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The interaction between longitudinal acoustic pulses and electrons is studied under conditions in 
which the time of flight through the pulse region by resonant particles exceeds the relaxation time. 
The system is described by the equations of elasticity theory and the kinetic equations. The 
electron distribution functions and the resonant particle densities are found in the compression 
region (potential well) and in the rarefaction region (potential barrier), the deformation-potential 
constant being assumed to be positive. The elasticity-theory equation can be reduced by the 
method of slowly varying profile to a first-order partial differential equation [see (1 I)]. The latter 
equation is employed to investigate the evolution of a simple-shape pulse analytically in the case 
of short times. It is shown that the deformation amplitude varies according to a power law under 
nonlinear conditions, when the condition (I)  is satisfied. This is in accordance with Eq. (3 1). The 
deformation does not vary in the region of the potential well. The nonlinear attenuation of a pulse 
that is a combination of compression and rarefaction regions is studied numerically. The different 
nature of the evolution of the forward and back fronts of the u(x,t ) lattice displacement pulse can 
be predicted from the results of analytic and numerical calculations. In particular, the sign of the 
deformation-potential constant can be determined by studying experimentally the attenuation of 
acoustic pulses under nonlinear conditions. 

51. INTRODUCTION 

The evolution of acoustic pulses in metals is determined 
by their interaction with the conduction electrons. Depend- 
ing on the pulse amplitude, two different regimes of this in- 
teraction can be distinguished. If the time of flight of the 
resonance electrons in the region of the pulse L is greater 
than the electron relaxation time rp and the electron velocity 
changes insignificantly in the time between collisions, a lin- 
ear regime is realized. In this case, when the electron inter- 
acting with the pulse does not scatter within the time of in- 
teraction and changes its velocity significantly, a nonlinear 
regime exists.') The condition for the realization of the non- 
linear regime of interaction can be written in the form 

where O is the characteristic velocity of the particle in the 
region of the pulse (in a system of coordinates that moves 
with the pulse), vo is the amplitude of the potential energy of 
the electron, m is the mass of the electron. If the acoustic 
pulse forms a potential well, then, upon satisfaction of condi- 
tion (I), the resonance particles are divided in natural fash- 
ion into trapped and untrapped, and in the case of a potential 
barrier, between reflected and untrapped. 

We now consider qualitatively the picture of the inter- 
action of an acoustic pulse with resonant particles. First, we 
shall discuss the character of the electron distribution func- 
tion. We shall assume that, in scales of the order of the di- 
mensions of the pulse L, collisions are unimportant and the 
distribution function of the traveling particles is an equilibri- 
um one. In the case of a potential barrier, the reflected parti- 
cles have a velocity in the range (w - O, w + O), where w is the 
velocity of sound. In collisions with the pulse, the velocity of 
the electron in a system of coordinates moving with the ve- 
locity w, the sign changes at distances of the order of L from 

the center of the pulse. Here the particle distribution func- 
tion f (v:, v, )is equal to fo( - v: ,v,), where v: = v, - w and 
fo(v: ,v,) is the equilibrium distribution function. This fact is 
illustrated in Figs. lc,d, on which are drawn the distribution 
functions of particles incident on the potential barrier from 
the right and from the left. Since the number of electrons 
moving counter to the pulse is greater than the number of 
electrons overtaking it, an inevitable concentration of reso- 
nant particles is formed in front of the potential well, while 

/p,+ I l l  fi>/pi,2 
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FIG. 1. The lattice displacement u(x)  (a), the potential energy V(x) (b) and 
the electron distribution function, integrated over the transverse velocity, 
in front of the pulse (c) and behind it (d) for a rarefaction pulse. In the 
drawings e, f, g, the displacement u(x) ,  the potential energy V(x) and the 
distribution function, respectively, are shown for a compression pulse 
(A,, is assumed to be positive). 

