pE (w) = S(W - w ~ ) ,  we can obtain, for arbitrary values of the 
vibronic coupling, an analytical expression for the gap 
between the ground state and first excited state: 

Comparison of the results of a calculation by formula (26) 
(curve 1 in Fig. 1) with the calculated results of Murama t~u '~  
(curve 2) shows that the results are in satisfactory agreement 
over the entire range of coupling constants. In the molecular 
limit one can also obtain an expression for the ground-state 
energy, 

FIG. 1. Curve 1 is our theoretical result [Formula (26) in main text] and 
curve 2 shows the result of numerical  calculation^.'^ 

also in good agreement with numerical c a l~u l a t i ons . ' ~*~~  
Since expression (24) is valid for any phonon dispersion 

law, it can be used to find the energy of the lowest excited 
states of the multimode molecular problem. The symmetry 
of these states is described by angular momenta 1/2 and 3/2. 

"We note that if the electron operators were defined in terms of the matrix 
of Clebsch-Gordan coefficients rather than in terms of the 3 r  symbol, 
the case under discussion would correspond to equality of the coupling 
constant, i.e., to identical interactions with the tetragonal and trigonal 
vibrations. 
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