605 Sov. Phys. JETP 59 (3), March 1984 0038-5646/84/030605-07$04.00 @ 1984 American Institute of Physics 605 



FIG. 2. Concentration of the resonant electrons in the field of the pulse 
V(x) = - A , ,  (xIx/L * ) e -  I x l ' L  (curve 1). At distances of the order L /a, 
the concentration falls off as a consequence of electron collisions. The 
dashed curves show the shift of the lattice u {curve 2) and the potential 
energy V = A,, (&/ax) (curve 3). 

the concentration behind the pulse is below the equilibrium 
value. The characteristic profile of the concentration of reso- 
nant particles is shown in Fig. 2. The electrical neutrality of 
the metal here is assured by the nonresonant particles. It is 
not difficult to establish the fact that in this case, too, the 
total energy of the particles scattered by the barrier in- 
creases. Therefore, in the case of a pulse that forms the po- 
tential barrier (Figs. l a,b), exchange of energy between the 
reflected particles and the lattice leads to a finite damping 
even in a extremely nonlinear regime (a = 0). 

At distances of the order L /a = brP, where electron 
collisions become important, the distribution function re- 
laxes to local equilibrium, while the concentration of reso- 
nant particles falls off exponentially, as is shown in Fig. 2. 
Here the momentum of the electron system is transferred to 
the lattice and an addition deformation appears on the scale 
of order L /a)L. 

The distribution function of the resonant electrons in 
the field of the potential well, which is integrated over the 
transverse velocity, just as in the case of a monochromatic 
wave (see Ref. 2), has the form of a dome in the zeroth ap- 
proximation in a (Fig. Ig). The concentration of resonant 
electrons is proportional to the small parameter a. There- 
fore, in the field of the potential well (Figs. le,f), upon satis- 
faction of condition (I),  the exchange ofenergy between elec- 
trons and lattice takes place more slowly by a factor a than in 
the linear regime, and the damping is small. The same situa- 
tion occurs in the case of a monochromatic wave. 

In the present work, we have investigated the evolution 
of a pulse of longitudinal sound. A quantitative study is car- 
ried out with the help of a set of equations that includes the 
equation of elasticity theory and the kinetic equation. In the 
second section, we find the electron distribution functions in 
the fields of a potential barrier and of a potential well in an 
approximation of zeroth order in a, and also the concentra- 
tion of the electrons, which determines the force acting on 
the lattice. The equation of elasticity theory is reduced, by 
the method of slowly changing profile, to a partial differen- 
tial equation of first order. The evolution of the pulse is in- 
vestigated analytically with the aid of this equation for times 
satisfying the condition t < L /Co, where Co- w(w/u,), and 
v, is the Fermi velocity. It is shown that at short times, the 

amplitude decay follows a power law with an exponent de- 
termined by the behavior of the initial profile of the pulse 
near the maximum [see Eqs. (28) and (30)l. If the pulse is 
asymmetric at t = 0, then the point of the maximum (in the 
system of coordinates connected with the pulse) shifts in the 
direction of a more gentle slope [see (27)l. It must be noted 
that the behavior of the amplitude in the nonlinear regime 
differs from the decay law in the linear regime, when, ac- 
cording to (35) and (36), the amplitude falls off according to a 
linear law. The latter assertion is valid for pulses described 
by sufficiently smooth functions. The equation that de- 
scribes the evolution of the pulse has also been solved nu- 
merically. The corresponding graphs (Fig. 3) and discussion 
are given in Sec. 4. 

2. BASIC EQUATIONS. ELECTRON DISTRIBUTION 
FUNCTION AND THE CONCENTRATION OF RESONANT 
PARTICLES 

The complete set of equations describing the propaga- 
tion of an acoustic pulse in'metals consist of the equation of 
elasticity theory, the kinetic equation, and the condition of 
electric neutrality: 

We have introduced the following notation here: u, is the 
projection of the lattice displacement vector, a,, is the stress 
tensor, u, is the strain tensor, p is the density, e is the charge 
on the electron. The total energy of the electron in the de- 
formed crystal is 

where ~ ~ ( p )  is the energy of the electron in the undeformed 
metal, A ,  = A, - 2 ,  (the bar denotes averaging over the 
Fermi surface), Q = eno(l - div u) is the charge per unit vol- 
ume of the strained lattice, no is the equilibrium concentra- 
tion of the electrons, g( p,r,t ) is the correction to the distribu- 
tion function, which is sought in the form f + SE) 
+ g(p,r,t ). The electron concentration n(r), which is deter- 
mined by the locally equilibrium part of the distribution 
function fo(&, + SE), cancels the charge of the lattice Q. 
Therefore, the equation of electrical neutrality (2c) reduces 
to the condition 

The solution for g, obtained from the set of equations 
(2a) and (2b), does not satisfy the condition (2d)-the integral 
on the left side of (2d) is proportional to (w/v, )A, (du/dx). 
This means that charge compensation does not occur and 
therefore a nonadiabatic electric field should appear, which 
assures the compensation of the charge as a result of the 
redistribution of the nonresonant particles. This field (as is 
shown in Sec. 4) has the order 
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The distribution function g can be represented in the 
formg = g, + g, with account taken of the field e@,. Here g 
is the distribution function of the resonant particles, g, is the 
distribution function of the nonresonant particles, which is 
proportional to e@, (see Sec. 4). In view of the smallness of 
the field e@, in comparison with the deformation potential 
A,, (&/ax), the term with g, and e@, can be omitted in the 
kinetic equation in determination of the distribution func- 
tion of the resonant particles. 

The equation for g( p,r,t ) ~ g ,  follows from (2b): 

In the argument of fo we neglect the energy of longitudinal 
motion of the electrons in comparison with the transverse, 
and also the term p,v, in the expression for SE, which is 
possible in the case w/vF ( 1 and A,, (du/Jx)g~,  . The pulse 
propagates along an axis of symmetry of high order, parallel 
to the x axis. Transforming to dimensionless variables 
6 = (x - wt ) /L ,  s = (v, - w)/C and assuming that the de- 
pendence ofu onx and t has the form u = u(x - wt ), we write 
down Eq. (3) in the form 

where Vo = V(6, ,t ) is the extremal value of the function 

6, is the extremum point ofthe function Vl = V (6,t )/ Vo. We 
seek as a solution for (4) the function 

Vow as e-a( r - r r )  

g ( E ,  r, 6,) = f o f  (81) J arr &7- 

where T is the time of motion along the trajectory d r  = d l  /s, 
E = s2/2 + Vl(6 ) is an integral of the motion. With the help 
of ( 5 ) ,  we can obtain expressions in different orders in a (a( 1 
is the strong nonlinearity condition) for the distribution 
function of untrapped, trapped, and reflected particles in the 
region of resonant velocities. 

In the case of a potential barrier, the distribution func- 
tion of the untrapped particles gun,, and reflected particles 
g,,, in zero order in a is determined by the simple expression 

while the integral ls1>[2(1 - Vl(6))]1'2 corresponds to the 
untrapped particles, and Is1 <[2(1 - V,(l ))]'I2 to the reflect- 
ed; the plus sign corresponds to particles incident on the 
barrier from the left, while the minus sign applies to particles 
incident from the right. 

The distribution function in the case of a potential well 
has the following form for trapped and untrapped particles: 

where 

Fand K are the incomplete and complete elliptic integrals of 
the first kind. By determining the complete distribution 
function with the help of Eqs. (7) and (8), and integrating it 
over the velocities of transverse motion, we can establish the 
fact that it has the form of a bell in the region of trapped 
particles, just as in the case of the monochromatic wave,2 
while in the region of untrapped particles it rapidly ap- 
proaches the equilibrium function. 

The concentration of resonant particles is found by inte- 
gration of the distribution functiong. Thus, for the potential 
barrier, and with the help of (6) ,  we have 

V,'" + ( vo- V) "I 
.[,I* V'" +(V~(V~-V))~] . (9) 

It must be noted that a contribution to (9) is also made by the 
reflected particles, the integral of the function g over the 
range of velocities corresponding to the untrapped particles 
is equal to zero. The concentration n,, in accord with (9), 
vanishes at the point of the maximum of the function V(6,t ) 
and has the value + m2w VO/r2fi3 at 6- + m .  At the point 
where V(6,t ) = 0.305 Vo(t ), the concentration is an extremal 
one, and n,,, = 1.1997np( f m ) .  With the help of (7) and 
(8), it is not difficult to establish the fact that in the case of a 
potential well, the concentration of resonant particles is 
equal to zero in zeroth order in a. It is not possible to carry 
out integration over the velocities in general form in the lin- 
ear approximation in a, or to obtain an expression for the 
concentration in the field of a potential well of the type (9). 
For this reason, we limit ourselves in what follows to the 
calculation of the concentration in the principal (zeroth) or- 
der in a. 

If the acoustic pulse consists of a region of compression 
and rarefaction, i.e., a well and a barrier located one after the 
other, then the calculations of the concentration are carried 
out according to the scheme given above. Here the formula 
(9) for the concentration of resonant particles is valid both in 
the region of the potential barrier and in the region of the 
potential well if we replace v ' I2  by ( - v)li2 in the region 
where V< 0. In the region of the well there is an additional 
minimum concentration of the reflected particles n, , which 
is connected, of course, with the increase in the velocity of 
the reflected particles incident on the well. A typical profile 
of the concentration of resonant electrons for potentials in 
the form of a well and a barrier is shown in Fig. 2. 
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3. EVOLUTION OF THE PULSE 

The expression found in the previous section for the 
concentration of electrons allows us to investigate the evolu- 
tion of the pulse. As follows from Bq. (2a), the force exerted 
by the electrons on the lattice is determined only by the reso- 
nant electrons. Setting A,, ( p) = A = const for all resonant 
particles, we rewrite (2a) in the form 

a2u d2u A an, --wZ-=-- 
atZ axZ p a x '  

( 10) 

where n, is determined by Eq. (9). Equation (10) describes 
the nonlinear collisionless damping of acoustic pulses. 
Thanks to the smallness of this damping in the parameter w/ 
u,, the solution of (10) can be carried out in the approxima- 
tion of slowly changing p r~ f i l e .~  We shall seek a solution in 
the form of a pulse traveling in the positive direction of the x 
axis and one slowly changing its shape, i.e., 

u (x-wt, t') =u(S, t'), 

where the function u({,t ') depends weakly on t, { = x - wt is 
the accompanying coordinate, t ' is the "slowed" time. 
Transforming to the variables {, t and neglecting terms pro- 
portional to d *u/dt 1 2 ,  we reduce the order of Eq. (10): 

a V Az dn, 
-=--- 
dt 2pw 3% (1 1) 

(here and below the prime on t is omitted). Introducing the 
additional notation 

we can easily represent (1 1) n the form 

Setting V({,t ) = Vo(t ) V,({,t ) here, we rewrite (13) in the fol- 
lowing form: 

where 

A feature of this nonlinear equation is that it contains two 
unknown functions: V,({,t ) and Vo(t ), which can be found 
from (14) with the initial conditions 

v (go, t=O) =VO (0) (p (So), S=to at t=O, ( 164 

where p({ ) is the shape of the pulse at t = 0, and the bound- 
ary condition 

v, (Cm, t )= l .  (16'4 

The change in the shape of the pulse is connected with the 
singularities of the function C (V,). As follows from (1 5), the 
function C (V,({,t ) )  has a singularity at the maximum point, 
i.e., at V,({,,, ,t ) = 1 and at V,(c,t )+O. Near the maximum 
V,({,t ), we can set 

c ( v i  (5, t))=-sgn (5-fm)Co[l-Vi (Sf t ) ]  -"', (17) 
and near V, = 0, the singularity is a logarithmic one, 
C (V,) = - 1/2C0 In V, .  If the derivative dV,/d{ of the po- 
tential is finite at the point 6, where V,({,t ) = 0, then the 
force acting on the lattice an, /dc = C ( V, V,)(dV/d[ ), tends 
to infinity. The origin of the mentioned singularities of the 
function C(V,) is discussed below. At V,({,t) = 0.305 we 
have C (V,) = 0. 

We now find the solution of (14) in the region { > 5, (t ). 
The characteristics of this equation are determined by inte- 
gration of the set of ordinary differential equations 

With account of the initial conditions (16a), we obtain the 
solution of (1 8) in the form 

v,vo=vo ( O h  (So), (19) 

or, by virtue of the relation V({,t ) = Vl Vo, 

v (5, t )  =Vo (0) 9 (50) (21) 

Further, eliminating co from the set (21) and (22), we obtain, 
at{>Sm(f): 

Similarly, in the region 5 < c,,, (t ): 

Setting 6 = 6, (t ) in (23) and (24), and equating these expres- 
sions, we obtain 

With the help of (23) or (24) and (25), we can determine the 
dependence of the amplitude of the pulse on the time at small 
values of the time t, and also the law of motion of the maxi- 
mum{,,, (t ). For this purpose, we assume that, near the maxi- 
mum, the expansion of the function p(c ) in a series has the 
form 

CP(S)=~-B(~ IL )~ -Y(S~L) ' .  (26) 

Representing the function p(f ) in 125) in the form (26), we 
~b t a in  

According to (27), the point of the maximum of symmetric 
pulse does not shift with the time. Substituting {, (t ) in Eq. 
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(23) or (23) at 6 = 6, (t ), we find, by taking (17) into account, 
the law of change of the amplitude in the principal approxi- 
mation in t: 

V(bm( t ) ,  t )  =Vo(O) (l-2CoB"'tlL). (28) 

It should be noted that (28) was obtained without account of 
the cubic term in (26). Account of the latter would have led 
the appearance of terms in (28) of higher order of smallness 
in t. If the pulse is symmetric and the function p(g) close to 
the maximum has the form 

cp (%) =I-B (%lL)2n, (29) 

maximum appears near the point x = 0. In the solution of 
Eq. (1 l) ,  the formation of a group of trapped particles in the 
region between the principal maximum V;',, and the addi- 
tional maximum VZ',, has been taken into account. It can be 
shown that the concentration of resonant particles to the left 
of the additional maximum, where V< VE',, has the form 

n, ( V )  = - [ v$& (172;- V )  ] 'A- [ v:; (~2 , -  V )  ] "' 

( ~ ( 1 )  max ) ' h + ( ~ ( ' )  m(lx - ~ ) ' l r  

+ ~ l n I  1 

mar 
(V'2' )'I*+ (V2;x -V)'Il 

where n = 1,2,3, ..., then, with the aid of (17) and (23), we can follows from E ~ .  (321, the function 
show that the amplitude of the pulse changes with time ac- 
cording to power law of the form c (v, v,%, v,%) 8nr/d V 

- - 

V (0, t )  =Vo (0) (1-atV) . (30) V:',, acquires a root singularity with the appearance of the 
additional maximum at V = V:',!,, . This can in turn lead to 

Here the formation of a new maximum. Thus, within the damping 
2n time of the pulse, several maxima can be formed on the curve 

(3 V(c,t ). As is seen from thedrawing, V(6,r ) changes compara- 
tively slowly in the region of the potential well, while the 

where B is the beta function. point of the minimum remains practically unchanged for 

4. NUMERICAL SOLUTION. DISCUSSION OF THE RESULTS 

The evolution of a pulse of complex shape has been 
studied by the method of numerical integration of Eq. (1 1). 
Graphs are shown in Fig. 3 that reflect the evolution of a 
pulse of the form V(x) = - A  lxlx exp( - 1x1). As is seen 
from the drawing, in the region of a potential barrier the 
evolution takes place in the same way as in the case of a 
solitary pulse: the point of the maximum shifts in the direc- 
tion of gentler slope, the deformation in the region of the 
maximum decreases and at x > x,, where x ,  is determined by 
the condition V (x,,t ) = 0.305 Vo(t ), and an increase occur sin 
the deformation. The character of the evolution in the region 
in which the transition from a potential well to a potential 
barrier takes place is determined by the singularity of the 
right side of (1 1) at V = 0. If the derivative b'V/ax is finite at 
this point, then an,/b'x has a logarithmic singularity [see 
(15)l. The latter, as has already been noted, is connected with 
the discontinuity of the electron distribution function on the 
boundary of the region of velocities of the reflected and 
trapped particles. Because of the singularity of the function 
an, /av at V = 0, a rapid increase in the deformation, i.e., 
V(x,t ) takes place in the transitional region from well to bar- 
rier. Because of this, as is seen from Fig. 3, an additional 

small time intervals. 
The electron collisions eliminate the singularity of the 

right side of Eq. (1 1). Actually, close to the separatrix, the 
times of motion to the point of return of the trapped and 
untrapped particles tend to infinity according to the same 
law. Since the character of the motion of the trapped and 
untrapped particles is the same, the distribution function, 
which is determined by Eq. ( 5 ) ,  is continuous in velocity 
space. The width of the transition region is determined from 
the condition of equality of the time of motion of the elec- 
trons T(E ) and the collision time 7,. Therefore, the value of 
the singularity at the points V = 0 and V = VE',, and, corre- 
spondingly, the number of maxima that can be formed in the 
damping time are determined by the shape of the potential 
and the relaxation time 7,. 

It should be noted that the singularities of the evolution 
of a pulse of longitudinal sound that are discussed here and 
also in Sec. 3 are characteristic only for the nonlinear regime. 
In the linear regime, when the parameter a is much greater 
than unity, the wave equations in the collisionless ( v , ~ ,  )L ) 
and the collision ( u , ~ ,  ( L  ) regimes takes the form 

FIG. 3. Evolution of the deformation &/ax  = V /  
A, for a pulse given at the initial instant of time by 
the function - xlx le-  I " ,  where x is measured in 
units of L and t in units of L /C. 
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Using the Fourier representation, we can show that the 
asymptotes of the solutions of the linear equations (33) and 
(34) at small t are, 

Cot dx' au (x', 0) 
u(x. t) =u (x-wt, 0)  - - j  

2 x'-x+wt axr ' (35) 

V ~ T  r d2u ( 5 - ~ t ,  0) 
u (x, t) =u (x-wt, 0) +Cot - 

4 ax2 (36) 

respectively. A comparison of Eqs. (35) and (36) with formu- 
las (28), (29), and (30), and with the results of computer calcu- 
lations, shows a substantial difference in the character of the 
damping of the pulse in the nonlinear and linear regimes. 

Up to now, we have assumed that the electrons (with the 
exception of the group of electrons with energies E-0 and 
E-tV,,,) do not undergo collisions in momentum space, 
i.e., over scales -L. The collisions become important at dis- 
tances of the order ofL /a = fir, from the center of the pulse. 
Since the electrons, which react reasonably with the sound, 
move almost perpendicularly to the direction of propagation 
of the pulse, this distance in metals is much smaller than the 
free path length LIFT,. With the help of Eq. (3), it is not diffi- 
cult to show that, over scales of the order of L /a, where 
V = 0, the electron distribution function has the form 

(8 (x) is the theta function). The concentration of resonant 
particles, obtained by integration of the function (37) over 
the momenta, is 

Y 2 
a 

F (  = s 5 dss exp [ - 7 ( 5  - sen 5)  sgn S ]  
0 

The time dependence of V, and a = (V,/m)"2 is determined 
by Eqs. (28) and (30). Substituting (38) in (1 1) and using Eq. 
(30), which determines the amplitude of the symmetric pulse 
V,(t ), we find that at large distances from the center of the 
pulse 6- L /a, - 

- Cot e - ~ ~ < ~  a xt" 
I---], V ( C . ~ ) = ~ Y ~ ? V . ( O ) S ~ ~ G ~ [  v ( 0 ) ~ r  (r+l) 

Thus, according to (39), at small times and large distances, 
an increase in the deformation takes place. As has already 
been noted in the Introduction, this deformation is connect- 
ed with the transfer of momentum from the electrons to the 
lattice in collisions. 

In conclusion, we estimate the value of the nonadiabatic 
part of the electric field. We represent the potential of the 
longitudinal electric field that accompanies the sound pulse 
in the form 

where 0, is the adiabatic electric field, which is found from 
the condition of compensation of the lattice charge by the 
nonresonant electrons, i.e., 

@, is the nonadiabatic part of the field, which determines the 
charge compensation of the resonant particles. We represent 
the increment to the locally-equilibrium distribution func- 
tion in the form 

Hereg, is the distribution function of the resonant particles, 
satisfying Eq. (3). The equation for the distribution function 
of the nonresonant particles, linearized with respect to g, 
and e@,  [which follows from (2b)l in the variables 
u: = u, = w and 5. = x - wt has the form 

In the case of a strong nonlinearity (a-+O) we have for g, , in 
accord with (6), 

The distribution function of the resonant particles g, differs 
from zero in a narrow range of velocities fi near v: = 0. 
Therefore, in accord with (42), the distribution function of 
the nonresonant particles will have an increment connected 
with it only in this region. In the nonresonant region of ve- 
locities, where v: - u,, we can keep only the first term on the 
right side of Eq. (42). On the left side of the equation, we can 
neglect the second term. Actually, the ratio of the second 
part to the first part has the order 

while the ratio of the second term of the left side to the first is 

Therefore, we obtain the following simple expression for g,: 

gi=eOl (afola&). (44) 

Further, substituting (43) and (44) in the equation of electri- 
cal neutrality (2d ), we obtain the expression for the nonadia- 
batic part of the field: 

where n, is the concentration of resonant particles, deter- 
mined in (9), N(E, )  is the density of electron states on the 
Fermi surface. As is seen from (49, the nonadiabatic part of 
the field is small in comparison with the adiabatic part in the 
ration w/u, and is not taken into account in Eq. (3). 
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The effects discussed in this paper can be observed at 
input intensities of the order of 100 W/cm2 at L = lop3  cm 
for sufficiently pure samples with T, = 5 X lop9 s. Here the 
length L /a = 5 x lop3  cm, while the characteristic velocity 
of motion of the points of the pulse profile (in a system mov- 
ing with the pulse) is C,- 10' cm.spl. 

One of the authors (V. Ya. Demikhovskii) is grateful to 
I. M. Lifshitz and M. I. Kaganov for making it possible for 
him to work as a student in the Institute for Physical Prob- 
lems of the Academy of Sciences USSR at the time in which 

61 1 Sov. Phys. JETP 59 (3). March 1984 

the given research was undertaken. 

"A theory of nonlinear damping of a monochromatic sound wave was 
developed in Ref. 1. 

'Yu. M. Gal'perin, V. D. Kagan and V. I. Kozub, Zh. Eksp. Teor. Fiz. 62, 
1521 (1972) [Sov. Phys. JETP 35, 798 (1972)l. 

'V. Ya. Demikhovskii and G. M. Maksimova, Zh. Eksp. Teor. Fiz. 74, 
1738 (1978) [Sov. Phys. JETP 47, 907 (1978)l. 

3M. B. Vinogradova, 0. V. Rudenko and A. P. Sukhorukov, Teoriya von 
(Theory of Waves) Moscow, Nauka, 1979, p. 24. 

Translated by R. T. Beyer 

Demikhovskiletal. 61 1 


